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An Algebraic Approach to Feature Interactions

Raghu R. Karinthi and Dana Nau

Abstract—Various approaches have been proposed to provide
communication between CAD systems and process planning sys-
tems, including automated feature extraction, design by features,
and human-supervised feature extraction. Regardless of which
approach is used, a major problem is that due to geometric
interactions among features, there may be several equally valid
sets of manunfacturable features describing the same part, and
different sets of features may differ in their manufacturability.

- Thus, to preduce a good process plan—or, in some cases, even to
produce a process plan at all—it may be necessary to interpret the
part as a different set of features than the one initially obtained
from the CAD model, This paper proposes a way to address this
problem, based on an algebra of features. Given a set of features
describing a machinable part, other equally valid interpretations
of the part can be produced by performing operations in the
algebra. This will enable automated process planning systems
(such as [39]) to examine these interpretations in order to see
which one is most appropriate for use in manufacturing. The
feature algebra has been implemented for a restricted domain
and integrated with the Protosolid [42] solid modelmg system
and the EFHA process planning system [39].

Index Terms—Algebraic structures, antemated manufacturing,
concurrent engineering design, feature extraction, geometric rea-
soning, solid modeling.

1. INTRODUCTION

ANY OF THE problems faced by modern industry
are related to a lack of coordination between design
and manufacturing. Typical problems include inconsistencies
among process plans for similar designs, large discrepan-
cies from optimal shop utilization, poor product quality, and
noncompetitive costs. Recently, there has been increasing
awareness of the importance of taking manufacturing con-
siderations into account during the design of the part rather
than afterwards. This concept is known by a variety of terms,
such as “concurrent engineering,” “concurrent design and
manufacturing,” and “design for manufacturability.”
Design for manufacturability requires that the part designer
'should not confine himself (or herself) to the traditional
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role of just developing products to meet specified functional
requirements but should alsc actively consider the associated
manufacturing implications. For example, consider the task of
designing metal parts that will be produced using machining
operations. As the part design is being developed, issues
such as availability of resources including machine tools,
cutting tools, jigs and fixtures, and labor, as well as their
particular capabilities and costs, should be considered. In
addition, required -manufacturing, assembly, and inspection
operations should all be considered at the design level. This
calls ‘for a detailed knowledge of the capabilities of the
manufacturing shop, which normally resides with the process
planning department.

A. The CAD/CAM Integration Problem

The goals of concurrent engineering will require that CAD
systems of the future interact extensively with modules such
as process planning systems to evaluate the manufacturability
of the design. It will be necessary for process planning systems
to reason about geometric relationships among the various
parts of an object while the design is underway. However, the
achievement of such interactions presents several unresolved
problems. One of the primary problems is that generative
process planning systems (such as XCUT [2] or SIPS [24])
consider a machinable part to be a collection of machinable
features, and it is necessary to obtain descriptions of such
features from the CAD representation. Several approaches on
how to do this have been proposed, as is discussed in the
following: o

1) Automatic feature extraction consists of automating (al-

gorithmically?) the task of determining the manufactur-
ing features of a part from existing CAD databases such
as IGES files, Breps, etc. Prominent among these are the
ones by Kyprianou [20], Henderson [10}, De Floriani-
[4), Kumar [18], Srinivasan [37], and Vandenbrande
[41}. Some of the more significant problems with feature
extraction are as follows:

a. Some attributes of a machined part cannot be
made without reference to a particular feature
(for example, the surface finish, corner radius,
and machining tolerances of a pocket). When
an object is designed without making reference

. to these features explicitly, it is unclear how to
associate the machining specifications with the
proper features.

b. It is difficult to extract a feature that intersects
or otherwise interacts with other features without

A dlStl.ll'bll'lg those other features. For example, in
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Henderson’s feature extraction system {10], once
a feature volume has been recognized, it is sub-
tracted from the overall cavity volume-—making
it impossible to obtain multiple feature interpre-
tations for the same cavity volume. In design
by features, the user builds a solid model of
an object by specifying directly various form

- features that translate directly into the relevant
manufacturing features. Systems for this purpose
have been built for designing injection-molded
parts [40], aluminum castings, [21], and machined
parts [17], [11].

2) In the case of machined parts, one problem with design
by features is that it requires a significant change in
the way a feature is designed. Traditionally, a designer
designs a part for functionality, and a process engineer
determines what the manufacturable features are, How-
ever, the design-by-features approach places the designer
under the constraints of not merely having to design
for functionality but also having to specify all of the
manufacturable features as part of the geometry—a task
the designer is not normally qualified to do. Another
probiem—that of alternate feature interpretations—is
described in Section I-B.

3) Human-supervised feature extraction overcomes one of
the problems of design by features by allowing the
designer to design the part in whatever way is most
convenient and then requiring the process engineer to
identify the machinable features of the part. Systems
have been built for this purpose at General Motors
Research Laboratories and at the National Bureau of
Standards [3]. Human-supervised feature extraction pro-
vides a way for a qualified manufacturing engineer to
identify the machinable features—but it still does not
handle the problem of alternate feature interpretations.

B. Geometric Interactions Among Features

Regardless of what technique is used for obtaining machin-
able features from a CAD representation, geometric interac-
tions among the features can create situations where there
are several possible feature representations for the same part.
To produce a good process plan-—or, in some cases, even to
produce a process plan at all—it may be necessary to use a
different interpretation of the part than the one obtained from
the CAD model. The problem is how to find these alternate
interpretations. The importance of handling feature interactions

has been stressed in the recent reports such as [35] and [33].

As an example, let us consider the part shown in Fig. 1. In
this example, the part has been described as the part resultmg
* from subtracting a hole h,1 aud a slot 3, and a slot sy, in that
order, out of a rectangular stock, but because of the mteracnon
of hy with s; and g, we get hp = hy —* 51,! by = hy —* 35,

and hy = hp ~* 85 = hy —* g;. The final set of features used .

for machining would be sy, s3, and one of the holes %, A,
hs dnd hy. Which hole to use depends on issues such as cost

!The terminology of —* is explained later in the paper. For the preseat,

the reader may treat this as the usual set subtraction.
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Fig. 1. Part with two slots 51 and sz and a hole h;.

criteria (whether it is cheaper to make a deep hole or a small
hole}, feasibility (availability of proper tools to make a deep
hole), fixturing criteria (whether it is possible to fixture the
part to prevent excessive vibration while making hy after s;
and sz have been made), and machinability criteria (whether
vibration during the machining of hy will allow acceptable
machining tolcrances to be achieved or whether f; can be
machined with an acceptable straightness tolerance). Thus,
one can see that there can be several possible interpretations
such as {hy, s1, 52}, {he, 51,82}, {h3, 51,32}, or {ha, 51,82}
for the same part, and having only one of them can be a
serious limitation in process planning. This paper discusses an
approach for dealing with this problem based on an algebra of
features. Alternative interpretations of features resulting from
feature interactions are provided by means of operations in
this algebra. Thus, this scheme provides several alternative
feature representations of a machinable part, given one such
representation.” We intend to use this algebra as the basis
of a feature transformation system, which will be capable
of examining feature descriptions, computing alternate feature
representations for an object, and presenting them to a process
planning system. A prototype version of the feature algebra has

 already been implemented. The reader is referred to Karinthi

[16] for details of this implementation. This prototype serves

as the communication interface between our Protosolid solid

modeling system [42] and our EFHA process planning system
[39] (EFHA is an extension of our previous process planning

system called SIPS [24]) in the development of an integrated ‘

system for design and process planning. The rest of the paper
is organized as follows: Section II introduces the mathematical
concepts needed to understand the description of the feature
algebra. Section III describes the feature algebra. Section IV
describes the feature algebra in detail for a restricted set-of
features. Section V compares our work with related research
in this area. Section V1 summarizes this research and presents
our conclusnons and plans for future work.

Il MATHEMAHCAL PRELIMINARIES

- This section summarizes some of the mathematical concepts
required for the definition of a feature in the next section. For a

2The basic idea of an algebra of features was proposed in [14] and [15]:
Since then, the scope of the feature algebra has increased significantly.
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more detailed treatment. of this material, the reader is referred
to Requicha and Tilove [31], [30] and to Kuratowski [19],
Mendelson {23], Simmons [36], and Agoston [1].

In the summary that follows, the symbol W denotes the
universal set and & the empty set. The symbols U, N, —, ¢,
C, 2, C, and D are used to denote the operations, union,
intersection, subtraction, complement, subset, superset, proper
subset, and proper superset on sets.

A. Metric Spaces and Topological Spaces

¥ W is a nonempty set, a collection T of subsets of W is
called a fopology on W if it meets the following requirements:

1)} The union of a finite number of sets of T belongs to T'.

2) The intersection of a finite number of sets of T belongs

to 7.

) Wel.

An ordered pair (W, T) in which the first component W is
a nonempty set and the second component T is a topology on
W is called a topological space. A subset of W is said to be
open if and only if it belongs to T.

A metric space is an ordered pair (W f ), where W is a set,
¥ is the set of all reals, and f : W x W — R is a function

called the distance or metric such that for all a, b, and c in

W, the following applies:

D fe,b) 2 6;

2) fla,b) = 0 if and only if o = b;

3) f(a,b) = f(b,a);

4) fla,c) < fla,b) + f(b, ¢} (the triangle inequality).

As a simple example, the ordered pair (F3, d), where d is
the function giving the Euclidean distance between two points
is a metric space. Let (W, f) be a metric space, and let z
be a point of W. The open ball of radinus R > 0-about z,
denoted by Ball(x, R), is the set of all points y in W that
satisfy f(z,y) < R.

Given a metric space (W, f), a set X C W is open if it
contains an open ball about each of its points. For example,
given the metric space M. = (R, abs), where abs(z,y) =|
x —y |, the set {0, 10) of all reals greater than 0 and less than
10 is an open set. Given a metric space (W, f),aset X C W
is bounded if it is a subset of a ball of finite radius.

Given a metric space (W, f), the set T of all (metric) open
subsets of W form a topology on W. Thus, if (W, f) is a
metric space, (W T is a topological space. Thus, the open sets
of the metric space (W, f) and the topological space {W,T)
are identical.

B C_lo_sea‘ Sets

A neighborhood of a point « in a topological space (W, T)
is any subset of W that contains an open set containing .

Given a topological space (W,T) and aset X C W, a
point x is a limit point of the set X if each neighborhood of
x contains at least one point of X different from z. Notice
that the limit points of a set need not belong to the set.
Given the metric space M = (R, abs) scen earlier, there is
a corresponding topological space N = (R, T), where T is
the set of all (metric) open subsets of . Now, consider the
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open subset (0,10). O and 10 are the limit points of the set
(0,10}, and neither of them belongs to the set. The closure of
a subset X, denoted by kX, is the union of X with the set of
all its limit points. A set X is closed if and only if X = kX.
For example, the set [0, 10] of all reals greater than or equal to
0 and less than or equal to 10 is a closed set. Notice that some
sets (the set (0, 10], for example) are neither open nor closed.

C. Interior and Boundary

Given a topological space (W,T), a point z of W is an
interior point of a set X C W if X is a neighborhood of =,
i.e., if X contains an open set that contains z.

Given a topological space (W,T), the interior of a set
X C W, denoted by iX, is the set of all interior points of
X. ' : '

. X = ¢X if and only if X is open. Given a topological space
(W, T, a point = of W is a boundary point of aset X C W
if each neighborhood of z intersects both X and cX.

The ‘boundary of X, denoted by b(X), is the set of all
boundary points of X.

The reader may observe that the definitions of interior and
boundary correspond to the intuitive nonons of interior and
boundary for solid objects.

-D. Compactness

It can easily be seen that the ordered pair (E™, f), where
E™ is the Euclidean n space and f is the Fuclidean distance,
is a metric space and that there is a corresponding topological
space (E™,T), where T is the set of all open sets of E™.
Henceforth, we talk of the properties of a subset of ™, where
the corresponding metric and topological spaces are the ones
just mentioned. A subset of Euclidean n space is compact if
and only if it is closed and bounded [23].

E. Regular Sets

The regularization of a subset X of W, denoted rX, is -
the set rX = kiX. A set X is closed regular if X =
rX, e, if X = kiX. Note that r7X = rX. From now
on, we simply refer to a closed regular set as a regular
set. In intuitive terms, a regular set in E® camnot have
any dangling faces, dangling edges, or isolated points. It
is well known that when set-theoretic operations such as
union, intersection, and subtraction are applied to two valid
n-dimensional objects, the result is not necessarily a valid
n-dimensional object. For example, if two squares touch on
one side, their intersection is a single line segment, which is
not a valid object. Requicha and Voelcker [32] have shown

_ that this difficulty can be overcome by using regularized set

operations instead of ordinary set operations. The symbols
U*, N*, —*, and ¢* are used to denote regularized union,
intersection, subtraction, and complementation, respectwe]y
They are defined below:

XU Y=r(XUY)

XN Y =r(XnY)

XY =r(X-Y)
"X =reX
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Fig. 2. " Ordinary and regularized set operations.

Fig. 2 shows the difference between ordinary and regular-
ized set operations. .

F. Semianalytic Sets

A function f : E* — R is said to be analytic [6] throughout
its domain if it can be expanded in a power series in z, ¥,
and z about every point in its domain. A necessary condition
for a (real) function to be analytic is that it be infinitely
differentiable. A subset of E3 is said to be semianalytic if it is
a finite combination, via the set operations union, intersection,
and complement, of sets X; of the form

Xi={peE®: filp) > 0}

where f; is any analytic function on E3,

It can be shown that the interior, boundary, and closure
of a semianalytic set is also semianalytic and that class of
compact, regular, semianalytic sets is closed under regularized
set operations. '

G. Convexity and Concavity

Given two distinct points py and p, in Euclidean n space,
the convex combination of p; and Py is the set -

prp=ap+(1-a)pr,a€R0< <t}

The convex combination normally describes the straight line
segment p1py (unordered pair). A subset x of E3 is said to be
convex if and only if for any two points p; and p; belonging
to z, the segment p;p; is entirely contained in z. In this paper,
a subset z of E3 that is not convex is said to be concave. .

It can be shown that the intersection of two convex sets is
a convex set [29]. It can easily be seent that the union and
difference of two convex sets is not necessarily a convex set,

II. THE ALGEBRA OF FEATURF:S

Anm algebraic structure [27] in its simplest form is a set, with
a ruie (or rules) for combining its elements. Let A be any set.
An operation * on A is a rule that assigns to each ordered pair
{z,y) of elements of A exactly one element z * y in A. There
are three aspects of the definition that need to be stressed:

1) z*y is defined for every ordered pair (z,y) of elements

of A;

2) z *y must be uniquely defined;

3) A is closed under the operation x.

In particular, the feature algebra is characterized by a set of
features (denoted by D) and binary operations on the features.
Since these operations give meaningful values only for certain
pairs of features, we include an element called INVALID in the
set of features to be used in cases where the operations do not
produce meaningful values. By definition, for any operation *

Vz, x* INVALID = INVALID * z = INVALID.

" A. Featuse Definition

A feature (other than INVALID ) is given by a pair z =
{ps, patches) where the two entries in the pair satisfy the
following conditions: The first entry (ps(z)) is the set of all
points in a feature and is a subset of E° that is compact,
regular, and semianalytic.

1) The second entry (patches(z)) is apartition of the
boundary of ps(z) into labeled patches (as defined
below),

2) Henceforth, the boundary of ps(z) and the patches in
patches(z) will be referred to as the boundary and
paiches of x. ~

A patch is a regular, semianalytic subset of the boundary
of a feature. A labeled patch is a patch p with a label label(p)
whose value ‘is either BLOCKED or UNBLOCKED. The
paiches and their labels are intended to describe what the
boundaries of the feature mean in the real world. In particular,

-suppose « is a feature of some manufacturable object X. If

some patch p of z separates metal from air {i.e., p lies on

the boundary of X), then p is BLOCKED, and if p separates
~air from air(ie, p does not lie on the boundary of X )

then p is UNBLOCKED. Fig. 3 shows the BLOCKED and
UNBLOCKED patches for the features 45, s;, and 85 shown
in Fig. 1. Fig. 4 illustrates some examples of patches.
Given a feature z and a patch p of z, the regularized
complement of p is defined as c*(p,z) = b(ps(z)) —* ».
Clearly, the regularized complement of a patch is also a patch.
It is worthwhile now to examine the scope and significance
of the above definitions. Regularity restricts a feature to be
homogeneously 3-D. In other words, a feature may not have
dangling faces, edges, and vertices. Fig. 5 shows examples
of valid and invalid features. Even parts with sheet metal
components have a finite thickness; therefore, this appears to
be a very reasonable restriction. Since the features that are con-
sidered are of finite dimensions, they are bounded and, hence,
compact. The domain of semianalytic sets covers practically
all the shapes of interest to manufacturing. The reader may
note that all planar polyhedra, cylinders, cones, spheres, tori,
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-Fig. 3. Patches and patch labels for the features shown in Fig. 1.

.

Fig. 4. Some ecxamples of patches.

and a variety of sculptured surfaces are encompassed by this
set. It also includes concave features such as T slots, counter
bores, and counter sinks (see Fig. 6).

Proposition 1: The set of all patches of a feature is
closed under regularized union, intersection, complement, and
difference.

Proof: The proof is a direct consequence of the closure
properties of compact, regular, and semianalytic sets stated
earlier.

1) Neighborhood: The notion of 2 neighborhood of a point
_ on the boundary of a feature will be useful later on. If § > 0,

the & neighborhood N(p, §) of a point p on the boundary of
a feature z is the set of all points on the boundary of x that
.are at a distance < '§ from p.

2) Orthogonal Projection: 1In this section, a function known
as orthogonal projection will be defined. 1t will be used later in
describing the operations in the algebra. Given a planar patch
s and a point p not in the plane of s, the orthogonal projection
of p in s, denoted O(p, s), is the point p’ (if it exists) on s such
that the line through p and p’ is perpendicular to the plane of s.

Given two planar patches s; and sz, the orthogonal projec-
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Valid Features

Invaiid Features

Fig. 5. Valid and invalid features.

-olot Counter-Bore Counter-Sink
Fig. 6. Cross-sectional views of three concave features.
tion of s4 in &, (if it exists) is denoted O(s1, 32) = {O(p, s2) |
p € 81} if O(p, s¢)} is defined for all p € 3.

B. Operations on Features

This section describes the operations on features. In order to

describe them, one needs to first understand the methodology -

for classifying the paiches of the boundary of one solid with
respect to another solid. This methodology has been developed
by Vanéek [42], who used it in the context of performing set
operations on planar polyhedra.

1) Patch Classification Scheme: A patch x; of the bound-
ary of a solid z is homogeneous with respect to solid y if one

“or more of the classification relationships holds:

1) x;INy, i.e., the interior of x; lies in the interior of y.
2) xz;0UTy, ie., the interior of x; is outside of y.

3) z;WITHy, ie., x; lies on the boundary of y, and both

z and y are on the same side of the boundary.
4) z;ANTIy, i.e., z; lies on the boundary of y, and x and
y are on the opposite sides of the boundary.
Fig. 7 illustrates the patch classification scheme described
above. For example, the patch (also face) v; of the solid v
is not homogeneous with respect to w. However, it can be

partitioned into two patches, each of which is homogeneous'

with respect to w.

Given the above patch clasmﬁcatxon scheme, the boundary
of a solid z can be partitioned into a set of patches (P)
such that each patch in P is homogeneous with respect to
y. Thus, one can obtain collections of patches zINy, xOUTy,
zWITHy, and zANTIy given by the following deﬁmtlons

zINy = {p € P|pINy}
zOUTy = {p € P|pOUTy}
zWITHy = {p € P|pWITHy}
zANTIy = {p € PipANTIy}.
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Fig. 7. Classification of patches of solids x, y, z, u, and v with respect o
the solid w.

The operations in the feature algebra are defined in terms
. of set operations on solids. Using the above classification sets,
the boundaries of z U* y, s N* y, z —" y, and y —* « can be
‘computed as given below. For any patch p, p~! is the same

as p with the sign of the normal to the patch at every point

reversed.
b(z U* y) = z0UTy U yOUTz U xWITHy
b(z " y) = zINy U yINz U yWITHz
b(z —* y) = zOUTy U (yINz)~! U zANTIy
b(y —* z) = yOUTz U (zINy)~! U yANTIz.

2) Truncation: Given two features x and y, the truncation
operation (T) is defined as follows: z = 2Ty = {u, v}, where
u = ps{z) —* ps(y) and v is a collection of patches satisfying
the following properties:

1) The union of all the patches in v is b(u).

2) Every patch in v that belongs to ps(z)OUTps(y)} or

. ps{z)ANTIps{y) is a subset of some patch of z.

Note that

b(ps(z) —* ps(y)) =ps(z)OUTps(y) U (ps(y)INps(z))~*
U ps(z)ANTIps(y).

The labels of the patches of v are determined as follows:
For every patch p of v, if p € (ps{x)OUTps(y)) or p €
{ps(z)ANTIps(y)), let p; be the patch of z such that p C p.

label{(p;) if p € ps(x)OUTps(y) _
label(p) = or p € ps(z)ANTIps(y)
UNBLOCKED  otherwise.

O]

The rationale for the above labeling is as follows: If a patch

p of zTy belongs to ps{x)OUTps(y) Ups(z)ANTIps(y), then

p C b(ps(z)), and hence, the patch p must have the same

label as a patch p; of z that contains p. If there is no single

patch p; that contains p, then we can either split p or combine

some patches of ¢ to satisfy this property. If a patch p of

2Ty belongs to (ps(y)INps(z))~1, then this patch is IN with

respect to ps(z), and hence, the interior of the patch p cannot

belong to the boundary of the final part Therefore D should
be labeled UNBLOCKED.

3) Infinite Extension: In this section, the infinite extension
of a feature with respect to a patch will be defined. This is
used subsequently in defining an operation called maximal
extension. '

Let us consider a patch p on a feature x.

At any point p; = {%i,¥i,2;) on the boundary of p (b(p)),
consider the neighborhood N (p;, 6;) for some arbitrarily small
§; > 0. Suppose there exists an analytic function f such that
for every point p’ € N(p;, 8;)—p, (') = 0 and the following
limits exist:

dim, fo(P) = fic

Jm f(p) = fu

Jim, £.06) = fu
where fz(p’), fy(p'), and f.(p") are the partial derivatives (;:f
f with respect to X,Y, and Z.

_Now, we define what is called the partial-tangent-plane
To(ps,x) = 0 as follows:

fial X = zi) + fiy (Y ~ 1)

T (pi 1) = +fizlZ — %) if fiz, fiy and
(P 2) Ji exist
INVALID otherwise.
T,(pi,x) = 0 divides E? into two planar half spaces, and the

 one containing the inward-pointing normal to the feature x at

p; is denoted by G,(p:, z).
Now, we define thg function C, as follows:

Colz) = ﬂgp(pi, z} ¥p; € b(p) wherever Gp(ps, z) is defined.

Pi

At any point p; on p, let us denote the tangent plane by
To(pis ) = 0. Tp(ps,z) = 0 divides E* into two planar half
spaces, and the one containing the inward-pointing normal to
the feature z at p; is denoted by Hy(p:, z).

Now, we define the function -4, as follows:

Ap(z) = ﬂHp(p,-,a:) Vp; € p wherever H,(p;, =) is defined.

Pi

Let us denote c* Ay(x) by By(z).
Now, Z,(z) is defined as

I,(z) = (By() ne ,(2)) U ps(z).

Now, we will illustrate the notion of infinite: extensmn
through some examples. Consider the feature f showed in Fig.
8. Fig. 8(a) shows the patch p that has been ldentlﬁed on the
feature. To compute C,(f), we first construct tangent planes
on the boundary of the patch and consider the intersection of
the half spaces. The C,(f) thus obtained is shown in Fig. 8(b).
To compute A, (f), we construct the tangent planes at each
point on the patch p. The resulting A,(f) is shown in Fig.
8(c). By(f), which is the regularized complement of A, (f),
is shown in Fig. 8(d). Finally, Z,(f) is shown in Fig. 8(e).

Figs. 9(a) through (¢) ﬂlustrate the same 1deas for a second
example
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- A(f)is tl'te( h)alf-npa.ne gié'en by <0 (d)

Fig. 8. Example iltustrating infinite extension.

4) Maximal Extension: Given two features = and y and a
patch p on z, the maximal extension of = in y with respect to
a paich p (denoted by zM,y) is defined as follows:

=My = (u,v)

where u = Z,(z) N* (ps(z) U* ps(y)) and v is a collection of
paiches satisfying the following properties:

1) The union of all patches in v is b(w).

2) Every patch in v that belongs to (ps(z)U*ps(y))INZ,(x)

or (ps{z)U*ps(y) WITHT, (z) is a subset of some patch.

of ps(z) U ps(y).

Note that . ’

b(u) =Z(=)IN(ps(z) U" ps(y)) U (ps(z) U” ps())INZ,(z)u
(ps(z) U™ ps(y)) WITHZ,(z).

The labels of the patches of v are determined as follows:
For every patch p of v, if p € (ps(z) U* ps{y))INZ,(z) or p €
(ps{z) U* ps(y))WITHZ,(z) let p; be the patch of ps(z) U*
ps{y) such that p C p;.

label(p;) ifpe (ps(z)

~ U*ps(y))INZ, (a:) or

P € (ps(x)
U*ps(y))WITHZ, (x)

UNBLOCKED otherwise.

The rationale for the above scheme of labeling the patches

labg_l(p) =

is as follows: If a patch p of zMpy belongs to (ps{z) U*
ps(¥))INZ, (x) U (ps(z) U" ps(y)) WITHL,(z), then p C -

b(ps(x) U* ps(y)), and hence, the patch p must have the
same label as a patch p; of ps(zx} U* ps(y) that contains p.
If there is no single patch p; that contains p, then we can
either split p or combine some patches of b(ps(x) U* ps(y))
to satisfy this property. If a patch p of z My belongs to

Zs(2)IN(ps(z) U* ps(y)), then this patch is IN with respect to
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Fig. 9. Example illustrating infinite extension.

ps(z) U™ ps(y), and hence, the interior of the patch p cannot.

belong to the boundary of the final part. Therefore, p should
be Iabeled UNBLOCKED.
For the definition to be complete, the labels of the patches of

ps{z) U* ps(y) must be defined, given the labels of the patches

of x and y. As stated earlier

b(ps(z) U* ps(y)) =ps(z)OUTps(y) L‘JpS(y)'OUTPS(:v)
' U ps(z)WITHps(y).

Let us denote a arbitrary patch of b(ps(z)U*ps{y)) by p. If p

is a patch of ps{x)OUTps(y) or ps(z) WITHps(y), let p; be a
patch of x such that p C py. If pis a patch of ps(y)OUTps(x)

or ps{x)WITHps(y), let p2 be the patch of y such that p € ps. -

" The labels of the patches of b(ps{z) U* ps(y)) are defined

below: .
- label(py) if p € ps(z)OUTps(y)
label(p) = < label(pz) if p € ps(y)OUTps(x)
' label(p1) if p € ps(x)WITHps(y).
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Fig. 10. Examples of maximal extension operation,

The rationale for the above labeling scheme is as follows:
If a patch p of ps(z) U* ps(y) belongs to ps(z)OUTps(y),
then p C b(ps(z)); and hence, the patch p must have the
same label as a patch p; of = that contains p. If a patch p of
ps(z) U* ps(y) belongs to ps(y)OUTps(x), then p C b(ps(y)),
and hence, the patch p must have the same label as a patch pa
of y that contains p. If a patch p of ps(x) U* ps(y) belongs to
ps{z)WITHps(y), then p C b(ps(x)) and p C b{ps(y)), and
hence, the patch p must have the same label as a patch p; of
x that contains p or the patch p; of y that contains p. (Both
p1 and ps will have the same label.) In the above cases, if
there is no single patch p; that contains p, then we can either
split p or combine some patches of b(ps(z)) or b(ps(y)) to
satisfy the above properties. Fig. 10 (a) and (b) illustrate some
examples of maximal extension.

C. Properties of the Algebra of Features

In this section, certain properties of the algebra of features
are discussed. The goal is to generate new features from
the features one already has using the operators discussed
earlier. During this process, one would not like to generate
a feature anew if it can be shown that a feature with the same
set of points has already been generated. To compute new
features from existing ones, one must perform set operations
on solids. Existing algorithms for performing set operations
have an average case complexity of O(nlogn), where n is
* the number of topological entities in a solid (such as vertices,
edges, and faces). Thus, set operations on solids are expensive

computations and should be minimized or substituted by_

cheaper operations. :

Let us now try to prove some properties of the features and
their interactions, We begin by stating a few results for regular
sets, {(which in our case apply to features) from Kuratowski
[19] and Requicha and Tilove [31] =

Theorem 1 (Requicha and Tilove): The regular sets are a
boolean algebra with operations U*, N*, and ¢*, ie., they
satisfy the properties stated below. Let X, Y, and Z be
arbitrary regular sets, let W be the universal set, and let &
be the empty set.

1) Union and intersection are commutative:
XuyY=vYyuwx
Xn'Y=Yn"X.

2) Each of the operations union and intersection are dls-

tributive over the other:
XU (Yn*2Z)=
X (Yu'Z) =

(XU Y)n* (X U* Z);
(X N*Y)U* (X n* Z).

3) The empty set iJ and the universal set W are identity
‘elements for the union and intersection operations:

Xuog=X,
Xn*wW=2X.
4) The complement satisfies the following properties;
XU cX =W,
XnteX =0,

Proposmon 2 (Requicha and Tilove): If X and ¥ are
regular sets, then

XU'Y=XuY

Proposition 3 (Requicha and Tilove): If X and Y are
regular

X-*Y=Xn"cY =Xn*cY.

The riext two results aré from Kuratowski [19] (with slight
modification):

Proposition 4 (Kuratowski): The régularized union opera-
tion on regular sets is associative.

Proposition 5 (Kuratowski): The regularized intersection
operation on regular sets is associative.

Proposition 6: Given a feature x and a patch p of

ps(z) C Ty(z).
Proof: -
2) = (By(z) N Cylx)) U psla).
Therefore
ps(z) C Zp()-

- 1:3
Proposition 7: For any three features z, y, and z, the
followmg result holds:

(ps(z) =" ps(y)) =" ps(z) = (ps(z) = ps(z)) =7 ps(y).
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" Proof:

(ps(z) —* ps(y)) " ps(z)
= (ps{z) N* ¢*ps(y)) N* ¢"ps(z} (from Proposition 3)
= ps(z) N* ¢*ps(y) N* c*ps(z) (from Proposition 5).

Similarly
c*ps(2).

L o 0
Proposition 8: Given a feature z and a patch p of z, if
I,(x) = ps(z), then ps(xMyy) = ps(x), for any feature y.
Proof: Since I,(z) = ps(z), Ip(x) # INVALID. There-
fore :

(s(z) ~" ps(2)) =" ps(y) = ps(z) " c"ps(y) 1"

TMpy = (ps(zMpy),v)
= Ip(z) N (ps(a) U” ps(y)).
ps(zMyy) = Lp(=) N (ps(z) U ps(y))
= ps(z) N* (ps(z) U ps(y))
= ps(z) N* (ps{z} U ps(y)} (from Propos:tlon 2)
= ki(ps(x) N (ps(z) Ups(y)))
= ki(ps(z))
= ps(x).

where ps(zMpy)

O

Since the infinite extension for most features and patches
is an infinite solid, one might doubt the applicability of
the above proposition. However, one might note that in
_any implementation, we delimit the infinite extension at the
boundaries of the stock, and therefore, infinite extension will

* be a finite solid. Thus, there will be a lot of cases where
Zp(x) = ps(x). In all such cases, we never need to compute
:z:M py for any feature y or any patch p because ps(zM,y) =
pS(w)

The foliowing proposition is used in provmg Proposition
10. Proposition 10 provides an easy way {o detect the cases
where ps(zTy) = ps(z) in the domain of convex features. In
such cases, we need not compute x7y since it will not result

_in a new feature. The proposition states that if we can find a
patch p of x that is ANTI with respect to y, then we can infer
ps(z) —* ps(y) = ps(z) and ps(y) —* ps(z) = ps(y)-

Proposition 9: Given two features x and y, if ps(z) and
ps(y) are convex sets and if a patch p of z is ANTIps(y),
then

ps(z) N* ps(y) =

Proof: At every point p; on the patch p, consider the tan-

. gent planes to ps(x) and ps(y) and the balf spaces that contain

ps(z)(G;) and ps(y)(H;). Since the patch p is ANTIps(y), at
any point p; € p G; N* H; = &. Therefore

ﬂG,;.n* nH,, =0
P P

for all p; € p. Since each G; D ps(z) and H; 2 ps(y),
ps(z) N* ps(y) = 2. - | N
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Proposition 10: Given two features x and y, if ps{z) and
ps(y) are convex sets, and if a patch p of = is ANTIps(y), then
= ps(y)-

ps(x) —* ps(y) = ps(z) and ps(y) =" ps(x)

Proof: The result follows di_rectly from Proposition 9.03

IV. RESTRICTED FEATURE ALGEBRAS

The previous section described an algebra of features, viz.,
the domain, the operations, and the properties. The algebra
was defined in a very general way in an effort to include
every feature that could ever be of interest to manufacturing.
However, the definition of the algebra does not specify any
algorithms for performing the operations in the algebra—nor
would this be possible since- the features are described by
collections of arbitrary analytic functions. In order to develop
algorithms implementing the algebraic operations, we will
need to restrict ourselves to some subset of the algebra by
placing restrictions on the features and operators. Ideally, the
subset would include all features and interactions of interest
in manufacturing—but this seems infeasible since there is
no general agreement on what features and interactions these
might be. What is considered to be a machinable feature may
vary from one manufacturing domain to another and from
one shop floor to another. Rather than trying to enumerate
all features of interest in manufacturing, we instead present
a simple example of how a subset of the algebra can be
formulated and implemented computationally. For this subset,
the domain consists of rectangular solids and cylinders that
have their planar faces parallel to the faces of the stock.
Rectangular solids occur as manufacturing features known by a
variety of names, such as a slof (which in turn could be single
ended or through), a shoulder, a pocket, a cutout, a notch,
etc.’ The common manufacturing feature that is cylindrical
in shape is a hole.

A prototype of the-feature algebra encompassing the re-
stricted feature algebra described here has been implemented -
in Lisp on a TI-Explorer. The details of the implementation
are beyond the scope of this paper and are discussed in [16].
We are currently working on a feature algebra encompassing a
much larger collection of features than described here [7]. This
algebra covers a number of features that occur in machining.

A. Computing the Operations

For this restricted class, the operation 7 will be illustrated.
For this set of features, ps(z) —* ps(y) could be the point
set of a single feature or a pair of features or it may be a
meaningless object as far as this domain is concerned. Fig. 11
shows examples of the cases that are not of interest because
ps(z) —* ps(y) is neither a rectangular solid nor a cylinder.

Propagation of Iabels is straightforward once ps(z) —* ps(y)
is computed. One way to compute ©7 y would be to compute
ps(z) —* ps(y) using a solid modeler and then test if it can be

IFor manufacturing purposes, many of these features should be modeled
as rectangular solids with rounded comers, and we are currently specifying
and implementing a subset of the algebra that will allow such features.
However, we disallow rounded corners in this paper because they simplify
the mathematical treatment while still illustrating the basic concept.
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ps(z) —* ps(y)

/

VI /
. p3(z) —" ps(y)

Y 7
x5

‘f

¥
Fig. 11. Examples of cases where ps(x) —* ps{y) does not result in a object

of interest.

considered to be the point set of a feature or a pair of features,
(We have thus extended z7y to return either one feature or
a pair of features.) However, this would be quite inefficient
and would not take advantage of the restricted set of features
and interactions that we have here. More efficient methods are
described in the next section.

I) Truncation: 1If z is a rectangular solld let {z;)i =

1,...,6} be the faces of x, and if z is a cylinder, let
{:L‘;!'t = 1,...,3} be the faces of x (where two of them are

planar faces and one is a cylindrical face). We will also number

the faces such that z1|)zs. Thus, 21 and z, are the end faces

of the cylinder. If x; is a face, then let z} denote the maximal

subpatch of z; for which x{OUTy is true.

For the cases we have below, the equation for the labels
(equation (1)) of the patches of £7y = (u, v} can be simplified
as foliows:

For every patch p in v, if p € ps(m)OUTps(y) let p1 be
the patch that contains p _

— [label(p;) if p € ps(z)OUTps(y)
label(p) = UNBLOCKED  otherwise. @

The following is a procedure for computing z7:

Case 1: x is a rectangular solid.

Case a) ps(xTy) is two rectangular solids: (see Fig. 12).
If £;0UTy and z,0UTy and Vi € {3,...,6)}z;
consists of two disjoint rectangles, then ps(zTy)
is two rectangular sohds Let the two rectangles

of z be z} and z2, where x} is adjacent to Ty,

and z? is adjacent to Ta. Thns the superscripts 1

and 2 are used to denote the two rectangles of ...

The faces x1, 3, 7}, 1, and z} determme one
rectangular solid; The faces z, 23, 73, 22, and 2
determine anotlier rectangular solid. Thus, the two
rectangular solids in ps(z7Ty) are determined.

ps(mT y) is one rectangular solid: (see Fig. 13).
i zi = & and z,0UTy, and Vi € {3...6}z"

Case b)

consists of a single rectangle, then ps(zTy) is
one rectangular solid. The rectangular solid is
determined by the faces x5, x5, 2, z§; and 7.

pa(z) —* ps{y)

x
Tz . E
3
I3 —

Fig. 12. Example of the case where ps(z7'y) is two rectangular solids.

ps(z) —* ps(y)

&1
y
Ty
/ 5
7T L5
L3 :‘B;
*s !
—] 8
39 N 2
Ty 4
z .
B2 ]
T3

 Fig. 13. Example of the case where ps{xT y) is one rectangular solid.

Case 2: z is a cyhnder.

Case a) ps(zTy) is two disjoint cylmders (see Fig. 14)
- If 2,0UTy and z,0UTy, and x4 consists of two
disjoint cylindrical patches, then ps(x‘T y) is two
cylmders Let the two patches of .'1:3 be z} and
3, where =} is adjacent to z,, and z3 is adjacent
to 3. The faces 1 and x} determine one cylin-
der. The faces x9 and % determine the another
cylinder. Thus, the two cylinders in ps(:r:Ty) are
determined. :
Case b) ps(zTy) is one cylinder: (see Fig. 15). If :r:1 =
: & and z,0UTy, and z§ consists of a single
cylindrical patch, then ps(zTy) is one cylinder.
The cylinder is determmed by the faces 3:2 and
3.
Case 3: If the conditions for the previous cases are not met
then 2Ty = INVALID.
* 2) Infinite Extension: In comptting infinite extension, it
should be stated that in any implementation, the original
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ps(c) —* psiy)

z3

Fig. 14. Example of the case where ps{x7y) is two cylinders.

ps(z) —* ps(y) -
-

-

Fig. 15. Example of the case where ps{(z7 y) is one cylinder.

definition can be modified to delimit infinite extension to the
boundaries of the stock. Since all the features are cut out
starting with the stock, this does not compromise the generality
or the scope of the definition in any way. Given the domain of
features we have identified, an important task is to identify the
. patches of interest for computing infinite extension. We must
have as many paiches as it takes to include all the interesting
shapes but not too many as to result in repeated computation
of the same shape. We should also avoid patches that resuit

in a shape for infinite extension outside.our domain. For the -

restricted domain of rectangular solids and cylindrical holes,
this task is easy. Typical examples of shapes of interest for
infinite extension are shown in Fig. 16. These shapes can be
generated by considering the planar faces of rectangular solids
or cylinders as patches. Several other possibilities for patches
can be considered, but they do not result in shapes of interest.
The reader is encouraged to fry out various possibilities and
become convinced that the above claim is true. In the case of
rectangular solids, a proof can be constructed by enumerating
all the possible categories of patches. In Fig. 17, we illustrate
* two examples of patches that result in infinite extension that is
-not of interest. In Fig. 17(a), the infinite extension is identical
to the feature itself, and in Fig. 17(b), it is too complex to
be encompassed by our domain. Let us call this restricted
form of infinitc extension face infinite extension (Iy) and
the corresponding maximal extension face maximal extension
{M ). Since there are six planar faces in a rectangular solid
and two in a cylinder, there are six possible face infinite
extensions for a rectangular solid and two for a cylinder. Let
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To infinity

—
. B
To infinity
W
z T(=)
e— e
Fig. 16. Interesting shapes foi' infinite extension for rectangular solids and
cylinders.

&

T(=)

(2)

s 7,(=)
®)

Fig. 17. Shapes not of interest for infinite extension for rectangular selids
and cylinders.

us denote the set of all possible face infinite extensions by Xy
and the set of all possible face maximal extensions by .
Let us denote the set of applicable operations by X. Therefore,
X = {7} U Zyps. In the following discussion, given a feature
« and a face x; of x, we will denote the half space determined
by the equation of z; and containing = as X;.

Property 1: If = is a rectangular solid, then the faces of
zTy can be written as {zs;l¢ = 1,...,6}, where Vi # 1
z; is in the same plane as xs;. Therefore, Z;,, {zTy) =
XoNX3NXysNXsnNXg = I, (x). If x is a cylinder, then the
faces of 7y can be written as {zs;|i = 1,...,3}, where z»
is in the same plane as xs2, and 3 is in the same cylindrical -
surface as xs3. Therefore, Ios, (zTy) = Xp N X3 = 1, (z).

3) Maximal Extension: Property 2: If the feature = is a
rectangular solid and if zMjyy is a valid feature (where
f = z1), its faces are f', za, x§, &}, zi, and z, where f||zo
and z}, {¢ = 3...6} is in the same plane as z;. If the feature
z is a cylinder and if .M sy is a valid feature, its faces are f,

- T, 25, where f'||zo and x5 is in the same cylindrical surface

as z3. Therefore, Iy (xMyy) = Is(x).

Let z be a feature whose maximal extension with respect to
a planar face f = x; into a feature y is to be computed. Let
f be IN or ANTI with respect to ps(y). Otherwise, zM ¢y is
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Fig. 18. Computing maximal extension,

INVALID. Let z2 be the face of z parallel to f. Let 3 and
y2 be the faces of y parallel to f. Let y: be closer to z3 than
y2. Let f' = O(f,y2). The faces f' and z; define a solid (a
rectangular solid or a cylinder), which determines ps(zM fy).
This procedure is illustrated in Fig. 18. Determining the labels
of the faces (or portions of the faces) once the boundary of
“zMgyy is known is straightforward. The details are omitted
in this. paper. :

B. Properties of the Algebra ‘
This section presents some additional properties that hold

for the restricted feature algebra with which we are dealing.

This algebra deals only with cylinders and rectangular solids
as features, whose planar faces are parallel to the faces of
the stock. When different kinds of restricted feature algebras
are considered, different sets of properties held, and these
properties can be used in reducing the computations to be
performed in computing new features from the old ones. The
following propositions are discussed in greater detail in [16].

Proposition 11: Given features z, y, and z7Ty, if the face

- x8; of 2Ty is not in the same plane as any face of z, then

PS((ETy)szly) = ps(z M., ).

Proof: _
ps((2Ty) Mazs, )

= Toay (2Ty) N" (ps(=Ty) U™ ps(y))

= Lo, (z) 0" ((ps(x) =" ps(y)) U” pS(y))
(from Property 1)

= T, (z) 0% ((ps(z) N* c"ps(y)) U ps(y))
(from Proposition 3) '

= TIo, () N* ((ps(z) U™ ps(y)) 1" (ps(y) U™ "ps(y)))
(from Thm. 1) -

= I, (x) N* (ps(z) U* ps(y))
(from Thm. 1)
= ps(z M., ¥}
||
Property 12: Given features z, y, 27 Y and w, if the face

zs; of Ty is not in the same plane as any face of x if
Z..{xz) = ps(z) and ps{w) N* ps(y) = I, then

ps({(zTy) Mzs, w) = ps(zTy).

Proof:

ps(w) = ps(w) N (ps{y) U* "ps(y)} (from Thm. 1)
= (ps(w) N* ps(y)) U* (ps(w) N* c*ps(y)) (from Thm. 1)
=au (pS('fU) n* c*ps(y)) '

. = ps(w) N* c*ps(y)

Therefore

ps(w) = ps(w) N” c"ps(y). E)

This result will be used later on in the proof.

ps((zTy) Mz, w)

= Zos, (T ) OV (ps(zTy) U” ps(w))

=L, () N (ps(zTy) U ps(w))
(from Property 1)

= ps(z) M* ({ps(x) N* ¢"ps(y)) U~ ps(w))
{from Prop. 3)

= ps(z) 0" (ps(z) U* ps(w)) N" (ps(w) U* c"ps(y))
{from Thm. 1) _

= ps(z) " (ps(a) U ps(w)) N* (ps(w) U" ¢*ps(y))
(from Prop. 2) 7

= k(i(ps(z) N (ps(z) U ps(w)))) N* (ps(w) U” ¢"ps(y))

= kips(z) N" (ps(w) U” c"ps(y))

= ps(z) N* ((ps(w) 0" c"ps(y)) U™ <"ps(y))
(from Eqn. 3)

= ps(z) N* ((ps(w) U™ c"ps(y)) N*
(from Thm. 1)

= ps(z) N c*ps(y)

= ps(z) =" ps(y) (from Prop. 3)

= ps{aTy)

¢*ps(y))

C. The Features Algor:thm

Given a set of features that describe 2 part, one would
like to generate alternate sets of features that describe the
part. The terms feature interpretation and feature set are used
synonymously in this paper. The task of generating all the
feature interpretations, given one feature interpretation, can
be given a state-space [26] formulation. In this formulation, a
state is a feature interpretation of the part. A state is a vertex in.
what is known as the state-space graph. Given two elements’
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z and y in a state s and an operator 7, if zny is a valid

feature or a pair of valid features, then we can obtain a new
feature interpretation s' as follows: If xny is one feature, then
s = (s — {z}) U {zny}, and if zny is a pair of features, then
' = (s—{z})U(any). After deriving s’ from s, we can draw a
directed edge labeled 7y from s to &'. By repeated application
of the above step, we can derive all the possible feature inter-
pretations of the part linked to each other by directed edges.
Such 2 graph is known as the state-space graph. We have

develdped an algorithm called generate-features for generating -

alternate feature sets given one feature set. This algorithm

essentially produces the state space in a breadth-first manner.

D. Complexity

At first glance, the worst-case complexity of the algorithm.
might appear to be exponential because of the possibility
of combinatorial explosion if there are several mutually in-
teracting features. However, geometric locality dictates that
each feature will interact with only a few of its neighbors;
therefore, it is unlikely that exponential blowup would occur
in real-world parts. Further, since the interactions occur only
among a spatially connected set of features, one can reduce
the number of interactions that need to be considered by
partitioning the delta volume (the union of all the features)
into as many disjoint volumes as possible. Now, we consider
an example where a combinatorial explosion of the number of
feature interactions occurs. Consider a part that is obtained by
removing a slab of material from a piece of stock. A slab is a
layer of material of uniform thickness removed from an entire
face. Suppose this material has been described by the designer
as composed of n slots of uniform thickness. The total number
of feature interpretations for this case will be an-l

Lemma 1: The worst-case number of feature interpretations
for a part with n features is (2"1).

Proof: For the example being considered, let h.fey-- I
be the n contiguous slots given by the designer. All the
possible feature interpretations can be obtained as follows: One
can think of the material of the slab as being separated into n
slots by drawing n — 1 hypothetical planes on the slab, One
can derive a feature interpretation by choosing k£, 0 < k< n
of these n — 1 planes, Therefore, the total number of feature

interpretations is
-1
b .

k=0

E. HMustrative Example

In Fig. 19, we show the state space for the the example
discussed in Section I-B. The generate-features algorithm
produces only the states and the relationships between the
states. The explicit state space is not produced by generate-
features. .

The state-space graph has four nodes: one for each feature
interpretation. The nodes are marked no, 71, M2, and ns3.
Notice the Iabeled directed edges between states that show
how one state is related to another. :

(]

{hir f’l H "3}

Fig. 19. State space for the example given in Section I-B.

V. RELATED WORK

A. Image Processing Research

From a mathematical perspective, the research in mathe-
matical morphology [34] for image processing uses a basic
approach that is similar to ours. In particular, there are are .
several operators that can be applied to transform one image
to another, such as dilation, erosion, opening, and closing,
and the algebraic properties of these operators are studied. so
that one can replace one sequence of operators by another
to obtain significant savings in computation. However, there
are also significant differences. For example, the operators in
our feature algebra are different from the ones used in image
processing in their nature, the mode of computation, and, thus,
their properties. o

B. Manufacturing Research

This section summarizes the research on automatic feature -
extraction, design by features, and work addressing feature
interactions. ,

1) Feature Extraction: There appear to be two dominant”
paradigms in the area of feature extraction: the rule-based ap-
proach and syntactic pattern recognition. A recent development
[37], [13] is to combine both rules and pattern recognition
techniques. The rules are mainly used for improving the -
computational efficiency and for handling feature interactions.
Most of the researchers have used the boundary representation
as the CAD model. A notable exception is Woo [43}, who
developed a volume-based approach for feature extraction.

Henderson’s [10] work is an example of the rule-based
approach. Henderson used rules to extract features from the
boundary representation of the part. His system did not pro-. '
vide multiple feature interpretations for a part. Henderson
pointed out the need for doing this in the Future Work
section of his thesis. Kyprianou [20] used syntactic pattern
recognition techniques to extract features from the boundary
representation of a part. Dong and Wozny {5] have improved
on the techniques used by Kyprianou to develop algorithms
that can recognize a wider class of features. De Floriani
[4] has developed algorithms for feature extraction using. the
connectivity information between vertices, edges, and faces-
of a solid. Similar information has been used by Joshi and
Chang [13] for feature extraction. Joshi and Chang have also -
addressed certain kinds feature interactions by performing
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geometric checks during feature recognition. Srinivasan and
Liu [37] have developed a tree grammar (very similar to an
anp/or graph) for translating from the boundary representation
of a part to the process plan. They have also addressed feature
interactions within a process model.

2) Design by Features: In recent years, design-by-features
systems have been developed for a variety of domains. Two
of the design-by-features systems developed for the machining
domain are the VWS2 [17] system developed at the National
Institute of Standards and Technology (NIST) and XCUT [2],
which was developed at Bendix Kansas City Division. These
two systems are fairly complete in the sense that they translate
from part specifications to low-level process plans, but they re-
quire the designer to specify the precise manufacturing features
1o be planned for. The design-by-features approach is also used
by an integrated process planning system called FIRSTCUT
[38], which is being developed at Stanford University.

3) Work Addressing Feature Interactions: Ide [12] has de-
veloped a system for feature-based design using the PADL-2
solid modeler {8]. Ide’s system bridges the PADL-2 solid
modeler with a process planner developed at the University of
Maryland called SIPS [24]. In addition to providing a design-
features interface, this system also does two types of checking:
for local constraints (consistency in feature parameters) and
for geometric constraints (constraints requiring geometric rea-
soning). A majority of the feature interactions are either not
allowed or not checked for by this system (e.g., a hole cannot
intersect any other feature).

Maeda and Shinohara [22] have written an expert sys-
tem called ESPER that performs geometric manipulations in
generating cutter areas. This system addresses some of the
nongeometric issues in process planning, but its geometric
reasoning is based on feature parameters and is not integrated
with a solid modeler. Hayes [9] has addressed the problem
of feature interactions in her Master’s thesis. Her program
uses feature interactions to determine precedence relations
among features. The system is written in OPSS and uses
rules to detect feature interactions of interest, Vandenbrande
[41] has developed a system that combines the principles of

artificial intelligence and solid modeling. The program uses

hints or clues to identify potential features in the boundary
representation of a part (obtained from the PADL-2 solid
modeler). The clues are generated by production rules and
posted on a blackboard. The clues are assessed, and the
promising ones are pursued to recognize and extract the
features. This system is capable of identifying interacting
features (e.g., two crossing slots). This program also produces
alternative feature interpretations in certain cases. Since there
is no formalization available regarding the kinds of interactions
it handles, it is hard to determine all the interpretations it
produces. Pratt [28] has addressed several issues pertaining to
feature interactions. He has developed the notions of effective

volume of interaction and actual volume of interaction, which -

are equivalent to the truncation operation. He has developed
a graph showing the relationships among features, His work
addresses interactions among protrusions and depressions.
There are no equivalents of the maximal extensnon and mﬁmte
extension in his frame work. ‘
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V1. DISCUSSION

A. Motivation

The primary issue addressed in this paper is the development
of a way to reason about geometric interactions among features
via an algebra of feature interactions. One of theé primary

.motivations of the feature algebra is to allow consideration of

geometric objects as several possible alternative collections of
features. Based on our discussions with machinists, it appears
that a machinable part cannot be interpreted as a unique set of
features. What seems more appropriate is to consider alterna-
tive interpretations and generate plans to see which is better
(or feasible). The kinds of reasoning done in the ESPER [22]
and Machinist [9] systems represent significant steps in the
development of ways to handle feature interactions. However,
these systems do not use an unambiguous representation of
solid objects. For example, if the Machinist program decides
that some hole A needs to be made before some slot s, it does
not recognize that this requires machining a hole of different
dimensjons than if h were machined after s, and yet, such
information may be necessary in order to know whether it
is possible to machine A. In the feature algebra described in
this paper, a feature includes a complete representation of a
physical solid. Thus, it might be possible to add additional
sophistication to the operation of the Machinist program by
rewriting some of its rules in terms of operations in the feature
algebra.

B. Properties

As defined . in this paper, the algebra is general enough to
encompass practically all shapes of features encountered in
the real world. I is not computationally feasible to implement
the operations in the algebra on this entire set of features,
but by restricting the algebra in different ways, one can
obtain different subalgebras that satisfy the properties of the
general feature algebra, allow the algebraic operations to
be computed efficiently, and include features of interest in
practical problems. Provided that an appropriate subalgebra
is chosen, the operations in the algebra can be made more
efficient than set operations on solids because they take
advantage of the special properties of the shapes and their

'interactions. Furthermore, the properties of the feature algebra

allow us to resolve many of the interactions without invoking
the algebraic operators. This has the potential to resuit in
forther computational savings.

C. Future Work

This work constitutes a portion of a larger project whose
goal is to develop an integrated system for design and process
planning [25]. Other components of this project include the
Protosolid solid modeler [42] and the EFHA [39} process-
planning system. Protosolid and EFHA are written in Lisp
and run on a Texas Instruments Explorer. Based on the feature
algebra described in this paper, we have implemented a system
for feature analysis that interfaces to both Protosolid and
EFHA and provides a means for communication between
them. We would also like to extend the feature algebra to
include some additional kinds of feature interactions. For
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[8] E. E. Hartquist and A. Marisa. PADL-2 Users Manual.
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Fig. 20. Hole-closure cperator.

example, in the part shown in Fig. 20, the feature hT s is not
a useful feature for manufacturing purposes. It would be more
useful to have an operator that would produce the hole k' or
some extension of &'. We are currently working on extending
the feature algebra to include such operators [7].

D. Concludiﬁg Remarks

This work is being done with two long-term goals in
mind: the development of a practical integrated system for
designing metal parts and planning their manufacture and
the investigation of fundamental issues in representing and
reasoning about 3-D objects. We believe this work will have
utility not only for automated manufacturing but also for other
problems in geometric modeling and geometric reasoning.

REFERENCES

[1] M. K. Agoston, Algebraic Topology: A First Course. New York:

Marcel Dekker, 1976.

[2] S. L. Brooks and K. E. Hummel, “XCUT: A rule-based experl system

for the automated process planning of machined parts,” Techn. Rep.
BDX-613-3768, Bendix Kansas City Div., 1987.

{3] P. Brown and S. Ray, “Research issues in process planning at the
National Bureau of Standards,” in Proc. 19th CIRP Int. Seminar Manuf.
Syst., June 1987, pp. 111-119.

[4] L. De Floriani, “Feature extraction from boundary models of three-
dimensional objects,” IEEE Trans. Patt. Anal. Machine Intell., vol. 11,
no. 8, pp. 785-798, Aug. 1989, '

[5] X. Dong and M. Wozny, “Feature extraction for computer aided process
- planning,” in Proc. Third Int. Conf. Comput.-Aided Production Eng.
(Ann Arbor, MI), June 1988. .

[6} W. Fulks, Advanced Calculus, An Introduction to Analysis,
 Wiley, 1969, -

[71 §. Gupta, R. Karinthi, D. Nau, and G. Zhang, “Multiple feature
interpretations and time orderings in machining,” to be published.

Rochester, NY:

New York:

Univ. of Rochester, 1985,
[9] C. Hayes, “Using goal interactions to guide planning,” in Proc. AAAS-87
Sixth Nat. Conf. Artificial Intell., 1987, pp. 224-228,
M. Henderson, “Extraction of feature information from three dimen-
sional CAD data,” Ph.D. thesis, Purdue Univ., West Lafayette, IN,
1984, i
K. E. Hummel “Coupling ru]e-based and objecl-onemed programming
for the classification of machined features,” in ASME Int. Comput. Eng.
Conf July 1989.
[12] N. C. ide, “Integration of process planmng and solid modelmg through

[x0]

[11]

21

139]

483

design by features,” Master’s thesis, Univ. of Maryland, College Park,

1987,

S. Joshi and T. C. Chang, “Graph-based heuristics for recognition of

machined features from a 3D solid model,” Computer-Aided Design,

vol. 20, no. 2, pp. 58-66, Mar, 1988,

R. R. Karinthi and D, §. Nau, “Geometric reasoning as a guide to process

planning,” in Proc. ASME Int. Comput. Eng. Conf., July 1989.

, “Using a feature algebra for reasoning about geometric feature

interactions,” in Proc. Eleventh Int: Joint Conf. Artificial Intell., Aug..

1989, pp. 1219-1224.

R. Karinthi, “An algebraic approach fo feature interactions,” Ph.D.

thesis, Univ. of Maryland, College ‘Park, Dec. 1990.

[17] T. Kramer and J. Jun, “The design protocol, part editor, and geometry

library on the vertical workstation of the automated manufacturing

research facility at the National Bureau of Standards, internal rep., 1987

B. Kumar, “Feature extraction and validation within a flexible man-

ufacturing protocol,” Ph.D. thesis, Univ. of Maryland, College Park,

1988.

K. Kuratowski and A. Mostowskl, Set Theory. Amsterdam: North

Holland, 1976.

L. X. Kypriancu, “Shape classification in computcr—aldcd design,” Ph.D.

thesis, Univ. of Cambridge, 1980.

S. €. Luby, J. R. Dixon, and M. K. Simmons, “Design with features:

Creating and using a feature' data base for evaluation of manufac-

turability of castings,” Comput. Meéch. Eng., vol. 5, no. 3, pp. 25-33,
1986,

Y. Maeda and K. Shinohara, “Geometric reasoning and organized

optimization for automated process planning,” in Proc. Seventh Nat.

Conf. Arificial Intell., Aug. 1988, p. 105-110. }

B. Mendelson, Introduction to Topology. Boston: Allyn and Bacon,
1975.

D. 8. Nau, “Automated process planning using hierarchical abstractlon,

Texas Insirum. Tech. J., pp. 3946, Winter 1987,

D. 8. Nau, N. Ide, R. Karinthi, G. Vanecek, and Q. Yang, “Solid

modeling and geometric reasoning for design and process planning,

in Proc. Amer. Assoc. Artificial Intell. Workshop Production Planning

Scheduling, Aug. 1988, pp. 1-9.

N. I. Nilsson, Principles of Ariificial Intelligence.

Tioga, 1980.

C. Pinter, A Book of Abstract Algebra. New York: McGraw-Hill, 1982.

M. J. Pratt, “Form features and their applications in solid modeling,” in

Twtorial paper Adv. Topics Solid Modeling SIGGRAPH, July 1987,

[29] E. P. Preparata and M. 1. Shamos, Computational Geometry, An Intro-
duction. New York: Springer-Verlag, 1985.

[30] A. G. Requicha, “Mathematical models of rigid solid objects,” Tech.
Rep. TM-28, Univ. of Rochester, Nov. 1977.

[31] A. G. Requicha and R. Tilove, “Mathematical foundations of construc-
tive solid geometry: General topology of closed regular sets,” Tech. Rep.
TM-27a, Univ. of Rochester, June 1978.

[32] A. G. Requicha and H. B. Voelcker, “Boolean operations in solid
modeling boundary evaluation and merging algorithms,” Proc. IEEE,
vol.. 73, no. 1, pp. 3044, 1985,

[33] M. Rogers, “Comparison of Taskl functional requirements to Task) -
features technolopy state of the art,” Tech. Rep. R-89-GM-02, CAM-I
Inc., 1589,

[341 I Serra Image Analysis andMarhemancal Morphology. london: Aca-
demic, 1982.

[35] J. Shah, M, Rogers, P. Sreevalsan, and A. Mathew, “Functional require-
ments for feature based medeling systems,” Tech. Rep. R-89-GM-01,
CAM-1 Inc., 1989.

{36] G. Simmons, Infroduction to Topology and Modern Analysis.

York: McGraw-Hill, 1963,

R. Srinivasan and C. R. Liu, “On some important geometric issues
in generative process planning,” in Proc. Winter Ann. Mig. Amer. Soc.
Mech. Eng. (Boston, MA), Dec. 1987, pp. 228-244, 1987, '
J. M. Tenenbaum and M. R. Cutkosky, “First-cut: A computational
framework for rapid prototyping and team design,” in Proc AAAI Spring
Symp. Al Manuf., Mar. 1983, .

S. Thompsen, “Environment for hierarchical abstraction: A user guide,”

" Master’s Scholarly paper, Univ. of Maryland, May 1989. .
M. Vaghul, J. R. Dixon, G. E. Zinmeister, and M. K. Simmeons, “Expert -
systems in a CAD environment: Injection molding part design as an
example,” in Proc. 1985 ASME Conf. Comput. Eng., 1985,

[41] 1. Vandenbrande, “Awtomatic recognition of machinable features in solid

models,” Ph.D. thesis, Univ. of Rochester, 1990.

G. Vanecek, Jr, “Set operations on volumes using decomposition

methods,” Ph.D. thesis, Univ. of Maryland, College Park, 1989.

T C. Woo, “Feature extraction by volume decomposition,” in Proc. Conf.

CAD/CAM Technol. Mech. Eng., 1982.

{13]

{14]

[15]

[16]

(18]

[19]

(20]

[22]

(23]
{24
£25]
[26] Palo Alto, CA:

(27]
(28)

New

137]
{38]

[40]

[42]
{43}



484 . IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLEGENCE, VOL. 14, NO. 4 APRIL 1992

R;ghu Karinthi received the bachelors degree in
electrical engineering in 1984 from the Indian Insti-
tute of Technology {IIT), Madras, India. He received

from the University of Maryland, College Park, in
1988 and 1990, respectively.

He is currently an Assistant Professor in the De-
partment of Statistics and Computer Science and the
Concurrent Engineering Research Center (CERC) at
West Virginia Umversny, Morgantown. At CERC,
he is currently involved in a project on enterprise
mtegratlon His current research interests include solid modelmg, geometric
reasoning, automatic feature extraction, and concurrent engineering.

Dr. Karinthi is a member of ACM SIGGRAPH, ACM SIGART, and AAAI

the M.S. and Ph.D. degrees in computer science -

Dana Nau received the B. S. degree in applied
mathematics from the University-of Missouri, Rolle,
in 1974. He received the A, M. and Ph.D. degrees in
computer science from Duke University, Durham,
NC, in 1976 and 1979, respectively, where he
was supported by a National Science Foundation
graduate fellowship and a James B. Duke graduate
fe!lowshlp I

He is cumently an Associate Professor at the
University of Maryland in the Department of Com-
puter Science and the Systems Research Center. He
is also afﬁhated with the University of Maryland Institute for Advanced
Computer Studies. His research experience has included summer andfor
sabbatical appointments at IBM Research, the National Bureau of Standards,
the University of Rochester, and General Motors Research Laboratories. His
current research interests include Al techniques for searching, reasoning,
planning, and representing knowledge and applications of Al to auiomated
manufacturing.

Dr. Nau has received an IBM faculty development award and a National
Science Foundation Presidential Young lnvesngator Award. He has been on

" the program committees for several symposia and .workshops on Al for

manufacturing, on several review panels for NSF, NRC, and DARPA, is the
Academic Co-Director for the AAAI Special Interest Group on Automated
Manufacturing (SIGMAN), and is on the editorial board for several journal
and book series. He has published more than 70 technical papers.




