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ABSTRACT

This paper presents a general search procedure called GAO*. GAO#* is a generali-
zation of AO#* which finds optimal solution trees in acyclic AND/OR graphs having
monotone cost functions. Since monotone cost functions are very general, GAOx is
applicable to a very large number of problems. For example, many game tree search
procedures (e.g., B+, SSS«) are variations of GAO+. The proof of correctness of GAO=* is
quite simple, which simplifies the correctness proof of AOx. This work is important in
the context of authors’ previous work on a unified approach to search procedures.
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A Generalization of the AQ" Algorithm

1. INTRODUCTION
Many Artificial Intelligence problems can be formulated as: “Given an AND/OR graph

with certain cost functions associated with the arcs, find a least-cost solution tree”. This paper
presents a general heuristic top-down procedure, GAO*, for solving such problems when the
AND/OR graph is acyclic and the cost functions associated with the arcs are monotone. GAO*
is a generalization of the AO™ algorithm (8] [10] for searching AND/OR graphs,' and is a kind of
Branch-and-Bound procedure. Since monotone cost functions are very general, GAO* is applica-
ble to a very large number of problems. For example, GAO* can be used to find the minimax
value of a game tree. Furthermore, many exisiing game tree search procedures (e.g., B* [1} and
SS8S* [12]) can be considered as variations of GAO®. The proof of correctness of GAO"* is quite

simple, which simplifies the correctness proof of AO*.

2. AND/OR Graphs

Following the terminology in {10], [8], we define AND/OR graphs as hypergraphs. Each
node of an AND/OR graph represents a problem, and the root of G (denoted by root(G))
represents the original problem to be solved. I a problem n can be solved by solving a set of

subproblems PR this is depicted in the hypergraph by a hyperarce or k-connector

PIm =+, 0 directed from the node n to the child nodes USRI A node can have more

than one hyperarc directed from it.
An AND/OR graph G is acyclic if no node of G is an ancestor of itself. Every acyclic
AND/OR graph G can be unfolded (by creating duplicates of all nodes of G having multiple

parents) to build an equivalent AND/OR tree called unfold(G).

1 AO* finds a least-cost solution tree of an acyclic AND/OR graph when the cost functions
associated with the arcs are additive (which is a special case of monotone functions).




Given an AND/OR graph G representing a problem, each solution to the problem will be
represented by a solution free for G, which is a subtree T of unfold(G) having the following pro-

perties:

(ij root(G) = root{unfold(G)).

(ii) if a nonterminal node n of unfold(G) -is in T, then exactly one hyperarc p: n — LI is
directed from it in T, where p is one of the hyperarcs directed from n in unfold(G). By a.

solution tree rooted at n we mean a solution tree for the subgraph of G rooted at n.

For a terminal node n of G, let ¢(n) denote the cost of n, i.e., the cost of solving the prob-

lem represented by n. With each k-connector p: n—n prenll, WE associate a k-ary cost function

tp(rl,...,rk) which denotes the cost of solving n if n is solved by solving n,..n at costs LS

respectively.

For a solution tree T, we define its cost f('T) recursively as follows (an example appears in

Fig. 1}:

2.1a if T consists only of a single node n = root(T), then f(T) = c(n).
2.1b Otherwise, n = root(T) has children n,...0 such that p: n — LI is a connector.

Let T ,..., T, be the subtrees of T rooted at ;... Then f(T) = tp(f(Tl),...,f(Tk)).

Let ¢*(n) be the minimum of the costs of the solution trees rooted at n. Then c*(root(G))
is the cost of an optimum solution tree for G. The following theorem gives a recursive formula,
for ¢*(n)."

Theorem 2.1: If G is an acyclic AND/OR graph whose cost functions tp(.,..,,.) are monotoni-
cally nondecreasing in each variable, then for every node n of G the following recursive equa-
tions hold.
(i) If nis a terminal node, then

¢*(n) = c(n).
(if) 1If 2 is a nonterminal node, then

* g * * .

c*(n) = mm{tp(c @),.e* (o) p:n—n .0
Proof: See [5].

¢ 18 & hyperarc directed from n}.

2.2 Maximization problems

In many problem domains, f(T) denotes the merit of the solution tree T, and a schution

tree of largest merit is desired. In such cases, c(n) denotes the merit of a terminal node n of G,




The functions tp(.,...,.) and f are defined exactly as before, but ¢*(n) is the maximum of the mer-

its of the solution trees rooted at n. In this case, Theorem 2.1 can be restated with “min®

replaced by “max’ in its second condition.

2.3 Versatility of Monotone Functions

The monotone functions are a wide class of functions. A number of useful cost (or merit)

functions are monotone. Examples are given below.

(1) 1t tp(xl,...,xk} == X,+...+X,, then {(T) is the total number of terminal nodes in T.
(2} 1If b (X% ) =1 + max{xl,...,xk}, then f('T) is the depth of T.

(3) Let tp(xl,...,xk) = ¢, + X, + ... + X, where < is the cost of applying the reduction opera-
tor p. Then f{T) is the sum of the costs of golving the terminal problems of T and applj—
ing the probiem reduction operators. This is the cost function used by AO* in [10] [8].

(4) Let t (x,..x,) = min{x,,...,x, } in a maximization problem (as discussed in Section 2‘2)..
Then ¢*(root(G)) is the minimax value of root(G) if G is viewed as a game tree (for a proof
see [12], [6]). Thus a procedure for searching AND/OR graphs with monotone cost func-

tions can be used to find the minimax value of a game tree.”

3. A General Heuristic Top-down Search procedure

This section presents the details of GAO*. GAO* assumes the existence of a heuristic
“lower bound” function b defined over the nodes n of G such that b(n) < ¢*(n); i.e., b(n) is a

lower bound on the cost of an optimal solution tree rooted at n. This function is used by GAO*
to speed up the search. We further assume that b is “heuristically consistent’; i.e., for each
- connector p: n — 1,5, b{n) < tp(b(nl),...,b(nk)). This property implies that the lower bound
of a node computed by looking at its successors Wi.ﬂ never be worse than the lower bound asso-

ciated with the node.

? For example, Pearl [11] uses a variation of AO* to search game trees. '




Procedure GAO*

(1) The initial graph consists only of the node root{(G).
(2) Repeat the following steps until root(G) is labeled SOLVED; then stop.

(2.1) Select any tip node n of the solution tree obtained by tracing down the marked con-
nectors from root{QG).

(2.2) Expand n by generating all of its successors. For each n, set b*(nj) = b(n]).

{2.3) Create z set of nodes 8 containing only n.

(2.4) Repeat the following steps until 8 is empty.

(2.4.1) Remove from S a node n such that no other node in S is a successor of it.
(2.4.2) Update b*(n) as follows: for each connector p: n — 0.0, compute
tp(b*(nl),...,b*(nk)). Set b*(n) to minimum of these values, and mark the connec-

tor through which the minimum is achieved. If this n is a terminal node or if all
of the children of n in the marked connector are labeled SOLVED, then label n
SOLVED.

(2.4.3) If n has been marked SOLVED or if b*(n) has increased, add to S all parents m
of n such that there is a marked connector from m %o n.

Let G’ be the graph generated by GAO*. For every node of G°, GAO* maintains a value
b*(n) which is an estimate (lower bound) of c*(n). G’ initially consists of just root(G). In each
cycle, GAO" selects a tip node of G' and expands it. When a node n is generated, b*(n) is ini-

tialized to b(n), and the b*-values of the parents of n are appropriately revised.

The Correctness of GAQO*

The correctness of GAO" follows from the following theorem, because GAO* terminates

only when the root node is labeled SOLVED.

Theorem 3.1: If a node n is labeled SOLVED by GAO*, then b*(n) == ¢*(n), and a least-cost

solution tree T rooted at n (i.e., a tree T rooted at n such that f(T) == ¢*(n)) can be found by
following the marked connectors from n.

Proof: By induction on the height of n in G*.2

Base case: the height of n is 0; i.e., n is a tip node of G’.

If n is labeled SOLVED then n must be a terminal node of G; hence b*(n) = b(n) = c*(n).

There are no marked connectors going out of n, and the least-cost solution tree rooted at n con-
sists of n itself.

3 Here, the height of n is the length (i.e., the number of arcs) in the longest path from n to
a tip node of G,



Induction step: suppose the theorem holds for all nodes of height h or less, and let n be any
node of height h+1.

If n is labeled SOLVED, then there must be a connector p: n -— 0,y such that n,,..n are

labeled SOLVED. Since n has height h--1, the heights of nodes n,,..n, must each be h or less.

Thus from the induction assumption, c*(nl) = b*(n.l) for 1<i<k. Thus

b*(n) == tp(b*(nl),...,b*(nk)) (from step (2.4.2))
= tp(c*(nl),..,,c*(nk)) (from the induction assumption and since n is SOLVED)
> c¢f(n) (from Theorem 2.1).

But from Theorem A.1, for all nodes n of G’, b*(n) < ¢*(n). Therefore,
(3.1)  b*(n) = c¢*(n).

Let T be the solution tree constructed by following the marked connectors from n. T must
have subtrees Tl""’Tk rooted at L. such that TI,...,Tk are formed by following marked .

connectors from n,,..n,. From the induction assumption, f{Ti) = c*(ni) for each i. Thus

”
(T = tp(f(Tl),...,f(Tk)) (from the definition of f)
= tp(c*(nl),...,c*(nk) (from the induction assumption)
= c¢*(n). (from eq. (3.1))

AO” as a special case of GAO*

If the cost functions are of the form tp(xl,.‘.,xk) =c¢ +X +.+x (where ¢, is the cost
associated with the connector p), then GAO* becomes identical HS [8] (a version of AO* [10]).
The heuristic consistency property of the lower-bound function b is the same as the consistency
property in [8] and the “monotone restriction” in [10].* As discussed in [10] in the context of

AO?® the heuristic consistency property of b is not crucial for the~correctness of GAO*. It

merely reduces the work done in Step 2.4 of GAO*.

GAO" as Branch-and-Bound

GAO" also has a natural interpretation as the kind of Branch-and-Bound (B&B) algorithm
described in [9]. G’ can be viewed to represent a set of “partial solution trees’ (i.e.; partially
explored solution trees) in exactly the same way that G represents a set of solution trees. Each

partial solution tree T* of G’ represents the set of all solution trees of G which are extensions of

* Note that the monotone restriction on the lower bound function in Nilsson has no rela-
tion with the monotonicity of the cost functions as defined in this paper.




T°. GAO® has an implicit lower bound f (T) on the cost of solution trees represented by T°.° In
b

Step 2.1, by following marked connectors, GAO* selects a partial solution tree T’ of G having
the smallest lower bound. Expanding & node of T is essentially equivalent to splitting the set

of solution trees represented by T°.

After root(G’) is labeled SOLVED, the partial tree T found by the following marked con-
nectors has all of its tip nodes as terminal nodes in G; i.e., T” is a complete solution tree.

Therefore, f,(T") = {(T°). At this point, other partial trees have higher lower bounds than the

cost of T’} hence T” is guaranteed to be a least-cost solution tree of G. Thus GAO* terminates.

Variations of GAQ*

From Theorems 3.1 and A.1, it is clear that GAO® would still work properly even if nodes
were chosen in a different manner from what is specified in Step 2.1, Steps 2.2, 2.3 & 2.4 ensure

the validity of Theorems 3.1 & A.1l. Hence any ﬁartial solution tree T° of G’ can be selected in
Step 2.1, and any tip node node n of T° can be expanded in Step 2.2.° By making different
choices in Step 2.1, many variations of GAO* can be produced; some of them are equivalent to
some well known procedures. For example, SSS* [12] can be viewed as a variation of GAO*.
SSS* assumes that the bound function b é;ives no information except.on terminal nodesfr which
makes it beneficial to use a different criterion in Step 2.1 for selecting a most promising partial
solution tree. B*, which uses heuristic information to search game trees, can also be looked at
as a variation of GAO*. Being a game tree search procedure, B* tries to find only the imrﬁedi—
ate succeggor of the root node in a largest merit solution tree.. This lets it use a somewhat

different termination criterion in Step 2 and two different node selection policies (" prove-best”

® If defined explicitly, f,(T) would (analogously to f) be fb(T’) = tp(fb(T’l),...,fb(T’k)).-

® The rationale behind the current choice in Step 2.1 of GAO” is that if the heuristic fune-
tion is good, GAO* can find an optimum solution tree very quickly.

7 In maximization problems such as game tree searching, b is taken to be an upper bound.
SS8S* assumes that b(n) = +o00 if n is nonterminal.




and ”disprove-rest”)} in Step 2.1. The prove-best selection policy is same as the one used by

GAO". For details, the reader is refered to [7].

4. Concluding Remarks

The development of GAO* was inspired by comparing AO* and several game tree search
procedures with B&B procedures [9] [6] [5]. There has been much confusion about the relation-
ships among various search procedures (examples are given in [5] [2]), and the close relationships
between GAO® and search procedures such as AO*, SSS*, alpha-beta, and B* clarifies the nature

of these procedures.

Since monotone cost functions are very general, GAQ” is applicable to a large number of

problems. In addition, the simple correctness proof of GAQ* provides an easy way to verify the

accuracy of these related search procedures.

Our work on a unified approach to search procedures has resulted in the synthesis of new
algorithms (e.g., generalizations, variations, and parallel implementations of various search pro-
cedures [6] [4] [3]).
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Appendix

Theorem A.1: In GAO®, for all nodes n of G’, b*(n) < ¢*(n).

Proof: By induction on the height of n in G".

Base case: the height of n is 0; i.e., n is tip node of G’.

Thenr b*(n) = b(n) < c¢*(n) (by definition of b).

Induction step: suppose the theorem holds for all nodes of height h or less, and let n be any
node of height h-41.
Step 2.4 and the heuristic consistency property ensure that every time a node is expanded (caus-

ing a change in G'), the following equation holds:

(A1) b'(n) = min{tp(b*(nl),...,b*(nk))[ p:n — 0.0 is a connector in G’}

From Theorem 2.1, (A.2) c*(n}) = min{tp(c*(nl),...,c*(nk))| p:n — n,..0 is a connector in G’}
But from the induction assumption, b*(n) < c¢*(n)) for all i. Thus since t, is monotonic, it fol-

lows that from A.1 and A.2 that b*(n) < c*(n).




Cost functions associated with
the hyperares of G:

tpl(xl,xz). = X, + Xai

t'p:'.(xl) == 2%

Lpa(x‘,x:) = min{x,X.};
tp_t(x],x,_,) = X, X,

Terminal cost function c:
c{a} = 10; ¢(b) = 2.

c(d)= 4.

Fig. 1{a). An And/Or graph G, and the associated cost functions.

° SO G+lz=1b

t (d,a) -=min(4,10) Cp4 = 1042= b2
P3" =4

c{d)=4

Fig. 1¢{b}. Computation of £(T) of a solution tree T of G.



