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ABSTRACT

This paper presents a general procedure for finding an optimal solution
tree of an acyclic AND/OR graph with monotone cost functions. Due to the
relationship between AND/OR graphs and game irees, it can also be used as
a game tree search procedure. Seemingly disparate procedures like AO*,
SSS*,_ alpha-beta, B* are instantiations of this general procedure. This sheds
hew light on their interrelationships and nature, and simplifies their correct-
ness proofs. Furthermore, the procedure is applicable to a very large class
of pfobl_ems, and thus provides a way of synthesizing algorithms for new
3pplications. The procedure searches an AND/OR graph in a top-down
Wﬁf (by selectively developing various potential solutions) and can be
viewed as a general branch-and-bound procedure,
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1. INTRODUCTION

This paper presents a general procedure for finding an optimal Solutieg
tree of an acyclic AND/OR graph with monotone cost functions. Dye to the
relationship between AND/OR graphs and game trees, it can also be used

a game tree search procedure. This general formulation has the follow;
. advantages: ot §

(i) Seemingly disparate procedures like AQ* [23], SSS* [28], alpha-ben
[8], B* [5] ate instantiations of this general procedure. This sheds e §

light on their interrelationships and nature, and simplifies their comeq. :
ness proofs.

(ii) More importantly, the procedure is applicable to a very large class of |
problems, and thus provides a way of synthesizing algorithms for nex &
applications,

The procedure searches an AND/OR graph in a top-down manner by
selectively developing various potential solutions) and can be viewed as; ,
general branch-and-bound (B&B) procedure [12]. This is noteworthy, as the
relationship bgtween B&B and AND/OR graph search procedures suchs £
AO* has been quite controversial (see [10], [13]). :

We earlier developed an abstract model of B&B which is more penerd :
than previous B&B formulations, and powerful enough to incorporate esser §
tials of a number of Al search algorithms. We have previously shown thata
number of AND/OR graph and game tree search procedures (.., A0 £
S8§%) are essentially B&B [13], [20]. Viewing these procedures fromz g
common perspective has given us insights into their basic nature, and hs
helped us synthesize the general procedure described in the current paper. &
This procedure is applicable to a large number of problems. '

In Section 2 we briefly introduce AND/OR trees, and discuss ther &
correspondence with game trees. In Section 3 we present an abstract B&8
formulation. In Section 4 we introduce a general B&B formulation fo
searching acyclic AND/OR graphs. In Section 5 we develop this B&B for
mulation further and show that AO* and some of its variations presented it
[2] are spectal cases of this formulation. In Section 6 we present variatiots
of the formulation of Section 5 and show that B*, $SS*, and alpha-beta 2%
special cases of these variations. Section 7 contains concluding remarks. A
list of the definitions of the terms used in the paper appear in the appendix.

3 ANDIOR GRAPHS AND THEIR RELATIONSHIP TO GAME

TREES .
A problem reduction representation (PRR)} is a reptesentation of how a
problem might be solved recursively by transforming it into several simpler
equivalents, such that the original problem may be solved by solving any
oae of them, or by transforming the problem into several subproblems such
that the original problem may be solved by solving all of the subproblems.
PRRs are modeled by AND/OR graphs, as described in detail in {22}, {4].
Here, we briefly review AND/OR graphs and their correspondence with

game {recs.

11, AND/OR Graphs

Each node of an AND/OR graph represents a problem, and a special
node root(G) called root of G represents the original problem to be solved.
Nodes having children are called nonterminal. By convention, the children
of each nonterminal node are either all of type AND or all of type OR. The
hypergraphs of [17], [23] (in which nodes have both kinds of children) can
te converted into AND/OR graphs by introducing extra demmy nodes. Let

PR T

he a problem transformation. If p is such that all of the problems n,,...n,
meed to be solved to solve the problem n, then p is called a reduction and
n,...n, are depicted as AND children of n in the AND/OR graph. If p is
such that the problem n may be solved by solving any one of the problems
By, then n,,...n, are depicted as OR children of n in the AND/OR
graph. Nodes with no children are called terminal, and each terminal node
represents a primitive problem. An AND/OR graph G is acyclic if no node
of G is a successor of itself. An AND/OR graph G is called an AND/OR
tree if G is acyclic and every node except root(G) has exactly one parent.
Every acyclic AND/OR graph G can be “‘unfolded’” (by creating duplicates
of all nodes of G having multiple parents) to build an equivalent AND/OR
tree catled unfold(G).

' Given an AND/OR graph representation of a problem, one can identify '
ft‘s different solutions, each one represented by a ‘‘solution tree™. A solu-
tion tree T of an AND/OR graph G is an AND/OR tree with the following

. properties:
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(i) roo(T)= root(unféld(G)).

(ii) if a nonterminal node n of unfold(G) is in T, then all of its children z
in T (as AND children of n) if they are of type AND, and exactly one of j: _

its children is in T (as an OR child of n) if they are of type OR,

To distinguish solution trees from other entities to be defined later, we wii
sometimes call them fotal solution trees.

A solution tree T of G represents a plausible ‘‘problem reductin £
scheme’ for solving the problem modeled by the root node of G. Cleary. :
an acyclic AND/OR graph can have only a finite number of solution trees.
The subgraph G’ of G rooted at a node n is in fact a problem reduction fo-
mulation of the problem represented by n, and a solution tree of G,

represents a solution to that problem. By a solution tree rooted atn wemes §
a solution tree of G’ , |

Often, a cost function f is defined on the solution trees of G, anda
least-cost solution tree of G is desired. There are various ways in whichths §
cost function can be defined, but the one defined below is applicable 104 E

large number of problems.2

For a terminal node n of G, let c(n) denote the cost of n, i.e., the costof
solving the problem represented by n. With each reduction p:n—n,,.4 §

we associate a k-ary cost function tp(rl,...,rk) which denotes the cost of sei-
ing n if n is solved by solving n,,....n, at costs T(yeensly, TESpECively.

For a solution tree T, we define its cost f(T) recursively as follows:

2.1a if T consists only of a single node n = root(T), then f(T) =c(n).  §
2.1b If n = root(T) has AND-children 1,00ty Such that p: n ...t 1
reduction, then f(T) = t(f(T,),.... (T, )), where Tyoeens Ty, 20 &
subtrees of T rooted at Npeally.
21c If n = root(T) has n, as the OR child in T, then f(T) = f(T)), wier ':_;
T, is the subtree of T rooted at n,,

2 The definition of cost fanetion oiven hare ie cimitar i ke definition of recursive veig &
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Thus the cost of a solution tree is defined recursively as a composition of the
cost of its subtrees. Fig. 1 shows an acyclic AND/OR graph, associated cost
functions, and the computation of the cost of one of its solution trees. We

&fine ¢'(n) for nodes n of an AND/OR graph G to be the minimum of the

costs of the solution trees rooted at n. Then c*(root(G)) is the cost of an
optimum solution tree of G. The following theorem provides a way of com-

puting ¢ (n) for nodes n of an acyclic AND/OR graph,3

Theorem 2.1: If the functions tp(.,...,.) are monotonically nondecreasing in
cach variable, then the following recursive equations hold.

i) If nis a terminal node, then
c'(n) = ¢(n).
wi) If pn — ny,...n, is a reduction (ie., n,..0, are AND children of n),
then

¢'(n) =, (" @ ynnC ().
uh) if nhas n,...,n, as OR children, then
¢'(n) = min{c"(a,),....c (@)}
Proof: By induction on the height of n.

2.2 Maximization problems and Game Trees

In many problem domains, f(T) denotes the merit of the solution tree T,
and a solution tree of largest merit is desired. In such cases, c(n) denotes the
merit of a terminal node n of G. The functions tp(.,...,.), and f are defined

exaclly as before, but c*(n) denotes the maximum of the merits of the solu-

1on trees rooted at n. In this case, Theorem 2.1 can be restated with its third
condition replaced by

(iii") If n has ny,...n, as OR children then
c'n) = max{c*(xnl),...,é*(nk)}

One such case is that of two-person games.

—————

! The theorem i valid for cyclic AND/OR graphs as well, but the proof, which appears in
wl- Mo cotvinlinaied
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Cost functions associated ﬁith e
reductions of G:

ta(XyXo) = X5

o)) = max(x,, x,);
Ua(XpX,) = min{x, x)} 42,
papX) =X + %

Terminal cost functione:
e =1c(ll=}

c(13)=3.

(b)

Fig. 1 (a) An AND/OR graph G and the associated cost functions.

Terminal nodes of G are denoted by double circles.

(BY Combputation af fITY nf a calittinem feaa T ~f

c(11)=25;¢(12)=2 £
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AND/OR trees can also be used as models of two-person, perfect infor-
mation, zero sum board games [22], [26]. (For example, the AND/OR tree
of Fig. 2 can be viewed as a game tree.) Board positions resulting from one
player’s moves are represented by OR nodes (circular nodes in Fig. 2), and
board positions resulting from the other player’s moves are represented by
AND nodes (square nodes in Fig. 2). The two players are called MAX and
MIN, respectively. Moves of the game proceed in strict alternation between
MAX and MIN, until the game ends. After the last move, MAX receives a
payoff c(n) which is a function of the final board position n, and MIN has to
forfeit the same amount. Thus, MAX always seeks to maximize the payoff
while MIN seeks to minimize it. Assuming that the root node of the tree

" comesponds to the current position of the game from which MAX is to

move, the objective is to find a move for MAX which guarantees the best

_payoff. The best payoff that MAX can be guaranteed from any board posi-

tion is given by the minimax value g(n) defined recursively as follows [8]:

(i) If n has children of type OR, then
g(n) = max{ g(ni)} for all children n, of n.

(ii) If n has children of type AND, then
g(n) = min{ g(n,)} for all children n, of n.

(iii) I n is a terminal node of G, then
g(o) = c(n).

If for every reduction p: n — .0, we define tp(rl,...,rk) =
min{r,,...r, }, then it follows (from Theorem 2.1 using (iii’)) that for every

node n of G, c*(n) = g(n). More specifically, ¢ (root(G)), the maximum of
the merits of the solution trees of G, is equal to g(root(G)), the minimax
value of G (also see [28], [13]). Thus, game tree search procedures such as
dipha-beta can be viewed as procedures for finding a largest merit solution
tee of an AND/OR tree with certain cost functions.
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Fig.2 An AND/OR tree G. AND nodes are represented by square nods ¢

and OR nodes are represented by circle nodes. Hash marks
show a solution tree T of G; f(T) = 22.

| i3) Let tp(xl,...,xk) =c, + Xt where ¢
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2.3 Versatility of Monotone Functions

The monotone functions are a wide class of functions. A number of
useful cost (or merit) functions are monotone. Examples are given below.

(1) If we define tp(xl,...,xk) = Xy tot Xy, and c(n) = 1 for each terminal
node n, then £(T) is the total number of terminal nodes in'T.

12) If we define tp(xl,...,xk) =1+ max{xl,...,xk}, and c(n) = 0 for each ter-
minal node n, then f(T) is the total amount of time needed to solve

root(T) under the assumption that every reduction operation requires
one unit of time and reductions may be performed in parallel.

. is the cost of applying the
reduction operator p. Then f(T) is the sum of the costs of solving termi-
nal problems of T and of applying the problem reduction operators.
This cost function is same as the one used by the procedure AQ* in

(23], [17].

(4) Let tp(xl,...,xk) = min{xl,...,xk} in a maximization problem (as dis-
cussed in Section 2.2). Then the largest of the merits of solution trees
of G is the minimax value of root(G) if G is viewed as a game tree (for

a proof see Section 2.2; also see [28], [13]). This cost function is the
one used by SSS*, alpha-beta, and B¥.,

3.A GENERAL BRANCH-AND-BOUND FORMULATION

The class of problems solved by branch-and-bound (B&B) procedures
can be abstractly stated as follows:

For a given arbitrary discrete set X and a real-valued cost function f:
X-aR, find an optimum element of X, i.e., an x* € X such that for all x €
X, f(x*) < f(x).A

B&B procedures decompose the original set into sets of decreasing size.
The decomposition of each generated set S is continued until tesis reveal

‘ " . L
wm':hc discussion in this section is also applicable (with appropriate modifications) to the case
denotes the merit of the elements of X, and an element of highest merit is desired.
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either that S is a singleton (in which case, we measure its cost directly)
that there is an optimum element x* not in 8 (in which case, the s £
“pruned’’ or eliminated from further consideration). If the decomposiiy
process is continued (and satisfies certain properties), an optimum eleme
will eventually be found. Often, only a small fraction of the total set X neti

be generated.

The basic elements of our branch-and-bound formulation are describ; :

below. This description has been greatly influenced by the earlier formul

tion due to Mitten [19]. The formulation presented here is very similark ¢
the one given in {13]. As is discussed in [10}, [13], the dominance relatiz ¢
in our formulation is used for pruning in a manner somewhat different lh

in [9}, [6], {7].

3.1. Basic Definitions

Let Y be the set of all subsets of X, i.e., Y =2%, X, denotes a subsetu :
X, and A denotes a collection of subsets of X (i.e., A c'Y). For breviy.d¢
will sometimes be réferred to simply as a ‘collection’. For notational ce ¢
venience, the union of all subsets in any collection A is denoted by Ui
ie., UA)=U(X, | X, € A). We define f*(X;) to be the minimum of thetss: |

of the elements in X;. Any element x* € X, such that f(x*):f*(Xi) is calls

an optimum element of X;.

A branching function BRANCH is any function which divides the memb» ;
of the collection A into subsets which collectively include precisely the s
elements of X as the original collection A. Mathematically, it is any fux§

tion mapping collections into collections such that:

() X; € BRANCH(A) => X, c X; for some X; & A. i

(if) W(BRANCH(A)) = U(A).

5The situation is actually somewhat more complicated: in practice one uses conpé f_
representation of S rather S itself. We have discussed how to handle this issue in [20). The % &
concepts apply straightforwardly to the material presented in the current paper, but we donoi&

cuss them here. In Section 4.2, the reader will see an exampie of the use of rpresentalios?

ol

From Property (ii) of the function BRANCH we immediately get the
following result:

Lemma 3.1 f'(UBRANCH(A))) = (L(4)).

Often the function BRANCH is defined as a composition of selection
and splitting functions. A selection function is any function SELECT map-
ping collections into collections such that SELECT(A) ¢ A. A splitting
function SPLIT is-any function satisfying the properties of a branching func-
tion. BRANCH is then defined as

BRANCH(A) = (A-{SELECT(4)}) w SPLIT(SELECT(A)).

_ Although this definition of BRANCH is mathematically equivalent to the

one given above, it emphasizes the characteristic that only the elements from
a certain selected subset of the collection A are divided, and the rest are
retumed unchanged. In fact, in many implementations of BRANCH, only
one selected element from the collection A is divided, and the rest are
returned unchanged.

The dominance relation D is the binary relation between subsets X;, Xj of X

such that X, D Xj if and only if ' (Xi) <f (Xj). From the definitions of f*
and D, we obtain the following lemma.

Lemma 3.2, Let A be a collection of subsets of X, If X; D Xj and X, Xj €
A, then £'(U(4)) = F(UA-[X;1).
This lemma says that if X; and X; are present in a collection A and X;

dominates X;, then X; can be eliminated from the collection A without
changing its optimum value, 7‘

The pruning function PRUNE: 2Y— 2Y prunes the dominated subsets of A.
it is defined as PRUNE(A) = A-AD, where AP is a subset of A such that for

‘ all X, € AP there exists some Xe A-AP such that X; DX,

From Lemma 3.2, it follows that all the members of A" can be elim-
wated from the collection A without changing f (4). This important result is
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Lemma 3.3. f"( U(PRUNEA))) = f'( L(A)).

3.2. An Abstract B&B Procedure

The procedure P, given below represents the essence of many By .‘__

procedures. Here, A denotes the collection of subsets pf X upon whichtz s
branching and pruning operations are performed in each iteration of Ppa
ISt denotes the cardinality of a set S.

procedure P, (* B&B procedure to search for an optimum element ofazg

begin
A:={X}; (*initialize the collection A *)

while (A} #1 do (*loop until A contains only one element of X*
A:=BRANCH(A); (* branch on the collection A *)

A:=PRUNE(A)
end
end

(* eliminate the dominated subsets from A #)

From lemmas 3.1 and 3.3, it is easy to show that if the procedure Pyir ¢

minates, A contains only an optimal element of X. Proofs of this are givs
for slightly different (but quite similar) descriptions of B&B in [13] &}
{20]. Note that the termination of P, is not guaranteed. In order to gum

tee the termination of Py, BRANCH and PRUNE must satisfy certain ad ¢
tional properties.

3.3. The Best-first Selection Strategy

In many problem domains it is possible to associate a lower b
Ib(X,) with the subsets X, of X such that

() Forallx e X, Ib(X,) < f(x).
(i) For all x € X;, Ib({x}) = f(x).

MThite ITWY N 0 a lavrmar rnatred s e amcte of tlha alfrmnamta ~fF Y Hﬂd& :
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jower bounds for singleton sets are not unnecessarily loose. This lower
pound information can be fruitfully used in selecting an element for branch-
ing. If in every cycle of Po’s loop an element of A is chosen for branching

which has the least lower bound of all the elements of A, then the selection
rule is called best-first, and the branch-and-bound procedure using this stra-
ey is called best-first branch-and-bound. An interesting feature of best-
first B&B is that whenever a singleton set {x} is selected for branching, the

procedure can-terminate. This is because f'({x)) = f(x) = Ib({x}) < bX)<s -
£(X) forall X; € A, and thus {x} dominates all the other elements in A.°

If the bounds 1b(X;) are good approximations of £* (X;), then best-first

B&B can be very efficient. In the extreme case, if Ib(X;) = £'(X,) for all X,

¢ X, then the B&B procedure finds an optimal element of X by splitting
only those sets which contain optimal elements.

3.4. Discussion

In this abstract formulation, a number of details have been left out. For
example, we have only defined the basic properties of a branching function.
In a practical implementation of a B&B procedure, a branching function is
chosen which is natural for the problem domain in question and satisfies the
properties given here.

For pruning, in each cycle of P, a dominated subset AP of the collec-
tion A needs to be constructed. Note that for any two subsets X,, X, of X, at

keast one of them dominates the other (either £* (Xl) =f (Xz)' or f* X,) 2
r‘(x,)), Hence, in theory AP could be constructed to have all but one set of
the collection A. This would make the procedure Py terminate in a very few
cycles, since in every cycle of P, all but one of the generated sets will be

climinated. In practice, we may not know which sets in A dominate which
other sets in A without zxhaustively enumerating the elements in the sets
which are members of 4. However, partial knowledge from the problem

*1f we select more than pne element of A for branching, then the selection rule is still called

:ﬂnﬁrst. as long as at least one of the selected elements (let’s call :t X) has 1he least lower bound
b ¥ -
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domain is often available to reveal that certain sets in A dominate certziy £
other sets in A. This partial knowledge of the dominance relation can i .
used to construct a dominated subset AD, of A. In the next section, where we
present a practical B&B procedure to find an optimum solution tree of a
AND/OR graph, we show how general knowledge about AND/OR graphs s

used to ascertain dominance between two sets of solution trees.

4. BRANCH-AND-BOUND SEARCH ON ACYCLIC ANDIOR {

GRAPHS

Consider the problem of finding a least-cost solution tree of an acyclic {
AND/OR graph G. In this case, the discrete set X is the set of all solution
trees of G. The cost function f for solution trees is defined in Section2.1. b
practical implementations of B&B procedures, the set X and its subsetsae §

not represented explicitly. Instead, some problem-specific data structure is

used which implicitly represents the set X and its subsets. In this sectionwt ¢
introduce partial solution trees to represent sets of solution trees, and present § -
a general B&B procedure for searching acyclic AND/OR graphs for &

optimumn solution trees.

4.1. Partial Solution Trees o

A partial solution tree (or partial tree) T’ of an AND/OR graph G iss :

subgraph of unfold(G) with the following properties:
) root(T") = root(unfold(G)).

(ii) If any node of unfold(G) other than root(unfold(G)) is in T', thepdt }

has an ancestor in T".

(iii)  If an OR node n of unfold(G) is in T, then none of its siblings ar it
T.

(iv)  If an AND node of unfold(G) is in T’, then all of its siblings a® ] :

T.

A partial solution tree can be extended (possibly in several ways)® ¢
form a total solution tree. It represents the set of all solution trees which @ §

be formed by extending it. We denote this set by S_TREES(T’). Fig. j
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(b)

Fig.3 (a) A partial tree T' of the AND/OR graph G of Fig. 1.

(b) The solution trees represented by T'.




solution trees represented by T°.

A node of a partial tree T’ is called a tip node if it has no childrenin T,
A tip node of T" is either a terminal node (if it has no children in G), or 4
nonterminal node (if it has children in G). It follows that a partial tree all of
whose tip nodes are terminal nodes in G represents just one solution tree,
namely itself.

We define £'(T") to be the minimum of the costs of all solution trees
represented by T’; ie., f* (T’y=min{ f(T) | T € S_TREES(T") }. The domi-
nance relation D between any two partial trees T,” and Tj’ is defined as fol-
lows: T;" D'T;” if and only if £(T;") < £'(T}).

4.2. A B&B Procedure for a Least-Cost Solution Tree Search.

We now present a version of Py to do a B&B search on an acyclic
AND/OR graph. Here, A denotes a collection of partial solution trees (each
of which represents a set of solution trees). For any set A of partial trees,
W(A) denotes the union of the sets of solution trees represented by the par-
tial trees in A; ie., U(A) = U{S_TREES(T} I T, € A}.

The function BRANCH takes a set of partial trees as input and retums
another set of partial trees as output. It is implemented as a composition of
two functions, SELECT and SPLIT:

BRANCH(A) = (A-SELECT(A)) U SPLIT(SELECT(A)).

SELECT returns sorae of the partial trees in A; i.e., SELECT(A)c A
SPLIT returns partial trees after extending them; i.e., if T° @ SPLIT(A) then
thereisa T,” € A such that T’ is an extension of T, .

The function PRUNE takes a collection A of partial trees as its input,
identifies a set of partial trees AP such that each partial tree of AP is dom-
inated by some partial tree in A - AP, and returns A-AP; ie., PRUNE(A)=
A - AP, Thus PRUNE eliminates only dominated partial trees.

Let Ty’ be the partial tree containing only root(unfold(G)) (note that
S_TREES(T,") is the set of all solution trees of the AND/OR tree G). Tie

following B&B procedure searches for an optimum solution tree of G. Her
A denotes the collection of partial trees upon which branching and pruning
operations are performed.

1

procedure P, (* B&B procedure to search for an optimum
solution tree of an AND/OR graph G =~ )
begin
A={TykL

while IU(A) =1 do (* repeat until A has just one solution tree *)

A = BRANCH(A); (* select & split some set of solution trees from A *)

A =PRUNE(A); (* remove some dominated solution trees from A *)
end;
end

Since P, is an instantiation of Py, it follows that if P, terminates, then -
the collection A will contain only an optimum solution tree of G.

4.3, Discussion

In the above rather informal description of P,, various details have been
left out. We did not specify how the collection of partial trees is maintained,
how a partial tree (or a group of partial trees) is selected for branching, or
how AP is identified. Depending on the problem being modeled by the
AND/OR graph and the kind of problem-specific information available,
there are various ways in which these details can be specified, each leading
to a different search procedure. In the next two sections, we discuss these

detai.ls and show how AQ*, B*, SSS*, and alpha-beta can be considered as
special cases of these procedures.

::R‘;; EBEST--F][RST B&B SEARCH FOR A LEAST-COST SOLUTION

{rl this a2 . - . . - .
section we present an instantiation of P, which uses a specific

data s‘tructure for representing a collection of partial trees, and a best-first
selection function for branchin z.

5.1 Partial Graphs: A Representation for a Collection of Partial Trees

. A partial graph G’ is a subgraph of G with the following properties:
{i} root(G’) = root{G).

(* initialize A with the complete set of solution trees of G ¥)
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(ii) Any node n of G’ other than root((G) has an ancestor in G*.
The nodes having no children in G’ are called fip nodes. A partial tre
T’ of G’ is defined exactly as it was defined for an AND/OR graph in Se.
tion 4. A partial graph G’ represents all partial trees T° of G’ such thaia
tip nodes of T’ are also tip nodes of unfold(G’). The set of partiai tress £
represented by G’ is denoted by P_TREES(G’). For exarmple, Fig. 4 show :j'
a subgraph G’ of the AND/OR graph G of Fig. 1, and the set of partial ey |
represented by G’. :
At the beginning of P,, G’ contains only root(G), and thus represens
the partial tree T,". The branching operation on G’ consists of the following "-
actions: - y
(1) Select a partial tree T° from P_TREES(G”).
(ii) Select a tipnoden of T". :
(iii) Let L PR be the children of n in G. Expand n by augmenting G’ :
include n,,....n, as children of n.
This is equivalent to selecting all the partial trees in P_TREES(G’) which
contain the node n, and performing splitting operations upon them as fol-
lows. If n has n,,..,n, as AND-children in G, then each partial tee T' &
P_TREES(G’) containing n (as a tip node) is in effect replaced by the pariis §
tree T’<n-n,.n>. This is an extension of T” which includes n,.n ¥ '
AND children of n. If n has n,,...n, as OR children in G, then each parid !
tree T” in P_TREES(G’) containing n is in effect replaced by a set of panis §

rees {T°<n-n> | 1<isk}. A partial tree T'<n-n,> is an extension of T § o 0

which includes n, as the OR child of nin T". Clearly,
S_TREES(T’) = 0{S_TREES(T’<n-n>) | 1<i<k},
and _
S_TREES(T’) = S_TREES(T’<n-n,...n, >).
It follows that the branching operation on G’ has both the proper &
required for it in Section 3,

T Note that a successor B, of nmay be in G’ even before n,,...,n, are included as successond
nin G', If such n, has some successors present in G* (because n, was expanded in a preves &
branching operation) then effectively some more branching operations have been performed & g

Fig. 4
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(a)

(b}

(a) A partial graph G’ of the AND/OR graph G of Fig. 1.

{b) The partial trees represented by G'.
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Pruning on G’ is problem dependent, and is performed by deleting cer. "
tain portions of G’ in such a way that no nontip node of G’ becomes 3 ip &
node as a result of deletion. It follows that P_TREES(PRUNE(G") ¢ {
P_TREES(G’). The pruning operation should be performed in such a way

that only dominated partial trees are eliminated.

5.2. Lower Bounds on Partial Trees

Suppose there is a real-valued function b defined over the nodes of G,
which has the following properties:
(i) If n is a terminal node of G, then b(n) = c(n).
(ii) If n is a nonterminal node of G, then b{n) < c*(n).

Then b(n) is a lower bound on the value of c*(n); i.e., the cost of a solutics
tree rooted at n is always at least b(n). For a partial tree T’, we define £(T)
recursively as follows:

5.1a If T* consists only of a single node m = root(T’), then f(T)=
b(m).

5.1b If m = root(T) has AND-children my,..,m, such tha
p:mm,,..m, is a reduction, then £.(T7) = tp(fb(T’l),...,fb(T )]
where T’l,...,T’k are the subtrees of T’ rooted at LN 1

5.1c

If m = root(T’) has m, as OR child in T, then £,(T7) = £{T)
where T’i is the subtree of T* rooted at m;.

Due to the monotonicity of ty it can be proved by induction on the |

height of root(T") that f(T") = f (T"). It follows that f,, satisfies the proper- |

ties of a lower bound as mentioned in Section 3.

5.3. Selecting a Partial Tree Having a Least Lower Bound

‘We define b*G.(n) (G’ is omitted if unambiguously determined) to be
the smallest value fb(T’) such that T" is a partial tree of G’ rooted atn whost

tip nodes are also tip nodes of G, The following theorem provides a way of

. * .
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Theorem 5.1. If the functions tp(.,...,.) are monotonically nondecreasing in
cach variable, then the following recursive equations hold.
{i) Ifnisatipnode, then '
b*(n) = b(n)
(i} If p;n = .0, is a reduction and n,,...,n, are AND children of n in
G’, then
b'(d) = t,b"@,)....b @)
{iil} if nhas n,,....n, as OR children in G°, then
b*(m) = min{b*(@,),...b" ()}
Proof: Similar to the proof of Theorem 3.1
[ '
From the monotonicity of tp, it follows that b*(n) 1s also a lower bound
onc’(n). Note that the functions f, and b are defined for a partial graph G’

in nearly the same way as the functions f and ¢” have been defined for G in
Section 2,

The following procedure selects a partial tree having a least lower
bound from P_TREES(G’).

Procedure Sn

(1) Caleulate b*(n) for all nodes n of G’. Since G (and therefore G’) are
acyclic, this can be done using the equations of Theorem 5.1 in a
boltom-up manner.

(2) Direct arrows® from each nontip node n of G’ as follows: if n has
Ayl a8 AND children, then direct arrows from n to all the children;

if n has ny,...n, as OR children, then direct arrows from n to the child n,
which has the least value b*(n,) of all the children,

3) Choose the partial tree T” of G by following arrows from the root node
10 the tip nodes of G°,

*The Procedure for directing arrows here is similar to the one used in [21] for selecting a par-
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Tt follows from Theorem 5.1 and the monotonicity of t that the chose E

partial tree T" has the least lower bound.

5.4. A Best-First B&B Procedure

The following procedure finds a least-cost solution tree of an acyclic
AND/OR graph G. A partial graph G’ represents a collection of partil
trees,

Procedure P2

(1) (initialize): G’ := root{(3).

(2) (branch): In G, select a partial tree T" of least lower bound by travers-
ing the arrows (if there are any) from root(G’). If the selected pania
tree is a total solution tree, then go to step 4, else for some tip node’»
of T’, expand n (i.e., include all children of n in G as the children of nin
G).

(3) (rearrange arrows): Calculate b*G.(n) for the nodes n of G’ and
arrows between the nodes of G’ using the procedure SO. (More
specifically, set b*(ni) = b(n) for each newly generated successorn, of 1,
and update b*G,(m) and arrows for each ancestor m of n). Go to step2.

(4) (prune); Remove all the nodes from G’ except those belonging to T

since T’ dominates every other partial tree in P_TREES(G’). Stop (T
is a least-cost solution tree).

Since P, is an instantiation of P, it follows that at the termination of Py
G’ will have only a least-cost solution tree. The termination of P, 8
guaranteed because in each iteration of P, one node of G is expanded and

has only a finite number of nodes.

9 The node n may be selecied in whatever way one believes is most likely 10 increase the §;
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§.5. AO* as a B&B Procedure
Let us define monotone functions tp(.,...,.) associated with reduétions
PN Nyl (where n,,....n, are AND children of n) as tp(xl,..,,xk) =c_ +

P

X, +..+ X, where c, is the cost associated with the reduction p: n— n,,....,n,.

!
In this case, P, becomes equivalent to the AO* procedure as described by

Nilsson [23]. The heuristic estimates h for nodes of G used in [23] are
cquivalent to the Tower bounds b associated with the nodes of G. The values
h*(n) and q(n) defined for a node n in [23] are equivalent, respectively, to
¢'tn) and b*(n) in our treatment.

Note that the monotonicity restriction (also called the consistency pro-
petty in [17]) on h as presented in p. 103 of [23] has no connection with the
monotonicity of the cost functions t associated with reductions of G. If h
satisfies monotonicity restriction then it merely makes the procedure some-
what simpler (see [23]). The same simplification can be made in P, (ie., in

Step 3, we only need to update b*-value of those ancestors of n from which

n can be reached by following arrows) if b satisfies the following con-
sstency condition:

b(n) < (b0, ),....b(n ).

5.6, Variations of P2

In Section 5.2, we defined a lower-bound function f, on partial trees,
which was used by P, to select a most promising partial tree of G*. Tt fol-
“ows from the discussion in Section 3.3 that if P, uses a lower-bound func-

Hon which is a better approximation of f* (as compared to f,), then we can

e1pect P2 to be more efficient. In this section, we define two lower-bound

§i i 1 2 .
unctions f°, and f: p Which. are at least as good (and some times better)

4pproximations of f* than f,

b:::r 4 partial tree T°, both b(root(T")) and the computed lower bound of
d upon the lower bounds on the subtrees of T* (as in equations 5.1a

4 5.1b) provide lower bounds on f* (T"). f(T") is the best bound on

T
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£(T") based upon the available information, and is defined as follows:

5.2a if T° consists only of a single node m = root(T"), then f!b(T') i
b(m). .,._
5.2b if m = rooi(T") has AND-children m,...m,  such tha
p: MMy, is a reduction, then flb(T’) = max(bin, |

tp(flb(T,1)""’f1b(T,k))}, where T';,..., ") are the subtrees of T

rooted at My ,...,My.

52¢

f',(T")}, where T, is the subtree of T" rooted at m,.
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Due to the monotonicity of by it can be proved by induction op the

height of root(T’) that fzb(T’) < (T). It follows that be satisfies the pro- '
perties of a lower bound as mentioned in Section 3. From equations 5,1, 52 |

and 5.3 it follows that for any partial tree T°, flb(T’) P fzb(T’) 2 £ (T Ifp

. . . . s 1 .
1$ consistent than it can be proved by induction that f, £, and fzb are identj.
cal.

We redefine b”;.(n) (G’ is omitted if unambiguously determined) to be
the smallest value fzb(T’) such that T is a partial tree of G’ rooted at

whose tip nodes are also tip nodes of G’. Theorem 5.1 is redefined as fol.
lows:

Theorem 5.1b. If the functions t,(ss+r-»:) are monotonically nondecreasing in
each variable, then the following recursive equations hold.
(i) If nis a tip node, then
b'(n) = b(n).
(ii) If pn — 1,1 is a reduction and ny,...,ny are AND children of nin
G’, then
b'm) =t (b"(n,),...0 1),
(iii) If n has ny,...,n, as OR children in G°, then

if the most recently expanded node of G’ can be reached from n by fol-
lowing arrows, then

b’() = min{b*(n,),....b"(n,)).

Otherwise, b*(n) is unchanged.
Proof: Similar to the proof of Theorem 3.1.

(]

From the monotonicity of tp, it follows that b*(n) is also a Jower bound

on c*(n). If P, uses 1’2b to select a least-lower-bound partial tree, then in step

3, it only needs to update b* and arrows for those ancestors (of the expanded
node n) from which it is possible to get to n by traversing arrows. For

sumcost functi ie. = ing £2, is ident
unctions (i.e., tp(xl,...,xk) Cot X+t X P2 using f p I8 identt

cal to the algorithm A in [2]. For inconsistent b (since fzb can be a tighter

L

bound than fb) P, using f"’b is expected to be more efficient than P, using £,
but less efficient than P, using flb.

Note that f2b is presentéd here only to explain the working of the algo-
rthm A from {2] in terms of B&B. Viewing A as a B&B procedure
simplifies its correctness and makes it easy to see that it works for monotone
cost functions.

§.7. Discussion

When AO* is viewed as a B&B procedure, its correctness proof
becornes very simple (as compared, for instance, to the one given in [16]).
The correctness of AO* and its variations (algorithms A and B given in [2])
directly follows from the correctness of the general B&B formulation for
AND/OR graph search. Note that the only requirement for the correctness
of our ““AO*-type” B&B formulation is that the functions £(eseeens) DE
monotone. Thus the heuristics developed for acyclic AND/OR graphs with
additive cost functions are also applicable to acyclic AND/OR graphs with
arbitrary monotone cost functions. Such functions, as discussed in Section
3, can model a much larger class of problems.

The algorithm P, first appeared in the 1982 PhD dissertation of the first
author. In [24], Pearl independently presented a generalized version of AQ*
which is very similar to P,. He assumed that the procedure works for all
cost functions (including ones which are not monotone) as long as a lower-
bound function b can be found. From the discussion in this section, it is
clear that Pearl’s assumption was incorrect; ie., the monotonicity of té is
crucial to the correctness of Pz- For example, theorems 2.1 and 5.1 do not
hold in general if the cost functions are not monotone). Fig. 5 shows an
AND/OR graph with (nonmonotone) cost functions and the lower bounds,
for which the general version of AO* given in [24] (and P,) would not find
an optimal solution tree. The solution found by these algorithms has cost
10, whereas the optimal solution tree has cost 5.



Cost functions assocmted with the
reductions of G:

Ly (XypoXy) = Xy - Xp3

Terminal cost function ¢:
c(6) =20;c(MH =15;
c(3)=10.

Lower bound function b;
b(1)=0; b(2) =3,
b(3) = 10; b(4) = 15;
b(5) =0; b(6) = 20;
b(7) = 15.

Fig.5 An AND/OR Graph with associated cost functions and lower bounds.

¢ B&B SEARCH FOR A SOLUTION TREE OF LARGEST MERIT

In the discussion of AND/OR graph search in Sections 4 and 5, we con-
sidered ¢ and f as the cost functions for terminal nodes and solution trees of
G. and we constructed a B&B procedure for finding a least-cost solution
wee. The procedure can easily be modified to find a solution tree of largest
merit (see Section 2.2) if the functions ¢ and f denote the merits of terminal
nodes and solution trees of G respectively. In the modified version, £'(T”) =
max(f(T) | T € S_TREES(T"}}, and T;” D T, if and only if f*(Ti’) 2 f"(Tj’).
To perform a best-first B&B search, we define an upper bound function u
{similar to the lower bound function b) on the nodes of G such that u(n) is an
upper bound on the value of c*(n). The functions f, and u* are defined simi-

larly to the functions f, and b*, respectively. It is easily seen that the pro-
cedure P, can be appropriately modified to perform a best-first search for a

* largest-merit solution tree of an acyclic AND/OR graph.

6.1, B* as a B&B Procedure

If the functions tp are defined as tp(xl,...,xk) = min{xl,...,xk}, and cand f
are taken as the merits of the terminal nodes and solution trees of G, then the
B&B procedure for AND/OR tree search with best-first branching strategy
(ie., P,) is nearly identical to the B* [5] algorithm for minimax search of
game trees. The only difference is that with AND/OR trees (or graphs), the
aim is to find a solution tree of largest merit (or least cost, depending on the
problem), whereas with game trees the objective is merely to find the
immediate successor of the root in a largest-merit solution tree. This differ-
ence in requirements has been the motivation for introducing the “prove~
best” and the “‘disprove-rest’ strategies in the B* algorithm.,

Let us assume that both the upper bound function u and fower bound
fnction b are available for the nodes of a game tree G (viewed as an
AND/OR tree). Let the B&B procedure for searching G with some strategy
fnot necessarily best-first) for partial tree selection also keep track of both
b') and u”(n) for each node n of the partial graph G*. Let n,,...,n, be the

- OR successors of root(G). If it happens during the search that for some’

ISj<k,

61 b'm) > max{ u*(i) | 15isk and i),



then the largest-merit solution tree rooted at n; is no worse than the larg
L esl. §

mer . . B
erit solution tree rooted at n, (1<i<k and i#j). A B&B procedure searching i

a4 game tree can terminate at this point since the identity of "the QR £

successors of root(G) in a largest-merit solution tree is known

For nodes n of a partial graph G, b*(n) and u*(n) are lower and upper i

* .
bounds on ¢’(n), respectively. As G’ grows by the expansion of nodes i the
. * *
subgraph rooted atn, b"(n) and u”(n) will possibly more closely approximate

* . .
¢ (n). Since, in the B&B search of game trees, the aim is to satisfy Equation
6.1 as soon as possible, one of the following two policies can be adopted:

(i_) Select a node ny (from the successors 0,1y of root(G)) such that
u*(nj) =max{ u"(n)) | 1<i<k].
Explore the subgraph of G’ rooted at n, with the expectation that b'(r)
will nitimately be raised beyond max{ u*(ni) | 1<i<k and i=j). This:s
called a prove-best strategy by Berliner in his description of B* [5],

ww S * :
(ii) Select a node n, such that n, # I, and u (n,) > b*(nj). (It must be poss- §

ble to find such a node if Equation 6.1 is not satisfied yet.) Explore the
subgraph of G’ rooted at n, with the expectation that u*(ni) will uli-

* . .
mately come below b {n). This is called a disprove-res: stratepy by
Berliner,

.Once a node n (a child of root(G)) is selected by either of the policies, 2

gartlal tree of largest upper bound containing the node n is selected for
canchi . .. .

nching using a procedure similar to Sy In fact, if B* uses only the

prove-best strategy, then it is virtually the same as the procedure Py
modified to search a game tree for a largest solution tree.

The point to be made is that B* search can be viewed essentially as 2
B&Bt search of an AND/OR tree using a somewhat *“nonstandard’” rule for
termination. Furthermore, the special strategies (prove-best & disprove-
rest) of B* are applicable as long as the merit functions are monotone (ie.
not_necessarily minimax), lower and upper bounds for the nodes of G ar
avazljable, and»the aim is to find just the successor of the root of the bes
solution tree. For example, a B* type procedure could be used for game tre¢
search even if the evaluation function is the one used in [25] instead of

minimax.

6.2. SS5* as B&B

Even if the upper bounds u{n) on c*(n) for the nodes n of G are not
svailable, we can associate ‘‘uninformed’’ upper bounds with the nodes n of
G as follows: ; _

u(n) =c(n) if nis a terminal node;
u(n) = +eo  if n is a nonterminal node.
(the absolute upper bound)

A best-first B&B search procedure (similar to P,) can find a Targest-
merit solution tree of G by using these bounds for selection. In any iteration
of this procedure there may-exist more than one partial tree with the same
upper bound. In such cases, various tie-breaking rules can be adopted, each
leading to a different variation of the best-first B&B procedure.

A careful observation of the SSS* algorithm reveals that it is a best-first
B&B procedure (with uninformed bounds and particular tie breaking rule for
selecting from partial trees of the same largest upper bound) searching for a
largest-merit solution tree of an AND/OR tree. A detailed treatment of
§$558* as a B&B procedure can be found in Kumar and Kanal [13]. We dis-
cuss the basic ideas here. Note that in SSS*, as presented in [28], the search

graph G” is not maintained explicitly (as it is done in AO* and B¥); but it

exists conceptually as a subgraph of G, consisting of nodes which have been
visited but have not been pruned. Instead of G’, in [28] a list of states of
traversal called OPEN is maintained. Each element of the OPEN list

_ represents a partial tree T* and the current upper bound f(T°) associated with

it. State selection and expansion in SSS* directly correspond to selecting a
partial tree of largest upper bound from G’ and expanding one of its tip
nodes. Purging of states from OPEN corresponds to pruning certain parts of
G’ 10 eliminate dominated partial trees. Due to a special property of
minimax functions, the process of selecting a partial tree of largest upper
bound in SSS* is considerably more simple than the procedure S, of Section
3 |



6.3. Alpha-Beta as a B&B Procedure

In the procedures discussed so far, upper or lower bounds on the f.
values of the partial trees in the collection A were used for selecting 4 pariy E
tree (or a group of partial trees) for branching. It is also possible to seleq §
partial trees regardiess of their associated bounds. A possible scheme st §

expand the nodes of G in the preorder sequence regardless of which paniy
tree they belong to. Since the selection of a node for expansion (hence of;
set of partial trees for branching) is done in a predefined manner, gif
overhead associated with selecting partial trees for branching in bes-firy

B&B is eliminated.
Due to the monotonicity of tp, partial trees can be pruned (even in the

absence of any other problem-specific information) in the following sita.
tion. Suppose T; and T, are two solution trees in G’ rooted at a node n such

that f(Tz) < KT,). It follows from the monotonicity of the merit functions A
that any partial tree T;” of G* having T, as a subtree is dominated by another
partial tree Tj’ (of G’) which is identical to T;” except that T, is replaced by

T,. Hence we can prune all those partial trees from G’ which' contain T,n

a subtree by pruning all the nodes from G’ belonging only to T,.

A good example of such types of procedures is the classical alpha-beta V

algorithm. The alpha-beta procedure as usually presented in the literature
(e.g., in [8], [23]) looks at first glance to be very different than conventional
B&B procedures. Hence, to make the discussion easier, we first present
Nilsson’s version [23] of alpha-beta in a somewhat different tetminology.
and then we show that it can actually be considered as a2 B&B procedure.
An informal description of alpha-beta as B&B can be found in [13].

Nilsson’s Version of Alpha-beta
Nilsson’s version of alpha-beta can be described as follows:

(1) (initialize) G’ := root(G),

(2) Choose the first tip node n of G’ in the postorder sequence such that n
has not been evaluated yet. If there is no such node, then terminate.

(3) Evaluate n by computing alpha(n) and beta(n) as specified below, and
for each ancestor m of n recompute alpha(m) and beta{m). Also

generate SUCCESSOTS of nin G’ if n is a nonterminal. | )

is ever an ancestor m of the node n such tha; m # parent(n) an
* 'Leﬁt'e(r;) < alpha(n) or beta(n) < alpha(m)) then prune all thg
{uncjaluated successors of parent(n) from G’.

alpha(m) and beta(m) are defined as follows2:
ha(m) = c(m) if m is terminal and m has been .evaluated

s — .00 if m is a nonterminal node whose children have not been

- generated, or if m is an unevaluated terminal node

= max {alpha(n)i n is a child of m} if m is a max node whose

children have been generated

= min [alpﬁa(n)l n is a child of m} if m is a min node whose

* children have been generated

- beta(m) = c(m) if m is terminal and m has bgen evalvated
= oo if m is a nonterminal node whose children have not been

generated, or if m is an unevaluated terminal node
=max {alpha(n)l n is a child of m} if m is a max node whose
children have been generated
=min {alpha(n) nis a child of m} if misa min node whose
children have been generated

Some Definitions and properties .

Let trees(n) be the set of all solution trees containing n. If Vis z:i solu-
tion tree and n is a node of V, then let V/n be the subtree of V rooted at n,
The following properties hold:

t6.)  If T is a solution tree, then f(T) = min {c(n)i n is .a terrnu_}al nod;f:1
of T}. This is because the cost function associated with eac

AND branch takes the minimum of the values of the child nodes
{since it corresponds to a move by Min).

6.2) Let T" be any subtrée of T. Then from (1), f(T) < f(;I"). As a spe-
cial case, if n is a node of T, then f(T”) < f(T"/n) <c (n).

. . * N 't' n
"Note ihat Nilsson’s definition of alpha and beta is rather different from Knuth's definitio
ILi8



(6.3) As defined above, alpha(n) and beta(n) have reédy interpretatip
as instances of b’(n) and u*(n). Hence, alpha(n) < c¢*(n) < betagi
(6.4)  Suppose alpha(n) > -eo. Then from the definition of alpha, then |
must be at least one solution tree rooted at n which has sl
been explored, for else we would have alpha(n) = -oo, From te §
definition of alpha, it follows that alpha(n) = max{f(V) | Vi, §

solution tree rooted at n and has been completely explored).

(6.5) Let T and T’ be solution trees such that T-(T/m) = T'-(T"/m) my

I(T") < f(T/m). Then from (1), f(T’) < f(T).

Pruning by Beta Cutoff

Suppose m is an ancestor of n, and suppose beta(n) < alpha(m). The *

alpha(m) > -0, 50 from (6.4) we know that there is at least one tree rootedx

m which has already been completely explored. Let V be the best such 1ree _

Let T’ be any member of trees(n), and let T’ = (T"-T/m) U V. Then

(1) <f(T’m) (from (6.2)
<sc'm) (from (6.2))
Sbeta(n) (from (6.3)
< alpha(m) (from the assumption)
= f(V) (from (6.4))

=f(T"’/m) (by definition of T*"),

Thus from (6.5), f(T*) < f(T"). Since this reasoning holds for every T'in
trees(n), trees(n) is a dominated set and thus may be pruned.

Pruning by Aipha Cutoff

Suppose m is an ancestor of n, and suppbse beta(m) < alpha(n). Then
alpha(n) > -ce, so from (6.4) we know that there is at least one tree rooted a
n which has already been completely explored. Let V be the best such tree

Let T’ be any solution tree containing an unexplored child of n, and let "' =
(T" - T°/m) U V. Then T’ contains m, so

fr)sc’m  (from (6.2)
<beta(m) (from (6.3)) '
< alpha(n) (from the assumption)
= f(V) (from (6.4))
=f(T’Mm) (by definition of T°).

"y < §(T”"). Since this reasoning holds for every T’ con-
z::n::r:u(:ei);;hf)(r:J chil(d of) n, every such child represents a dominated set
ahich may be pruned. . B

It is clear that the process of generating succes‘sors of a tl.p nodedoi; So vlen
alpha-beta corresponds to a valid branching function: As dlst;usse _nin 0;
the pruning that is done by alpha-beta can be explained a.s ; pnll hagand
dominated sets of solution trees. If we supplement the prun.mg. y af% i onc
heta cutoffs with the pruning criterion suggested at the. beginning o oction
6.3 then at the termination of alpha-beta G” will contain only a largest-m

wlution tree of G.

7.CONCLUDING REMARKS .

This paper has presented a general B&B procedure for searct;gg
AND/OR graphs, and described how several prc.)cedures for searc g1 |
AND/OR graphs and garne trees may be viewed as mstances. of the .genera
B&B formulation. This study reveals that a number of seer'nmgly c%:sparfltc
search procedures are in fact quite similar. The essential relationships
among the procedures are summarized below.

As shown in the preceding pages, AO* and B* are very similar P“l"
cedurcs. Both do best-first searches of AND/OR graphs. The only

t13 differences are:

stgnifican X
. . *

(1) AO* searches graphs having additive cost functions and B searf: }is
graphs having minimizing cost functions. But these are both straight-

forward special cases of the monotone cost functions used for B&B.

P *
" Another difference between AO* and game tree search procedures is m]? :::C;t ;f::fhes
for a solution of lowest cost whereas the other procedures search for solutions of highe: -



(2) Since the poal of B* is ‘merely to find the immediate SUCCESSOr of f &
~ root in a largest-merit solution tree (rather than the entire solution tr

B* has a “‘nonstandard” termination criterion and the “prove-hey &

and the ‘‘disprove-rest’’ strategies for selecting nodes for €Xpansion,

Furthermore, as pointed out in Sections 5 and 6, both of these procedures { &
well as variations of AQ* given in {2]) will work as long as the cost fyn,
tions are moriotone, For example, B* could be used for game tree seart |

even if the cost function is the one used in [25].

AO* and SSS* are both best-first procedures.
difference between them is that AO* assumes more problem-specif;

knowledge in terms of informed bounds, This knowledge is encoded ine §

the heuristic function h (‘nt our formulation, this is same as the lower hound
function b) which the user supplies to AO*. If h(n) is set identically equalt
0 for all n, then the operations of AQ* and SSS* are almost exactly (he

same, except for the different tie-breaking rules used when there are more §

makes it easier to see tha
cost functions.

paper was inspired by a

* gown

The only significs £

than one best-bound partial trees availabie.

S8S* and alpha-beta both use the same amount of problem-specific

knowledge, but they use different node selection strategies for branching

S3S* uses a best-first selection strategy, but alpha-beta uses a preorder |

expansion of the game tree nodes (which amounts to a kind of depth-firt
strategy). Thus the B&B formulation of alpha-beta differs from the B&B
formulation of SSS* primarily in the SELECT function. This shows th
these two seemingly very different algorithms are in fact very close cousins.

Considering that alpha-beta has been known for over two decades, itis +

noteworthy that SSS* was discovered only recently in the context not of
game playing but of a waveform parsing system [27], [29].

If AO* and its variations given in [2] are viewed as B&B, their correct-
ness proofs become simpler, and the criteria goveming their correctness

become clearer (se_e Section 5). For example, in [24] it was incorrectly 1
thought that AO* would work for general cos: functions (ie., including

non-monotone cost functions). Qur development of the general B&B for-
mulation for AND/OR graph search makes it clear that the monotonicity of
the cost function is crucial to the correctness of the general procedure. Vari-
ations of AO* given in {2] can be viewed as B&B procedures using lower

4 functions which are slightly different than the one used by AQ
houn :

t they are correct and that they work for monotone

- ' dure presented in this
t of the general top-down proce ‘
e b unified approach to search procedure developed in

h-
0] ”4} where it was Shown that a large number Of procedures for searc
“ . 1

' viewed either as top-

o AN o a“; St::l?iitsiizcetog ratflzs ;:;16::; top-down procedure

o bonom‘l:p.have developed a general bottom-up procedure for

Pf'-‘e"f"'d her;}(;; raphs [11] which subsumes most of the bottom-up pro-

e chini AND/OR graphs and the dynamic programming pro-
;:2::2 tfc(:rr ::::ing diéi’:rete deterministic optimization problems.

APPENDIX: DEFINITIONS

¢tn) = cost of (solving the problem denoted by) node n.

f(T) = cost of solution tree T.

¢'(n) = min{f(T) T is rooted at n}.

wn) = lower bound on ¢*(n). . sented by the partial
{,(T"} = lower bound on the costs of solution trees repre

::Zl) = min{f(T") 1 T’ is rooted at n and represented by the partial graph
G'}]. G' is omitted if unambiguously determined from the contelx;. .
S_TREES(T") = the set of solution trees represented by the pal:tla tre . G.’
P—TREES(G’) = the set of partial trees represented by the partial grap .
!Y;l:S(n) = the set of solution trees containing the node n.
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