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Abstract. Hierarchical Task-Network (HTN) based planning tech-
niques have been applied to the problem of composing Web Services,
especially when described using the OWL-S service ontologies. Many of
the existing Web Services are either exclusively information providing
or crucially depend on information-providing services. Thus, many in-
teresting service compositions involve collecting information either dur-
ing execution or during the composition process itself. In this paper,
we focus on the latter issue. In particular, we present ENQUIRER, an
HTN-planning algorithm designed for planning domains in which the in-
formation about the initial state of the world may not be complete, but
it is discoverable through plan-time information-gathering queries. We
have shown that ENQUIRER is sound and complete, and derived several
mathematical relationships among the amount of available information,
the likelihood of the planner finding a plan, and the quality of the plan
found. We have performed experimental tests that confirmed our the-
oretical results and that demonstrated how ENQUIRER can be used in
Web Service composition.

1 Introduction

Web Services are Web accessible, loosely coupled chunks of functionality with
an interface described in a machine readable format. Web Services are designed
to be composed, that is, combined in workflows of varying complexity to pro-
vide functionality that none of the component services could provide alone. Al
planning techniques can be used to automate Web Service composition by rep-
resenting services as actions, and treating service composition as a planning
problem. On this model, a service composition is a ground sequence of service
invocations that accomplishes a goal or task.

OWL-S [1] provides a set of ontologies to describe Web Services in a more ex-
pressive way than allowed by the Web Service Description Language (WSDL). In
OWL-S, services can be described as complex or atomic processes with precondi-
tions and effects. This view enables us to translate the process-model constructs



directly to HTN methods and operators [2]. Thus, it is possible to use HTN
planners to plan for composing Web Services that are described in OWL-S.

However, using Al planning techniques for Web Services composition intro-
duces some challenges. Traditional planning systems assume that the planner
begins with complete information about the world. However, in service composi-
tion problems, most of the information (if it is available at all) must be acquired
from Web Services, which may work by exposing databases, or may require prior
use of such information-providing services. For example, an appointment making
service might require the planner to determine an available appointment time
first. In many cases, it is not feasible or practical to execute all the information-
gathering services up front to form a complete initial state of the world. In such
cases, it makes sense to gather information during planning.

In this paper, we describe ENQUIRER, an HTN-planning algorithm that can
solve Web Service composition problems that require gathering information dur-
ing the composition process. ENQUIRER is based on the SHOP2 planning system
[3], and designed for planning domains in which the information about the ini-
tial world state may not be complete. In such cases, ENQUIRER issues queries
to obtain the necessary information, it postpones all decisions related to that
information until a response comes in, and it continues examining alternative
branches of the search space. By gathering extra information at plan time, the
planner is able to explore many more branches in the search space than the initial
state ordinarily permits. Since external queries often dominate planning time,
and, being distributed, are strongly parallelizable, ENQUIRER’s non-blocking
strategy is sometimes able to dramatically improve the time to find a plan.

We also provide the sufficient conditions to ensure the soundness and com-
pleteness of ENQUIRER, derive a recurrence relation for the probability of
ENQUIRER finding a plan, and prove theoretical results that give mathemat-
ical relationships among the amount of information available to ENQUIRER and
the probability of finding a plan. These relationships are confirmed by our ex-
perimental evaluations. We describe how the generic ENQUIRER algorithm can
be used to solve the problem of composing Web Services, and test the efficiency
of the algorithm on real-world problems.

2 Motivations

HTN-planning algorithms have proven promising for Web service composition.
Many service-oriented objectives can be naturally described with a hierarchical
structure. HT'N-style domains fit in well with the loosely-coupled nature of Web
services: different decompositions of a task are independent so the designer of a
method does not have to have close knowledge of how the further decompositions
will go. Hierarchical modeling is the core of the OWL-S [1] process model to the
point where the OWL-S process model constructs can be directly mapped to
HTN methods and operators. In our previous work [2], we have shown how such
a translation can be done for SHOP2 [3]. In this work, we have kept the basic
SHOP2-language mapping intact, and focused on extending the way SHOP2



deals with plan-time information gathering.®> We call the extended algorithm
ENQUIRER.
We have identified three key features of service-oriented planning:

e The planner’s initial information about the world is incomplete. When the
size and nature of Web is considered, we cannot assume the planner will have
gathered all the information needed to find a plan. As the set of operators
and methods grows very large (i.e., as we start using large repositories of
heterogeneous services) it is likely that trying to complete the initial state
will be wasteful at best and practically impossible in the common case.

e The planning system should gather information during planning. While not
all the information relevant to a problem may have already been gathered,
it will often be the case that it is accessible to the system. The relevance of
possible information can be determined by the possible plans the planner is
considering, so it makes sense to gather that information while planning.

o Web Services may not return needed information quickly, or at all. Executing
Web Services to get the information will typically take longer time than the
planner would spend to generate plans. In some cases, it will not be known
a priori which Web Service gives the necessary information and it will be
required to search a Web Service repository to find such capable services.
It may not be possible at all to find those services. Furthermore, in some
cases the found service cannot be executed because the service requires some
password that the user cannot provide or the service is inaccessible due to
some network failure. The system should not cease planning while waiting for
answers to its queries, but keep planning to look for other plans that do not
depend on answering those specific queries.

ENQUIRER is designed to address all of the issues above. In the subsequent
sections, we first give a brief background on the HTN Planning and the SHOP2
planning system, and then we present the ENQUIRER planning algorithm, as
well as our theoretical and experimental evaluations of it.

3 Background: HTN Planning and SHOP2

The purpose of an HTN planner is to produce a sequence of actions that per-
form some activity or task. The description of a planning domain includes a set
of planning operators and methods, each of which is a prescription for how to
decompose a task into its subtasks (smaller tasks). The description of a plan-
ning problem contains an initial state as in classical planning. Instead of a goal
formula, however, there is a partially-ordered set of tasks to accomplish.

3 In this paper, we focus on information gathering as plan-time execution of Web
Services. Nothing in this work, however, is specific to information-providing Web
Services, and could be immediately adapted to any oracular query-answering mech-
anism, e.g., a user could interactively supply answers to the system.



Planning proceeds by decomposing tasks recursively into smaller and smaller
subtasks, until primitive tasks, which can be performed directly using the plan-
ning operators, are reached. For each task, the planner chooses an applicable
method, instantiates it to decompose the task into subtasks, and then chooses
and instantiates other methods to decompose the subtasks even further. If the
constraints on the subtasks or the interactions among them prevent the plan
from being feasible, the planning system will backtrack and try other methods.

SHOP2 is an HTN planner that generates actions in the order they will be
executed in the world. Its backtracking search considers the methods applicable
to the same task in the order they are specified in the knowledge base given to
the planner. This feature of the planner allows for specifying user preferences
among such methods, and therefore, among the solution that can be generated
using those methods. For example, Figure 1(c) shows a possible user preference
among the three methods for the task of delivering a box from UMD to MIT.

An example is in order. Consider a Delivery Domain, in which the task is
to deliver a box from one location to another. Figure 1(a) shows two SHOP2
methods for this task: delivering by car, and delivering by truck. Delivering by
car involves the subtasks of loading the box to the car, driving the car to the
destination location, and unloading the box at the destination. Note that each
method’s preconditions are used to determine whether or not the method is
applicable: thus in Figure 1(a), the deliver by car method is only applicable if the
delivery is to be a fast one, and the deliver by truck method is only applicable if it
is to be a slow one. Now, consider the task of delivering a box from the University
of Maryland to MIT and suppose we do not care about a fast delivery. Then,
the deliver by car method is not applicable, and we choose the deliver by truck
method. As shown in Figure 1(b), this decomposes the task into the following
subtasks: (1) reserve a truck from the delivery center at Laurel, Maryland to
the center at Cambridge, Massachusetts, (2) deliver the box from the University
of Maryland to Laurel, (3) drive the truck from Laurel to Cambridge, and (4)
deliver the box from Cambridge to MIT. For the two delivery subtasks produced
by this decomposition, we must again consider our delivery methods for further
decomposing them until we do not have any other task to decompose.

During planning, the planner evaluates the preconditions of the operators
and methods with respect to the world state it maintains locally. It is assumed
that planner has all the required information in its local state in order to evaluate
these preconditions. For example, in the delivery example, it is assumed that the
planner knows all the distances between the any initial and final locations so that
it can determine how long a truck will be reserved for a delivery task. Certainly,
it is not realistic to assume that planner will have all this information before the
planning process starts. Considering the amount of information available on the
Web is huge, planner should gather the information as needed by the planning
process. Since gathering information may take some considerable amount of time,
it would be wise to continue planning while the queries are being processed. For
example, the planner can continue planning with the truck delivery method until
the answer to the query about train schedules has been received.
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Fig. 1. Delivery planning example.

4 Definitions and Notation

We use the same definitions for logical atoms, states, task symbols, tasks, task
networks, actions, operators, methods, and plans as in SHOP2. The ENQUIRER
planning procedure extends SHOP2 to be able to cope with incomplete informa-
tion about the initial state of the world. The following definitions establish the
framework for the ENQUIRER procedure.

An askable list is a set of logical atoms that are eligible for the planner query
during the planning process. Note that we do not require the atoms in an askable
list to be ground. In many realistic application domains, the planner can only
obtain certain kinds of information, regardless of whether that information is
needed for planning. Intuitively, an askable list specifies the kinds of information
that is guaranteed to be available to the planner during planning, although this
information may not be given the planner at the start of the planning process.

A query is an expression of the form (h p), where h is the unique label of the
query and p is a logical atom. Note that we do not require p to be ground. The
intent of a query is to gather information during planning about the relation p
in the state of the world before planning started (i.e., in the initial state).

Let A be an askable list. We let §(A) denote the set of all possible instanti-
ations of the atoms in A. Then, a query (h p) is said to be askable with respect
to A if and only if p unifies with an atom in §(A) — i.e., there exists a variable
substitution © such that O(p) € 6(A). An answer for an already-asked query
(h p) is an expression of the form (h R) such that R C §(A4), and for each p’ € R,
there exists a substitution © such that O(p) = p'.

A complete-information planning problem is a tuple P¢ = (S, T, D), where S
is a complete initial state, T is a task network, and D is an HTN-domain descrip-
tion that consists of a set of planning operators O and methods M, respectively.
An incomplete-information planning problem is a tuple P! = (J, A, T, D), where
J is a set of ground atoms that are initially known, A is an askable list, T" is a



task network, and D is an HTN-domain description. An incomplete-information
planning problem P! is consistent with a complete-information planning prob-
lem PC if only if S is identical with J U §(A). Note that J U 6(A) denotes the
total amount of information that a planner can possibly obtain while solving P?.

We define a service-composition problem to be a tuple of the form W =
(J,X,C,K), where J is a (possibly incomplete) initial state, X is a set of all
possible information-providing Web Services that are available during the plan-
ning process, C' is a (possibly) composite OWL-S process, and K is a collec-
tion of OWL-S process models such that we have C' € K. We assume that the
information-gathering services in X return information only about the initial
state, and they do not have any world-altering effects.

An explanation about the set of available services X is in order. When a
query (h p) for a possibly partially ground atom p is asked, Web Service that
answer this query needs to be located. A service whose output or postcondition
specification matches with p is said to be a possible match.* For example, a
query (find-airports airport(US,?z)) can be answered by a service that is specified
as (:input ?c - country, :output ?z - airport, :postcondition airport(?c, ?z)). Note
that, such a service description can be written in OWL-S 1.1 using the recently
added Result and Expression structures.

Let W = (J, X, C, K) be a service-composition problem. We let 7(X) denote
the total amount of information that can possibly be gathered from the Web
Services in X — i.e., 7(X) denotes the set of all possible ground atoms that are
specified by the outputs or the postconditions of the services in X. Then, we say
that W is equivalent to an incomplete-information problem P! = (J, A, T, D)
if and only if 7(X) = 6(A), where T is the SHOP2 translation for the OWL-S
process C, and D = TRANSLATE(K) is the HTN-domain description generated
by the translation algorithm TRANSLATE of [2].

5 The ENQUIRER Algorithm

ENQUIRER starts with an incomplete initial world state, gathers relevant infor-
mation during planning, and continues to explore alternative possible plans while
waiting for information to come in. The algorithm is shown in Fig.2. The input
is an incomplete-information planning problem (J, A, T, D) as defined above.
ASKED is the set of all queries that have been issued by ENQUIRER and that
have not been answered yet. ANS is the set of all queries for which answers have
been received. The OPEN list is the set of triples of the form (J,T, ), where J
is a (possibly) incomplete state, T is a task list, and 7 is a plan. Intuitively, the
OPEN list holds the information on the leaf nodes of the search tree generated
during the planning process. Initially, each of these lists is the empty set, except
the OPEN list which is initialized to {(J,T,7)}.

At each iteration of the planning process, we first check if the OPEN list is
empty. If so, then we report failure since this means that every branch in the

4 In this paper, we assumed the existence of matched services. The problem of discov-
ery and location of a matched Web Service is beyond the scope of this paper.



procedure ENQUIRER(J, A, T, D = (O, M))
ASKED « @; ANS « 0; w < 0; OPEN « {(J, T, m)}
loop
if OPEN = () then return(failure)
OPEN « {(J',T,m) | (J,T,7) € OPEN, (h p) € ASKED, an answer (h R) has
been received for (h p), and J' «+ ProcessAnswers(J, R)}
for each query (h p) € ASKED that has been answered recently
remove (h p) from ASKED and insert it into ANS
select a tuple (J, T, 7) from OPEN and remove it
if = then return(r)
nondeterministically choose a task ¢ € T" that has no predecessors
if t is a primitive task then
U« {(0,0) | 0 € O, and 3 a substitution © such that O(t) = O(head(0))}
S —{(J,0(T - {t}),7U{O(0)}) | (0,0) € X, O(0) is applicable in J, and
J' — ApplyOp(J,0(0))}
else
U~ {(m,0) | m e M, and 3 a substitution @ such that O(t) = O(head(m))}
S — {(J, T',m)|(m,0) € X,O0(m) is applicable in J, and
T' € ApplyMeth(J,T,t,m,0)}
OPEN «— OPEN U §
Q —{(hp)| (u,©0) €U, pis a precondition of u such that O(p) is askable w.r.t. A,
O(u) is not applicable in J, and A a query (h ©(p)) € ANS}
if @ # 0 then
ASKED «— ASKED U {(h p) | (h p) € Q, and (h p) & ASKED}
OPEN «— OPEN U {(J, T, )}

Fig. 2. The ENQUIRER algorithm.

search space is exhausted without success. Otherwise, we start processing the
answers for our previously-issued queries that have arrived at this point. Let
(h R) be such an answer for the query (h p). Then, for every triple (J,T,7) in
OPEN, we insert a ground atom p’ € R into J if p’ € J and there is no action
a € 7 that makes p’ false in the world. Note that this condition is necessary
to ensure the correctness of our algorithm since ENQUIRER’s queries provide
information about the initial state of the world: if we insert an atom into J
that is in the delete-list of an action in 7, then J becomes inconsistent. In
Fig.2, the subroutine ProcessAnswers is responsible for checking this condition
and updating the states in OPEN accordingly.

After processing the answered queries, the next step is to select a tuple
(J,T,7) from OPEN, and remove it. We then check if the current task network
T is empty or not. If so, we have 7w as our plan since all of the goal tasks have been
accomplished successfully. Otherwise, we nondeterministically choose a task ¢ in
T that has no predecessors in T'. If ¢ is primitive then we decompose it using the
operators in O. Otherwise, the methods in M must be used.

Due to the space limitations, we only describe the case in which ¢ is primitive.

The case in which ¢ is not primitive is very similar. If ¢ is primitive, then we
first select each operator o that matches to the task ¢ — i.e., there exists a



variable substitution @ such that ©(t) = ©(head(0)). The operator instance
©(0) is applicable in J, if all of its preconditions are ground and satisfiable in
J. Otherwise, it is not applicable. In the former case, we generate the next state
J' and the next task network 7" by applying ©(o) in J and by removing ¢ from
T, respectively. We update the current partial plan 7 by adding ©(o) to it, and
update the OPEN list with the tuple (J', T, 7 U {©(0)}).

If the operator instance @(o0) is not applicable in J then this means that
there is a precondition p of @(0) such that either p is not ground, or p is ground
but cannot be satisfied in J. In either case, we cannot immediately come to a
conclusion on whether ©(0) is applicable in J or not. Instead, we must do the
following. We first check if p is askable with respect to the askable list A; if it
is not then there is no way we can obtain further information about it so we
conclude that it is false. Otherwise, we check if there is a query for p in the ANS
list. If so, then this means that p was queried before and an answer has been
received for it. Then, since we still cannot infer any information about p from
J, p must be false in the world and we cannot apply ©(0) in J.

If there is no query related to p in ANS, then this means one of the following
conditions holds: we have queried p before but no answer has come yet, or this is
the first time we need to query it. To determine which case we are in, we check
the ASKED list if there is a query for p in it. If so, then the former is the case
and we defer our decision on the applicability of @(o0) in J. If there is no query
regarding to p in ASKED, then we create a new query for p and insert it into
ASKED. In this case, we again defer our decision on ©(0).

Note that if the precondition p is unground in ©(o), there may be additional
information related to p that cannot be inferred in .J, even if p is satisfiable in
that state. For example, in the delivery domain, an unground precondition may
be used to get the schedule of all trains for a particular route. In the current
state, there may already be some related information, e.g. results of a previous
queries returned by one Web Service invocation. However, there may still be
other Web Services that will return additional information that could be crucial
for finding a plan. Therefore, in order to ensure completeness, ENQUIRER queries
all the related Web Services about p regardless of what is inferred in J.

The ENQUIRER algorithm also uses two subroutines called ApplyOp and Ap-
plyMeth. ApplyOp takes as input the current state J and the action to be applied
in J, and outputs the successor state that arises from applying that action in J.
The definition for ApplyMeth is more complicated; intuitively, it takes a method
m and a non-primitive task ¢ to be decomposed by m, and it modifies the cur-
rent task network 7' by removing ¢ and adding its subtasks to T' (for the full
definition of this subroutine, see [3]).

6 Formal Properties of ENQUIRER

Due to space limitations, we omit the proofs of our theorems here. They can be
found at [4]. We first establish the soundness and completeness of our algorithm.
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Fig. 3. The solution tree that ENQUIRER generates for an incomplete-information
planning problem.

Theorem 1. Let W = (J, X, C, K) be a service-composition problem, and P! =
(J, A, T, D) be an incomplete-information planning problem that is equivalent to
W. If ENQUIRER returns a plan for PT, then that plan is a solution for every
complete-information planning problem that is consistent with PT. If ENQUIRER
does not return a plan, then there exists at least one planning problem P€ that
is consistent with P, and P is unsolvable (i.e., no plans for PC exist).

The following theorem establishes the correctness of our approach.

Theorem 2. Let W = (J, X, C, K) be a service-composition problem, and P! =
(J,A,T, D) be an incomplete-information planning problem that is equivalent to
W. ENQUIRER returns a plan 7 for PT if and only if w is a composition for W.

Let x(P!) be the set of all solutions returned by any of the non-deterministic
traces of ENQUIRER on an incomplete-information problem P!. Furthermore, we
let wpr be the shortest solution in x(P!), and let |7 pr| denote the length of that
solution (i.e., plan). We now establish our first informedness theorem:

Theorem 3. Let Pl = (J1,A1,T,D) and P{ = (J2,A2,T,D) be
two incomplete-information planning problems. Then x(Pf) C x(Pi), if
JiU §(A1) C JaU §(As).

A corollary immediately follows:

Corollary 1. Let P{ = (J1,A,T,D) and P] = (Jo, A2, T,D) be two
incomplete-information planning problems. Then |mpr| < [7wpi|, if J1U (A1) C
Ja Ud(As).

Let P! = (J,A,T, D) be an incomplete-information planning problem. For
the rest of this section, we will assume that there are constants ¢, p, ¢, m, k, b,
and d such that c is the probability of a task being composite, p is the probability
of a ground atom a being true, ¢ is the probability of the truth-value of an atom
a being known to ENQUIRER, m is the average number of methods that are
applicable to a composite task, k is the average number of distinct preconditions
for the methods in D, b is the number of successor subtasks, and d is the depth
of the solution tree produced by ENQUIRER.



The solution tree produced by ENQUIRER is an AND-OR tree, in which
the AND branches represent the task decompositions whereas the OR, branches
represent different possible methods whose heads match with a particular task.
Without loss of generality, we assume that the solution tree of ENQUIRER is
a complete AND-OR tree as shown in Fig.3. Furthermore, we suppose that T’
contains only one task to be accomplished and we have no negated atoms in the
preconditions of the methods in D.

Lemma 1. Given an incomplete-information planning problem P! =
(J,A,T,D) that satisfies the assumption given above, the probability p of
ENQUIRER finding a solution for P! is

po=1; and
pa=(1—c)*(p.g)* +ecx[1—(1—7a)"],
where g = (p-q)* x (pa—1)".
The following theorem establishes our second informedness result.

Theorem 4. Let Pl = (J1,A;,T,D) and P{ = (Js,A2,T,D) be two
incomplete-information planning problems satisfying the assumption given ear-
lier. Furthermore, let p1 and ps be the probabilities of ENQUIRER finding solu-
tions for P] and P}, respectively. Then, p1 < pa, if J1 U8(A1) C Jo US(As).

7 Experimental Evaluation

For our experiments, we wanted to investigate (1) how well ENQUIRER would
perform in service-composition problems where some of the information was
completely unavailable, and (2) the trade-off between the time performance and
the desirability of the solutions generated by the planner by using different query-
processing strategies. We built a prototype implementation of the ENQUIRER
algorithm that could be run with different query strategies. We also built a
simulation program that would generate random response times for the queries
issued by ENQUIRER. We ran our experiments on a Sun SPARC Ultral machine
with 192MB memory running Solaris 8.
Experimental Case 1. In this case, we have investigated how the number
of solutions (i.e., plans) found by the ENQUIRER algorithm is affected by the
amount of the information available during planning. In these experiments, we
used a set of Web Service composition problems on the Delivery domain described
in Section 3. In these problems, a delivery company is trying to arrange the
shipment of a number of packages by coordinating its several local branches. The
company needs to gather information from the branches about the availability of
vehicles (i.e., trucks and planes) and the status of packages. Such information is
provided by Web Services, and the goal is to generate a sequence of confirmation
messages that tells the company that every package is delivered to its destination.
In these experiments, we have ENQUIRER run the planner on 100 randomly-
generated problem instances. For each problem instance, we ran ENQUIRER
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Fig. 4. Chart (a) shows the percentage of times ENQUIRER could find plans for the
Delivery problems, as a function of the amount of information available during plan-
ning. Chart (b) shows the comparison of the average CPU times (in secs.) of the four
query-processing strategies in ENQUIRER.

several times as described below, varying the amount of information available
about the initial state by varying the following quantities: |.J|, the number of
atoms of S that were given initially; and |A|, the amount of atoms of S that
were made available in the askable list, where S is the set of all possible ground
atoms in the domain.

We measured the percentage of times that ENQUIRER could find plans, as a

function of the quantity I‘]‘Lgf‘ . The fraction ‘J‘gfl is the fraction of atoms about

the initial state that are available during planning. We varied IJIL;ILH from f = 0%
to 100% in steps of 10% as follows: we first randomly chose a set of atoms for
|S| such the size of this set is equal to the fraction specified by the particular f
value. Then, for each atom in this set, we randomly decided whether the atom
should go in J — the incomplete initial state —, or in A — the askable list. Using

this setup, we performed 100 runs of ENQUIRER for each value of ‘J‘gf'. The

results, shown in Fig.4(a), show that the success rate for ENQUIRER increased as

we increased |J‘L§“4‘ . ENQUIRER was able to solve 100% of the problem instances

A
even when ‘J‘g‘ | was as low as 60%.

Experimental Case 2. We also aimed to investigate the comparison between
the time performance of the non-blocking nature of the search performed by
the ENQUIRER algorithm and the desirability of the plans generated — i.e.,
how much the generated plans conforms to the user preferences encoded in the
domain descriptions given to the algorithm in terms of the ordering among the
methods applicable to the same task.

In this respect, we have implemented three variations of the ENQUIRER algo-

rithm. All of these variations are based on how the planning algorithm maintains
its OPEN list. The original algorithm, shown in Figure 2, always searches for



solutions that can be found regardless of the incompleteness of the information
about the initial state: when ENQUIRER issues a query, it does not wait for an
answer; instead it continues its search for solutions that can be found without
issuing any queries at all. We call this strategy as the Issue-Search-Other (1SO)
strategy. Similar to ISO, all the other three strategies are also based on different
implementations of the OPEN list. The Issue-Wait-Continue (IWC) strategy in-
volves blocking the search until a query, which is issued recently, gets answered.
In the First-In-Last-Out (FILO) strategy, if the planner has asked many queries
during its search and several of them have been answered, then it always returns
to the point in the search space that corresponds to the most recently-issued
query that has been answered. Finally, in FIFO which is a complete symmetric
version of FILO, the planner always considers the answers corresponding to the
least-recent query it has asked. Due to space limitations, we do not give the
details of these strategies; for further information see [4].

In our experiments with these variations of ENQUIRER, we compared their
time performances on the domain used in [2], which is partly based on the sce-
nario described in the Scientific American article about the Semantic Web [5].
This scenario describes two people who are trying to take their mother to a
physician for a series of treatments and follow-up meetings. The planning prob-
lem is to come up with a sequence of appointments that will fit in to everyone’s
schedules, and at the same time, to satisfy everybody’s preferences.

We have created 11 random problems in this domain and we have run all
strategies 10 times in each problem. We have set the maximum response time
for a query asked by ENQUIRER to be 1 seconds. Fig.4(b) reports the average
CPU times required by the four strategies described above.

These results provide several insights regarding the trade-off between time
performance of ENQUIRER and the desirability of the solutions it generates
under incomplete information. From a performance-oriented point of view, they
showed that it is very important for the planner not to wait until its queries get
responded, especially when it takes a very long time to get responses for those
queries. In our experiments, the IWC strategy performed worst than the others
in most of the problems. However, IWC was able to generate the most-desirable
solutions for our problems, since it always considers the methods in ENQUIRER
knowledge base in the order they were specified.

In most of the problems, the FILO strategy was able to find solutions more
quickly than the other strategies; in particular, it was consistently more efficient
than IWC. However, these solutions were usually less-desirable ones with respect
to the user preferences encoded as orderings among the methods in ENQUIRER
knowledge base, since FILO always tends to consider the answers for the most-
recently issued queries, which usually correspond to less-desirable preferences
because of the queries waiting for an answer.

Our experiments also suggest that the ISO strategy can be particularly useful
on planning problems that have few solutions. In particular, the problem p10 of
our experiments is one such problem, and ISO was able to find solutions for
this problem more quickly than others. The reason for this behavior is that



ISO performs a less organized and less structured search compared to other
strategies, enabling the planner to consider different places in the search space.
On the problem p10 which has only 48 solutions compared to the 4248 solutions
of the problem p9, this characteristic enabled ISO to perform better than the
other strategies. However, in most of the problems, the solutions generated by
the planner using ISO were not the desirable ones.

8 Related Work

[6] describes an approach to building agent technology based on the notion
of generic procedures and customizing user constraints. This work extends the
Golog language to enable programs that are generic, customizable and usable in
the context of the Web. Also, the approach augments a ConGolog interpreter
that combines online execution of information-providing services with offline sim-
ulation of world-altering services. Although this approach is similar to our work,
we suspect that a logic-based approach will not be as efficient as a planning
approach. We intend to test this hypothesis empirically in the near future.

In the AI planning literature, there are various approaches to planning with
incomplete-information, designed for gathering information during execution by
inserting sensing actions in the plan during planning time and by generating
conditional plans conditioned on the possible pieces of information that can be
gathered by those actions. [7] presents a planning system that implements these
ideas. [8] presented a planning language called UWL, which is an extension of
the STRIPS language, in order to distinguish between (1) the world-altering and
the observational effects of the actions, and (2) the goals of satisfaction and the
goals of information. [9] describes he XII planner for planning with both complete
and incomplete information, which is an extension of UCPOP [10], and is able
to generate sensing actions for information gathering during execution.

ENQUIRER differs from these approaches in that it does not explicitly plan for
sensing actions to obtain information at execution time. Instead, it is a planning
technique for gathering the necessary information during planning time. As a
result, ENQUIRER can generate simple plans since observational actions are not
included in the plan, and it can interact with external information sources and
clear out the "unknown”s during planning time as much as possible. In this
respect, it is very suitable for the problem of composing Web Services.

[11] describes a speculative execution method for generating information-
gathering plans in order to retrieve, combine, and manipulate data located in
remote sources. This technique exploits certain hints received during plan exe-
cution to generate speculative information for reasoning about the dependencies
between operators and queries later in the execution. ENQUIRER differs from
this method in two aspects: (1) it searches different branches of the search space
when one branch is blocked with a query execution, and (2) it runs the queries
in planning time, whereas speculative execution was shown to be useful for exe-
cuting plans. Combining speculative execution with our approach would enable
us to run queries down in a blocked branch; however, since the time spent for a



query is lost when speculations about that query are not valid, it is not clear if
combining the two approaches will lead to significant results.

9 Conclusions and Future Work

In our previous work [2], we have shown how a set of OWL-S service descriptions
can be translated to a planning domain description that can be used by SHOP2.
The corresponding planning problem for a service composition problem is to find
a plan for the task that is the translation of a composite process. This approach
differentiates between the information-gathering services, i.e. services that have
only output but no effects, and the world-altering services, i.e. services that
have effects but no outputs. The preconditions of information-gathering services
include an external function to call to execute the service during planning and
add the information to the current state. This can be seen as a specialized
application of the ENQUIRER algorithm, when the queries are explicitly specified
as special primitive tasks that correspond to atomic service executions.
ENQUIRER overcomes the following limitations in our previous work:

e The information providing services do not need to be explicitly specified in the
initial description. The query mechanism can be used to select the appropriate
Web Service on the fly when the information is needed. Note that matching
service description does not need to be an atomic service. A composite service
description matching the request could be recursively fed to the planner, or
an entirely different planner could be used to plan for information gathering.

e The planning process does not need to wait for the information gathering to
finish and can continue planning while the service is still executing.

In this paper, we have assumed that information-providing services cannot
have world-altering effects. Otherwise, the correctness of the plans generated
cannot be guaranteed since the changes done by the information-providing ser-
vice may invalidate some of the steps planner already committed to. However,
this restriction is not necessary when the effects of the information-gathering
services do not interact with the plan being sought for. As an example, consider
a service that charges a small amount of fee for the service. If we are looking for
a plan that has nothing to do with money, then it would be safe to execute this
service and change the state of the world. In general, this safety can be estab-
lished when the original planning problem and information-gathering problem
correspond to two disconnected task networks that can be accomplished with-
out any kind of interaction. Verifying that there is no interaction between two
problems is a challenging task that we will address in our future work.

ENQUIRER is designed for information gathering at plan time; however, it
is important to do so in execution time as well. We hypothesize that it should
possible to extend our framework for this purpose as follows. ENQUIRER’s queries
are about the initial state of a planning problem, to ensure that the planner is
sound and complete. However, in principle, we should be able to issue queries
about any state during planning. This would allow us to insert queries, similar to



sensing actions, in the plan generated by the planner, leading conditional plans
to be generated by the planner based on the possible answers to such queries.
We are currently exploring this possibility and its ramifications on planning.
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