
A Hierarchical Task-Network Planner based on Symbolic Model
Checking∗

Ugur Kuter and Dana Nau
University of Maryland,

Department of Computer Science and
Institute for Systems Research,

College Park, Maryland 20742, USA

Marco Pistore
University of Trento,

Department of Information and
Communication Technology,

Via Sommarive, 14,
Povo di Trento, 38050, Italy

Paolo Traverso
ITC-IRST

Via Sommarive, 18,
Povo di Trento, 38055, Italy

Abstract

Although several approaches have been developed for
planning in nondeterministic domains, solving large
planning problems is still quite difficult. In this work,
we present a novel algorithm, called YoYo, for planning
in nondeterministic domains under the assumption of
full observability. This algorithm enables us to combine
the power of search-control strategies as in Planning
with Hierarchical Task Networks (HTNs) with tech-
niques from the Planning via Symbolic Model-Checking
(SMC). Our experimental evaluation confirms the po-
tentialities of our approach, demonstrating that it com-
bines the advantages of these paradigms.

Introduction
More and more research is addressing the problem of
planning in nondeterministic domains. In spite of the
recent promising results, the problem is still very hard
to solve in practice, even under the simplifying assump-
tion of full observability, i.e., the hypothesis that the
state of the world can be completely observed at run-
time. Indeed, in the case of nondeterministic domains,
the planning algorithm must reason about all possi-
ble different execution paths to find a plan that works
despite the nondeterminism, and the dimension of the
generated conditional plan may grow exponentially.

Among others, planning based on Symbolic Model
Checking (Cimatti et al. 2003; Rintanen 2002; Jensen
& Veloso 2000; Cimatti, Roveri, & Traverso 1998) is
one of the most promising approaches for planning un-
der conditions of nondeterminism. This technique relies
on the usage of propositional formulas for a compact
representation of sets of states, and of transformations
over such formulas for efficient exploration in the search
space. The most common implementations of plan-
ning based on symbolic model checking have been re-
alized with Binary Decision Diagrams (BDDs) (Bryant
1992), data structures that are well-suited to compactly
represent propositional formulas and to efficiently com-
pute their transformations. In different experimental

∗This work was performed when the first author was vis-
iting University of Trento.
Copyright c© 2005, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

settings, planning algorithms based on symbolic model
checking and BDDs, e.g., those implemented in MBP
(Bertoli et al. 2001a), have been shown to scale up to
rather large-sized problems (Cimatti et al. 2003).

Another promising approach to planning with non-
determinism is forward-chaining planning with Hier-
archical Task Networks (HTNs), which was originally
developed to provide efficient search-control heuristics
for classical deterministic domains (Nau et al. 2003).
(Kuter & Nau 2004) describes a way to generalize this
approach to work in the nondeterministic case, along
with a class of other forward-chaining planning tech-
niques. The ND-SHOP2 planner, a nondeterminiza-
tion of SHOP2 (Nau et al. 2003), is a forward-chaining
HTN planner developed based on this technique. Like
its predecessor, ND-SHOP2 has the ability to exploit
expressive domain-specific search-control heuristics to
guide its search for solutions. It has been demon-
strated in (Kuter & Nau 2004) that ND-SHOP2 can
be very effective in pruning the search space, and in
some experiments ND-SHOP2 outperforms MBP. Un-
fortunately, ND-SHOP2 cannot efficiently solve prob-
lems where strategies cannot cut down the search space,
since it does not have MBP’s ability to work with sym-
bolic representations of abstract collections of states.

In this paper, we have devised a formalism and de-
veloped a novel algorithm, called YoYo, that enables us
to combine the power of the HTN-based search-control
strategies with BDD-based symbolic model checking
techniques. YoYo implements an HTN-based forward-
chaining search as in ND-SHOP2, built on top of sym-
bolic model-checking primitives based on BDDs as in
MBP. This combination has required a complete re-
thinking of the ND-SHOP2 algorithm, in order to take
advantage of situations where the BDD representation
will allow it to avoid enumerating states explicitly.

We have performed an experimental comparison of
YoYo with MBP and ND-SHOP2. The results confirm
the advantage of combining search-control heuristics
with symbolic model checking: YoYo’s BDD represen-
tation enabled it to represent large problems compactly
while exploiting HTN search-control strategies to prune
large parts of the search space. YoYo easily outper-
formed both MBP and ND-SHOP2 in all cases, and it



could deal with problem sizes that neither MBP nor
ND-SHOP2 could scale up to.

The paper is organized as follows. We first ex-
plain more in detail the reasons why the integration of
forward-chaining HTN planning with symbolic model-
checking techniques should provide important advan-
tages. We do this with the help of a well-known exam-
ple, the Hunter-Prey domain (Koenig & Simmons 1995).
Then, we present our formal setting, the YoYo planning
algorithm, and its implementation using BDDs. Next,
we present an experimental analysis of our approach
and discuss our results. Finally, we conclude with our
future research directions.

Motivations

We have identified two promising approaches for plan-
ning in nondeterministic domains; namely, planning
with Symbolic Model Checking (SMC) and forward-
chaining planning with Hierarchical Task Networks
(HTNs). These two planning techniques have comple-
mentary advantages: the former can exploit very ef-
ficient search-control heuristics for pruning the search
space, and the latter uses propositional formulas for a
compact representation of sets of states, and of trans-
formations over such formulas for efficient exploration
in the search space. Thus, it is reasonable to assume
that the planning techniques developed using these two
planning approaches perform well on different kinds of
planning problems and domains. It is not hard to find
planning domains that verifies this assumption: one ex-
ample is the well-known Hunter-Prey domain, which was
first introduced in (Koenig & Simmons 1995).

In the Hunter-Prey domain, there is a hunter and a
prey in an n × n grid world. The task of the hunter
is to catch the prey in the world. The hunter has five
possible actions; namely, north, south, east, west, and
catch. The prey has also five actions: it has the same
four moves as the hunter, and an action to stay still in
the world. The hunter can catch the prey only when
the hunter and the prey are at the same location at the
same time in the world. The nondeterminism for the
hunter is introduced through the actions of the prey:
at any time, it can take any of its actions, independent
from the hunter’s move.

We have experimented with two state-of-the-art plan-
ners designed to work in nondeterministic planning do-
mains, namely ND-SHOP2 and MBP. ND-SHOP2 is
a forward-chaining HTN-planning algorithm generated
by the “nondeterminization” technique for (Kuter &
Nau 2004), and MBP, on the other hand, is a plan-
ning system designed for exploiting representations and
planning techniques based on symbolic model checking
and BDDs (Bertoli et al. 2001a).

Figure 1 shows the average running times required by
MBP and ND-SHOP2, as a function of increasing grid
sizes. These results are obtained by running the two
planners over 20 randomly-generated problems for each
grid size, and then, by averaging the results.

MBP

ND-SHOP2

0

5

10

15

20

25

30

35

40

5x5 6x6 7x7 8x8 9x9 10x10 11x11 12x12 13x13
Grid Size

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP ND-SHOP2

Figure 1: Average running times in sec.’s for MBP and
ND-SHOP2 in the Hunter-Prey Domain as a function of
the grid size, with one prey. ND-SHOP2 was not able
to solve planning problems in grids larger than 10× 10
due to memory-overflow problems.

MBP

NDSHOP2
0

500

1000

1500

2000

2500

2 3 4 5 6

Number of Preys

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP NDSHOP2

Figure 2: Average running times in sec.’s for MBP and
ND-SHOP2 in the Hunter-Prey Domain as a function
of the number of preys, with a fixed 3× 3 grid.

ND-SHOP2 ran out of memory in the large problems
of this domain because of the following: (1) the solu-
tions for the problems in this domain are very large to
store using an explicit representation, and (2) the search
space does not admit a structure that can be exploited
by search-control heuristics. Note that this domain al-
lows only for high-level strategies for the hunter such
as ”look at the prey and move towards it,” since the
hunter does not know which actions the prey will take
at a particular time. MBP, on the other hand, clearly
outperforms ND-SHOP2 in these experiments, demon-
strating the advantage of using BDD-based representa-
tions over explicit ones.

To test the effectiveness of the search-control heuris-
tics, we have created a variation of the domain in which
we may have more than one prey to catch. We made
the movements of preys dependent on each other by



assuming that a prey cannot move to a location next
to another prey in the world. Figure 2 shows the
results in this adapted domain, with the 3 × 3 grid
world: ND-SHOP2 is able to outperform MBP in this
domain. The reason for the difference in these results
compared to the previous ones is that this adapted
domain allows much more powerful strategies for the
hunter: e.g., “choose one prey and chase it while ig-
noring others; when you catch that prey, choose an-
other and chase it, and continue in this way until all
of the preys are caught.” ND-SHOP2, using this strat-
egy, is able to avoid the combinatorial explosion due
the nondeterminism in the world. On the other hand,
the BDD-based representations in MBP explode in size
since the movements of the preys are dependent to
each other, and MBP’s backward-chaining breadth-first
search techniques apparently cannot compansate for
such an explosion.

The two experiments above clearly show that plan-
ning using HTN-based search-control heuristics and
BDD-based compact representations have complemen-
tary advantages, and they demonstrate the improve-
ments in the efficiency of planning that can be achieved
when these two techniques are combined in a single
planning framework. In this paper, we present one such
framework that is built on forward-chaining HTN plan-
ning over symbolic model-checking primitives, and a
planning algorithm that works in that framework.

Background

We use the usual definitions for nondeterministic plan-
ning domains and planning problems in such domains
as in (Cimatti et al. 2003). A nondeterministic plan-
ning domain is a tuple of the form (P,S,A,R), where
P is a finite set of propositions, S ⊆ 2P is the set of all
possible states, A is the finite set of all possible actions,
and R ⊆ S×A×S is the state-transition relation. The
set of successor states generated when an action a is
applied in s is γ(s, a) = {s′ | (s, a, s′) ∈ R}; we say a is
not applicable in s, if γ(s, a) = ∅. The set of states in
which an action a ∈ A can be applied is Sa ⊆ S.

For instance, consider the Hunter-Prey domain de-
scribed in the previous section. In this domain, a state
s ∈ S describe the possible positions of the hunter and
the prey on the grid. The actions in A describe the pos-
sible moves of the hunter as well as the act of catching a
prey. The actions of the prey are modeled through the
effects of the hunter’s actions; i.e., they are described
in the transtion relation R.

We define a policy to be a set π = {(s, a) | s ∈
S and a ∈ A(s)}, where A(s) ⊆ A is the set of actions
that are applicable in s. The set of states in a policy is
Sπ = {s | (s, a) ∈ π}. An execution structure induced
by the policy π is a directed graph Σπ = (Vπ, Eπ): Vπ

is the set of the nodes of Σπ, which represent the states
that can be generated by executing actions in π. Eπ is
the set of arcs between the nodes of Σπ, which represent
possible state transitions caused by the actions in π.

A planning problem in a nondeterministic planning
domain D = (P,S,A,R) is a tuple of the form P =
(D, I, G), where I ⊆ S is a set of initial states, and
G ⊆ S is a set of goal states. In this paper, we focused
on only strong and strong-cyclic solutions for planning
problems. We summarize their definitions here; for a
detailed discussion, see (Cimatti et al. 2003):

• A strong solution is a policy that is guaranteed to
achieve the goals of the problem, despite the nonde-
terminism in the domain. That is, a policy π is a
strong solution if (1) every finite path in the execu-
tion structure Σπ reaches to a final node that satisfies
the goals, and (2) there are no infinite paths in Σπ

— i.e., Σπ is acyclic.
• A strong-cyclic solution is a policy that is guaranteed

to reach the goals under a “fairness assumption;” i.e.,
the assumption that the execution of a strong-cyclic
solution will eventually exit the loops. More specifi-
cally, in a strong-cyclic solution π, every partial path
in the execution structure Σπ can be extended to a
finite execution path that reaches to a goal.

We use the usual definitions for primitive tasks, non-
primitive tasks, task networks, and methods as in (Nau
et al. 2003), except that we restrict ourselves to ground
instances of these constructs in this paper. We as-
sume the existence of a finite set of symbols that de-
note the tasks to be performed in a planning domain
D = (P,S,A,R). Every action in A is a task symbol,
and there are some additional task symbols called non-
primitive tasks. A task network is a partially-ordered
set of tasks.

In this paper, we adopt the notion of ordered task
decomposition (Nau et al. 2003); that is, the tasks in
a task network are decomposed into subtasks in the
order they are supposed to be performed in the world.
A method describes a possible way of decomposing the
tasks in a task network into smaller and smaller tasks.
More formally, a method is an expression of the form
m = (t C w) such that t is a nonprimitive task, C
is a conjunction of literals, and w is a task network
that denotes the subtasks generated by decomposing t
by m. The set of states in which m can be applied is
Sm = {s | s ∈ S and C holds in s}.

Methods describe the search-control strategies to be
used in a domain. As an example, suppose we have a
task chase prey in the Hunter-Prey domain. A method
for this task can be defined as follows:

(:method (:task (chase_prey))
(:conditions (prey_not_caught)

(prey_to_the_north hunter))
(:subtasks (move_north hunter)(chase_prey)))

This method is applicable only in the states in which
the prey has not been caught yet, and it is currently
at a location to the north of the hunter in the world.
It specifies the following search-control strategy: if the
world is in any of the states in which the method is
applicable, then the hunter should move north first and



Procedure YoYo(D, I, G, w, M)
return YoyoAux(D, {(I, w)}, G, M, ∅, {(I, w)})

Procedure YoyoAux(D, X, G, M, π, X0)
X ← PruneSituations(X, G, π)
if there is a situation (S, w = nil) ∈ X such that S 6⊆ G
then return(failure)

if NoGoodPolicy(π, X, G, X0) then return(failure)
if X = ∅ then return(π)
select a situation (S, w) from X and remove it
F ← ComputeDecomposition(S, w, D, M)
if F = ∅ then return(failure)
X ′ ← ComputeSuccessors(F, X)
π′ ← π ∪ {(s, a) | (S′, a, w′) ∈ F and s ∈ S′}
π ← YoyoAux(D, X ′, G, M, π′, X0)
if π = failure then return(failure)
return(π)

Figure 3: YoYo, an HTN planning algorithm for gen-
erating solutions in nondeterministic domains. In the
YoyoAux procedure above, X is the current set of sit-
uations and X0 is the initial set of situations; i.e.,
X0 = {(I, w)}.

continue chasing prey from there.
Let s be a state, w be a task network, and t be a task

that has no predecessors in w – i.e., t can be decom-
posed into smaller tasks by the semantics of ordered
task decomposition since there is no task before t that
is to be achieved. Then we have two cases:

• t is a primitive task. Then, t can be directly executed
in s — i.e., t corresponds to an action in A—, if
s ∈ St. The result of that application is the set of
states γ(s, t) and the successor task network w \ {t}.

• t is a nonprimitive task. Let m be a method for t –
i.e., m = (t, C, w′). Then, m can be used to decom-
pose t in s if s ∈ Sm. The result of that decomposi-
tion is the task network (w\{t})∪w′ such that every
partial-ordering constraint in both w \ {t} and w′ is
satisfied in (w \ {t}) ∪ w′.

The YoYo Planning Algorithm

In this section, we describe YoYo, a forward-chaining
HTN planning algorithm, which is designed to com-
bine the ability of exploiting search-control heuristics
as in HTN planning with symbolic model-checking tech-
niques in a single planning framework. Figure 3 shows
the YoYo planning procedure for finding solutions for
planning problems in nondeterministic domains.

The input for the planning procedure YoYo consists of
planning problem (D, I, G) in a nondeterministic plan-
ning domain D = (P,S,A,R), an initial task network
w, and a set of HTN methods M for the domain D.
The algorithm exploits tuples of the form (S, w), called
situations, which are resolved by accomplishing the task
network w in the states of S.

Starting with the initial situation (I, w), YoYo recur-
sively generates successive sets of situations until a so-

Procedure PruneSituations(X, G, π)
X ′ ← ∅
for every situation (S, w) ∈ X
S′ ← S \ (G ∪ Sπ)
if S′ 6= ∅ then X ′ ← X ′ ∪ {(S′, w)}

return X ′

Figure 4: The PruneSituations procedure.

lution for the given planning problem is generated. At
each iteration of the planning process, YoYo first checks
the set X of current situations for cycles and goal states
by using the PruneSituations procedure shown in Fig-
ure 4. For every situation (S, w) ∈ X, PruneSituations
checks the set of states S and removes any state that
either appears already in the policy (and therefore, an
action has already been planned for it), or appears in
the set of goal states G (and therefore, no action should
be planned for it). As a result, the set of situations re-
turned by the PruneSituations procedure are truly the
situations that needs to be explored and progressed into
successor ones in the search. We call such situations as
the open situations of the current search trace.

After generating the open situations to be explored,
YoYo checks if there is an open situation (S, w) such that
there are no more tasks to be performed in w, but the
goal has not been reached yet (i.e., S 6⊆ G). In this case,
we have a failure in the search, and therefore, YoYo re-
turns failure from the current search trace. Otherwise,
YoYo uses the routine NoGoodPolicy to further check
if the current partial policy conforms to the require-
ments of the kinds of solutions it is looking for. The
formal definition of this routine depends on whether we
are looking for strong or strong-cyclic solutions, so we
leave the discussion on this routine to the next section.

If the current partial policy π does not meet with
the requirements of being a solution to the input prob-
lem, then YoYo returns from the current search trace
by failure. Otherwise, π is a solution to the underlying
planning problem if there are no open situations to be
explored further. This is true since π does not violate
the requirements of the input problem, as it passed the
NoGoodPolicy in the previous step.

Suppose there are open situations to explore for the
planner. Then YoYo selects one of them, say (S, w),
and attempts to generate an action for every state in
S. The ComputeDecomposition routine, which is basi-
cally an HTN-planning engine, is responsible for this
operation, as follows. In a situation (S, w), let t be a
task that has no predecessors in w. If t is a primitive
task then t can be executed directly in the world. Let
a be an action that corresponds to t, and a can be ap-
plied in each state in S; i.e., we have S ⊆ Sa. Note
that applying an action a in a set of states S does not
generate any new open situations: we require that S
must be a subset of Sa because, otherwise, there is at
least one state in S for which no action is applicable,
and this is a failure point in planning.



Procedure ComputeDecomposition(S, w, D, M)
F ← ∅; X ← {(S, w)}
loop
if X = ∅ then return(F )
select a tuple (S, w) ∈ X and remove it
select a task t that has no predecessors in w
if t is a primitive task then

actions← {a | a ∈ A is an action for t, and S ⊆ Sa}
if actions = ∅ then return ∅
select an action a from actions
F ← F ∪ {(S, a, w \ {t})}

else
methods← {m | m is a method in M for t

and S ∩ Sm 6= ∅}
if methods = ∅ then return ∅
select a method instance m from methods
X ← X ∪ {(S ∩ Sm, (w \ {t}) ∪ w′}
if S \ Sm 6= ∅ then X ← X ∪ {(S \ Sm, w)}

Figure 5: The ComputeDecomposition procedure.

Procedure ComputeSuccessors(F, X)
X ′ ← X ∪ {(succ(S, a), w) | (S, a, w) ∈ F}
X ′ ← {(Compose(w, X ′), w) | (S, w) ∈ X ′}
return X ′

Figure 6: The ComputeSuccessors procedure.

If t is not primitive, then we successively apply meth-
ods to the nonprimitive tasks in w until an action is
generated. Suppose we chose to apply a method m
to t. This generates two possible situations: (1) the
situation that arises from decomposing t by m in the
states S ∩ Sm in which m is applicable, and (2) the
situation that specifies the states in which m is not ap-
plicable – i.e., the situation (S \ Sm, w). In the former
case, we proceed with decomposing the subtasks of t as
specified in m. In the latter case, on the other hand,
other methods for t must be used. Note that if there
are no other methods for t to be used in situations like
(S \ Sm, w), then ComposeDecomposition returns the
empty set, forcing YoYo to correctly report a failure.

The ComputeDecomposition returns a set F of the
form {(Si, ai, wi)}k

i=0. If F = ∅ then this means that the
decomposition process has failed since there is a state
s ∈ S such that we cannot generate an action for s by
using the methods provided for the underlying planning
domain. If F 6= ∅ then the routine has generated an
action ai for each state in S – i.e., we have S =

⋃
i Si

—, and a task network wi to be accomplished after
applying that action.

Suppose ComputeDecomposition returned a non-
empty set F of tuples of the form (S′, a, w′). Then,
YoYo proceeds with computing the successor situations
to be explored using the ComputeSuccessors routine as
follows: for each tuple (S′, a, w′) ∈ F , it first generates
the set of states that arises from applying a in S′ by
using the function

succ(S′, a) = {s′′ | s′ ∈ S′ and (s′, a, s′′) ∈ R},

where R is the state-transition relation for the underly-
ing planning domain. The next situation corresponding
this action application is defined as (succ(S′, a), w′).

Once YoYo generates the all of the next situations be
explored, it composes the newly-generated situations
with respect to the task networks they specify to be
accomplished. More formally, the Compose function of
Figure 6 is defined as follows:

Compose(w,X) = {s | (S, w) ∈ X and s ∈ S}.

The composition of a set of situations is an optimization
step in the planning process. The progression of open
situations may create a set of situations in which more
than one situation may specify the same task network.
Composing such situations is not required for correct-
ness, but it has the advantage of planning with more
compact BDD-based representations.

Strong and Strong-Cyclic Planning
using YoYo

The abstract planning procedure YoYo can be used for
strong and strong-cyclic planning by using slightly dif-
ferent routines for NoGoodPolicy, which specifies the dif-
ferent conditions required for a policy to be a strong or
a strong-cyclic solution for a planning problem. In this
section, we discuss the definitions for these routines.

Strong Planning. In strong planning, a policy must
induce an execution trace to a goal state from every
state that is reachable from the initial states and there
should be no cycles in the execution structure induced
by that policy. This condition can be checked as follows:

Procedure NoGoodPolicy Strong(π, X, G, X0)
S′ ← ∅; S0 ← StatesOf(X0); S ← G ∪ StatesOf(X)
while S′ 6= S
S′ ← S
S ← S ∪ {s′ | (s′, a) ∈ π, and γ(s′, a) ⊆ S}
π ← π \ {(s, a) | s ∈ S and (s, a) ∈ π}

if S0 ⊆ S and π = ∅ then return false
return true

The above routine is built on the strong backward-
preimage function of (Cimatti et al. 2003). Starting
from the set of states in the open situations and the goal
states, it computes the set of states in the policy from
which an open state or a goal state is reachable. While
doing so, it removes the state-action pairs for those
states computed by the strong backward-preimage. At
the end of this process, if there is a state-action pair
left in the policy, then it means that the policy induces
a cycle in the execution structure, and therefore, it can
not be a strong solution for a planning problem.

NoGoodPolicy Strong uses a subroutine called State-
sOf, which returns the set of all the states that appear
in a given set of situations. More formally,

StatesOf(X) = {s | (S, w) ∈ X and s ∈ S}



Strong-Cyclic Planning. The definition for the No-
GoodPolicy check for strong-cyclic planning differs from
the strong case only in the way that the backward image
is computed. In particular, in the strong-cylic case, we
use the weak backward-preimage, instead of the strong
one. This way, we can detect only those cycles induced
by the input policy that violate the “fairness assump-
tion” of strong-cyclic planning as described before.

The NoGoodPolicy procedure for the strong-cyclic
planning is defined as follows:

Procedure NoGoodPolicy StrongCyclic(π, X, G, X0)
S′ ← ∅; S0 ← StatesOf(X0); S ← G ∪ StatesOf(X)
while S′ 6= S
S′ ← S
S ← S ∪ {s′ | (s′, a) ∈ π, and S ∩ γ(s′, a) 6= ∅}
π ← π \ {(s, a) | s ∈ S and (s, a) ∈ π}

if S0 ⊆ S and π = ∅ then return false
return true

Discussion. Note that we are using these procedures
to verify the generated policies meet the requirements
to be a solution for the underlying planning problems;
we are not using them for generating the solution poli-
cies themselves as in (Cimatti et al. 2003) since that
generation is performed by the forward-chaining HTN-
based search engine in YoYo.

BDD-based Implementation of Our
Algorithms

We have implemented a prototype of the YoYo planning
algorithm, described in the previous section. Our cur-
rent implementation is built on both the ND-SHOP2
and the MBP planning systems. It extends the
ND-SHOP2 planning system for (1) planning over sets of
states rather than a single state, and (2) implementing
the NoGoodPolicy routine as a part of its backtracking
search. It uses an interface to MBP for exploiting the
machinery of BDDs implemented in it.

In this section, we present a framework that enables
us to implement the data structures of the YoYo algo-
rithm and its helper routines using BDD-based sym-
bolic model-checking primitives. In this framework, we
use the same machinery to represent the states of a
planning domain as in (Cimatti et al. 2003). This ma-
chinery is based on using propositional formulae to com-
pactly represent sets of states and possible transitions
between those states in a planning domain.

We assume a vector s of propositions that repre-
sents the current state of the world. For example,
in the Hunter-Prey world with a 3 × 3 grid and one
prey, s is {hx = 0, . . . , hx = 3, hy = 0, . . . , hy =
3, px = 0, . . . , px = 3, py = 0, . . . , py = 3, prey caught}.
A state is an assignment of the truth-values {true,
false} to each proposition in s. We denote such an
assignment by s(s).

Based on this formulation, a set of states S corre-

sponds to the formula S(s) such that

S(s) =
∨
s∈S

s(s).

This definition of set of states is the basis of our frame-
work in this paper. It allows us to define YoYo’s forward
search mechanism over BDD-based representations of
sets of states, rather than single states.

We also assume another vector s′ of propositional
variables to represent the next states of the world, re-
spectively. Similarly, we use a vector a of action vari-
ables, which allows representing a set of actions at the
same time. A policy π, which is a set of state-action
pairs, can be represented as a formula π(s, a) in the
variables s and a. We denote a set of states S with a
formula S(s) in the state vector s as before. We repre-
sent a situation as a pair of the form (S(s), w), where w
is a task network, as described in the previous section.

The initial situation can be represented by X0 =
{(I(s), w)}, where I(s) represents the initial set of
states and w is the initial task network. Similarly, we
represent the set of goal states with the formula G(s).
We assume the existence of a state-transition relation
R, which can be represented as R(s, a, s′), where s de-
notes the current state vector, a denotes the current
action vector, and s′ denotes the next state vector.

The formulations of the inequality of sets, set dif-
ference operations, and subset relations constitute the
most basic primitives used in conditionals and termina-
tion conditions of the loops of our algorithms. These
operations can be easily encoded in terms of basic log-
ical operations on the formulas described above.

The result of applying an action a in a set of states
S can be represented as the formula:

∃s′ : S(s) ∧R(s, a, s′)[s′/s],

where [s′/s] is called the forward-shifting operation.
Note that the above formula represents the succ(S, a)
function described in the previous section.

The StatesOf primitive we use for computing the set
of all states described by a set of situations can be rep-
resented as a set-union operator over the situations we
are interested in. In particular, if we want to compute
the set of all states of X = {x1, x2, . . . , xn}, then this
operations corresponds to the formula S1(s) ∨ S2(s) ∨
. . . ∨ Sn(s), where we have xi = (Si, wi).

We are now ready to give the formulations for our
algorithms. The PruneSituations procedure is built on
set-difference and set-union operations, which can be
represented as follows: S(s) ∧ ¬(G(s) ∨ ∃a : π(s, a)).

The NoGoodPolicy procedures for strong and strong-
cyclic planning are based on two primitives for com-
puting weak and strong preimages of a particular set of
states. These preimage computations correspond to

∃a∃s′.π(s, a) ∧ S(s′) and ∃a∃s′.π(s, a) =⇒ S(s′),

respectively.
In the ComputeDecomposition routine, we check

whether a method or an action is applicable in a given



set S of states or not. This check corresponds to the
following formulas: S(s) =⇒ Sa(s) and S(s) ∧ Sm(s),
where S(s) represents the set of states in which we are
performing these checks, and Sa(s) and Sm(s) repre-
sents the set of all states in which the action a and the
method m is applicable.

Finally, we can represent the update of a policy π by
a set of state-action pairs π′ as follows: π(s, a)∨π′(s, a).

Experimental Evaluation

We have designed three sets of experiments in the
Hunter-Prey Domain, described earlier. For our experi-
ments, we assumed that the domain is fully-observable
in the sense that the hunter can always observe the loca-
tion of the prey. We also assumed that the hunter moves
first in the world, and the prey moves afterwards. The
nondeterminism for the hunter is introduced through
the movements of the prey; the prey may take any of
its five actions, independent from the hunter’s move.

In our experiments, we have investigated the perfor-
mances of YoYo, ND-SHOP2, and MBP. For all our ex-
periments, we used a HP Pavilion N5415 Laptop with
256MB memory, running Linux Fedora Core 2. We set
the time limit for the planners as 40 minutes. In our ex-
periments, each time ND-SHOP2 and MBP had a mem-
ory overflow or they could not solve a problem within
out time limit, we ran them again on another problem
of the same size. We omitted each data point on which
this happened more than five failures, but included the
data points where it happened 1 to 4 times.

Experimental Set 1. In these experiments, we
aimed to investigate how well YoYo is able to cope with
large-sized problems compared to ND-SHOP2 and MBP.
To achieve this objective, we designed experiments on
hunter-prey problems with increasing grid sizes. For
these problems, we assumed there is only one prey in
the world in order to keep the amount of nondetermin-
ism for the hunter at a minimum.

Figure 7 shows the results of the experiments for
grid sizes n = 5, 6, . . . , 10. For each value for n, we
have randomly generated 20 problems and run MBP,
ND-SHOP2, and YoYo on those problems. In this fig-
ure, we report the average running times required by
the planners on those problems.

For grids larger than n = 10, ND-SHOP2 was not able
to solve the planning problems due to memory over-
flows. This is because the sizes of the solutions in this
domain are very large, and therefore, ND-SHOP2 runs
out of memory as it tries to store them explicitly. Note
that this domin admits only high-level search strate-
gies such as ”look at the prey and move towards it.”
Although this strategy helps the planner prune a por-
tion of the search space, such pruning alone does not
compansate for the explosion in the size of the explicit
representations of the solutions for the problems.

On the other hand, both YoYo and MBP was able
to solve all of the problems in these experiments.

0 5 10 15 20 25 30

5x5

6x6

7x7

8x8

9x9

10x10

G
rid

 S
iz

e

Avg. CPU Times (sec.'s)

MBP ND-SHOP2 Yoyo

Figure 7: Average running times (in sec.’s) of YoYo,
ND-SHOP2, and MBP in the hunter-prey domain as a
function of the grid size, with one prey.

MBP

Yoyo

0
10
20
30
40
50
60
70
80

5x
5
10
x1
0
15
x1
5
20
x2
0
25
x2
5
30
x3
0
35
x3
5
40
x4
0
45
x4
5
50
x5
0

Grid Size

A
vg

. C
PU

 T
im

es
 (s

ec
.'s

)

MBP Yoyo

Figure 8: Average running times in sec.’s for YoYo and
MBP on some larger problems in the hunter-prey do-
main as a function of the grid size, with one prey.

The difference between the performances of YoYo and
ND-SHOP2 demonstrates the impact of the use of BDD-
based representations: YoYo, using the same HTN-
based heuristic as ND-SHOP2, was able to scale up as
good as MBP since it is able to exploit BDD-based rep-
resentations of the problems and their solutions.

In order to see how YoYo performs in larger prob-
lems compared to MBP, we have also experimented with
YoYo and MBP in much larger grids. Figure 8 shows the
results of these experiments in which, using the same
setup as above, we varied the size of the grids in the
planning problems as n = 5, 10, 15, . . . , 45, 50.

These results show that YoYo is able to perform bet-
ter than MBP with the increasing grid size. The run-
ning times required by both of the planners increase in
larger grids; however, this increase is much slower for
YoYo than MBP as shown in Figure 8 due to the fol-
lowing reasons: (1) YoYo is able to combine the advan-
tages of exploiting HTN-based search-control heuristics



MBP

NDSHOP2

Yoyo
0

100

200

300

400

500

2 3 4 5 6

Number of Preys

A
vg

. C
PU

 T
im

es
 (s

ec
's

)
MBP NDSHOP2 Yoyo

Figure 9: Average running times in sec.’s of ND-SHOP2,
YoYo and MBP on problems in the Hunter-Prey domain
as a function of the number of preys, with a 4× 4 grid.
MBP was not able to solve planning problems with 5
and 6 preys within 40 minutes.

with the advantages of using BDD-based representa-
tions, whereas MBP cannot exploit HTN-based strate-
gies to complement its BDD-based planning techniques;
and (2) YoYo, being a forward planner, considers only
those states that are reachable from the initial states
of the planning problems, whereas MBP’s backward-
chaining algorithms explore states that are not reach-
able from the initial states of the problems at all.

Experimental Set 2. In order to investigate the ef-
fect of combining search-control strategies and BDD-
based representations in YoYo, we used the following
variation of the Hunter-Prey domain. We assumed that
we have more than one prey in the world, and the prey
i cannot move to any location within the neighbour-
hood of prey i + 1 in the world. In such a setting, the
amount of nondeterminism for the hunter after each of
its move increases combinatorially with the number of
preys in the domain. Furthermore, the BDD-based rep-
resentations of the underlying planning domain explode
in size under these assumptions, mainly because the
movements of the preys are dependent to each other.

In this adapted domain, we used a search-control
strategy in ND-SHOP2 and YoYo that tells the planners
to chase the first prey until it is caught, then the second
prey, and so on, until all of the preys are caught. Note
that this heuristic allows for abstracting away from the
huge state space: when the hunter is chasing a prey, it
does not need to know the locations of the other preys
in the world, and therefore, it does not need to reason
and store information about those locations.

In the experiments, we varied the number of preys
from p = 2, . . . , 6 in a 4 × 4 grid world. We have
randomly generated 20 problems for each experiment
with different number of preys. Figure 9 shows the
results of these experiments with MBP, ND-SHOP2,

and YoYo. These results demonstrate the power of
combining HTN-based search-control heuristics with
BDD-based representations of states and solutions in
our planning problems: YoYo was able to outperform
both ND-SHOP2 and MBP. The running times re-
quired by MBP grow exponentially faster than those
required by YoYo with the increasing size of the preys,
since MBP cannot exploit HTN-based heuristics. Note
that ND-SHOP2 performs much better than MBP in the
presence of good search-control heuristics.

Experimental Set 3. In order to further investigate
YoYo’s performance compared to that of ND-SHOP2
and MBP, we have also performed an extended set of ex-
periments with multiple preys and with increasing grid
sizes. We varied the number of preys as p = 2, . . . , 6
and the grid sizes n = 3, 4, 5, 6. As before, we have ran-
domly generated 20 problems for each experiment with
different p and n combinations.

Table 1 reports the average running times required
by YoYo, MBP, and ND-SHOP2 in these experiments.
These results provide further proof for our conclu-
sions. Search-control heuristics help both YoYo and
ND-SHOP2 as they both outperform MBP with the in-
creasing number of the preys. However, with increasing
grid sizes, ND-SHOP2 runs into memory problems as
before due to its explicit representations of states and
solutions of the problems. YoYo, on the other hand, was
able to cope with very well both with increasing the grid
sizes and the number of preys in these problems.

Discussion on the Results. Our exprimental re-
sults demonstrate the importance of using HTN-based
search-control heuristics and BDD-based representa-
tions in a single forward-chaining framework. The
search-control heuristics exploit the structure of the un-
derlying planning problems, and therefore, they result
in a more compact and structured BDD representations
of the planning problems and domains. For example,
in the hunter-prey domain, the strategy, which tells
YoYo to focus on catching one prey while ignoring other
preys, provides a combinatorial reduction in the repre-
sentations of the solutions for the problems and the
state-transition relation for the domain. BDDs provide
even further compactness in those reduced representa-
tions. Note that the same strategy did not work for
ND-SHOP2 very well in large problems due to explicit
representations of the problems and the domain. Note
also that BDD-based representations alone did not work
very well for MBP in problems with increasing number
of the preys, since those representations are not suffi-
cient to abstract away from the irrelevant portions of
the state space. YoYo, on the other hand, was able to
cope very well with problems with both characteristics.

Related Work
Over the years, several planning techniques have
been developed for planning in nondeterministic do-



Table 1: Average running times of MBP, ND-SHOP2,
and YoYo on Hunter-Prey problems with increasing
number of preys and increasing grid size.

2 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 YoYo
0.343 0.78 0.142
0.388 3.847 0.278
1.387 18.682 0.441
3.172 76.306 0.551

3 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 YoYo
1.1 1.72 0.329

11.534 12.302 0.521
133.185 58.75 0.92
368.166 250.315 1.404

4 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 YoYo
29.554 3.256 0.448
492.334 31.591 0.759

>40 mins 176.49 1.818
>40 mins 547.911 3.295

5 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 YoYo
233.028 5.483 0.655

>40 mins 56.714 1.275
>40 mins 304.03 3.028
>40 mins memory-overflow 7.059

6 preys
Grid
3x3
4x4
5x5
6x6

MBP ND-SHOP2 YoYo
2158.339 8.346 0.781
>40 mins 73.435 1.786
>40 mins 486.112 5.221
>40 mins memory-overflow 11.826

mains. Examples include satisfiability and planning-
graph based techniques, symbolic model-checking ap-
proaches, and forward-chaining heuristic search.

The planning-graph based techniques can address
conformant planning, where the planner has nonde-
terministic actions and no observability, and a lim-
ited form of partial-observability (Smith & Weld 1998;
Weld, Anderson, & Smith 1998; Brafman & Hoff-
mann 2004). To the best of our knowledge, exam-
ples for the nondeterministic satisfiability-based plan-
ners include (Castellini, Giunchiglia, & Tacchella 2003;
Ferraris & Giunchiglia 2000) on conformant planning,
and (Rintanen 1999) on conditional planning.

The idea of using symbolic model-checking (SMC) to
do planning in nondeterministic domains was first intro-
duced in (Cimatti et al. 1997; Giunchiglia & Traverso
1999; Cimatti, Roveri, & Traverso 1998). (Cimatti
et al. 2003) gives a full formal account and an ex-
tensive experimental evaluation of planning for these
three kinds of solutions. Other approaches include
(Jensen & Veloso 2000; Jensen, Veloso, & Bowling 2001;
Rintanen 2002; Jensen, Veloso, & Bryant 2003). SMC-

planning has been extended to deal with partial observ-
ability (Bertoli et al. 2001b) and extended goals (Pi-
store & Traverso 2001; Dal Lago, Pistore, & Traverso
2002). The MBP planning system (Bertoli et al. 2001a)
is capable of handling both.

Planning based on Markov Decision Processes
(MDPs) (Boutilier, Dean, & Hanks 1999) also has ac-
tions with more than one possible outcome, but mod-
els the possible outcomes using probabilities and utility
functions, and formulates the planning problem as an
optimization problem. For problems that can be solved
either by MDPs or by model-checking-based planners,
the latter have been empirically shown to be more effi-
cient (Bonet & Geffner 2001).

(Kuter & Nau 2004) presents a generalization tech-
nique to transport the efficiency improvements that has
been achieved for forward-chaining planning in deter-
ministic domains over to nondeterministic case. Un-
der certain conditions, they showed that a “nondeter-
minized” algorithm’s time complexity is polynomially
bounded by the time complexity of the deterministic
version. ND-SHOP2 is an HTN planner developed us-
ing this technique for SHOP2 (Nau et al. 2003). YoYo,
our HTN planner we described in this work, is built on
both the ND-SHOP2 and the MBP planning systems.

In YoYo, we only focused on HTN-based heuristics
as in ND-SHOP2 and combining them with BDD-based
representations as in MBP. However, it is also possible
to develop variants of YoYo, designed to work with other
search-control techniques developed for forward plan-
ning, such as temporal-logic based ones as in (Bacchus
& Kabanza 2000; Kvarnström & Doherty 2001). In our
future work, we intend to investigate such techniques in
YoYo along with the HTN-based ones we developed in
this work, and compare the advantages/disadvantages
of using different search-control mechanisms.

Conclusions

This paper describes a new algorithm for planning in
fully observable nondeterministic domains. This algo-
rithm enables us to combine the search-control ability
of HTN planning with the state-abstraction ability of
BDD-based symbolic model-checking. Our experimen-
tal evaluation shows that the combination is a potent
one: it has large advantages in speed, memory usage,
and scalability.

In the future, we plan to extend the comparison to
other domains, to further confirm our hypothesis on
the benefits of the proposed approach. We plan also to
devise algorithms that further integrate symbolic model
checking and HTNs, by combining HTN-based forward
search with MBP’s backward-search algorithms that are
based on symbolic model-checking.

Acknowledgments

This work was supported in part by NSF grant
IIS0412812 and DARPA’s REAL initiative, and in part
by the FIRB-MIUR project RBNE0195k5, “Knowledge



Level Automated Software Engineering.” The opinions
expressed in this paper are those of authors and do not
necessarily reflect the opinions of the funders.

References
Bacchus, F., and Kabanza, F. 2000. Using temporal
logics to express search control knowledge for plan-
ning. Artificial Intelligence 116(1-2):123–191.
Bertoli, P.; Cimatti, A.; Pistore, M.; Roveri, M.; and
Traverso, P. 2001a. MBP: a model based planner.
In Proceeding of IJCAI-2001 Workshop on Planning
under Uncertainty and Incomplete Information, 93–
97.
Bertoli, P.; Cimatti, A.; Roveri, M.; and Traverso, P.
2001b. Planning in nondeterministic domains under
partial observability via symbolic model checking. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 473–478. Seattle, USA:
Morgan Kaufmann.
Bonet, B., and Geffner, H. 2001. GPT: a tool for
planning with uncertainty and partial information. In
Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 82–87.
Boutilier, C.; Dean, T. L.; and Hanks, S. 1999.
Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial In-
telligence Research 11:1–94.
Brafman, R., and Hoffmann, J. 2004. Conformant
Planning via Heuristic Forward Search: A New Ap-
proach. In ”Proceedings of the 14th International
Conference on Automated Planning and Scheduling
(ICAPS-04)”. Whistler, Canada: Morgan Kaufmann.
Bryant, R. E. 1992. Symbolic boolean manipulation
with ordered binary-decision diagrams. ACM Com-
puting Surveys 24(3):293–318.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003.
Sat-based planning in complex domains: Concurrency,
constraints and nondeterminism. Artificial Intelli-
gence 147(1–2):85–117.
Cimatti, A.; Giunchiglia, E.; Giunchiglia, F.; and
Traverso, P. 1997. Planning via Model Checking: A
Decision Procedure for AR. In Proceedings of the Eu-
ropean Conference on Planning (ECP), volume 1348 of
Lecture Notes in Artificial Intelligence (LNAI), 130–
142. Toulouse, France: Springer-Verlag.
Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso,
P. 2003. Weak, strong, and strong cyclic planning via
symbolic model checking. Artificial Intelligence 147(1-
2):35–84.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998.
Strong planning in non-deterministic domains via
model checking. In Proceedings of the International
Conference on AI Planning Systems (AIPS), 36–43.
AAAI Press.
Dal Lago, U.; Pistore, M.; and Traverso, P.
2002. Planning with a language for extended goals.

In AAAI/IAAI Proceedings, 447–454. Edmonton,
Canada: AAAI Press/The MIT Press.
Ferraris, P., and Giunchiglia, E. 2000. Planning
as satisfiability in nondeterministic domains. In
AAAI/IAAI Proceedings, 748–753. AAAI Press.
Giunchiglia, F., and Traverso, P. 1999. Planning as
model checking. In Proceedings of the European Con-
ference on Planning (ECP), 1–20.
Jensen, R., and Veloso, M. M. 2000. OBDD-based
universal planning for synchronized agents in non-
deterministic domains. Journal of Artificial Intelli-
gence Research 13:189–226.
Jensen, R.; Veloso, M. M.; and Bowling, M. H. 2001.
OBDD-based optimistic and strong cyclic adversarial
planning. In Proceedings of the European Conference
on Planning (ECP).
Jensen, R.; Veloso, M. M.; and Bryant, R. 2003.
Guided symbolic universal planning. In Proceedings
of the International Conference on Automated Plan-
ning and Scheduling (ICAPS). Trento: AAAI Press.
Koenig, S., and Simmons, R. G. 1995. Real-time
search in non-deterministic domains. In IJCAI, 1660–
1669.
Kuter, U., and Nau, D. 2004. Forward-chaining plan-
ning in nondeterministic domains. Proceedings of the
National Conference on Artificial Intelligence (AAAI)
513–518.
Kvarnström, J., and Doherty, P. 2001. TALplanner: A
temporal logic based forward chaining planner. Annals
of Mathematics and Articial Intelligence 30:119–169.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock,
W.; Wu, D.; and Yaman, F. 2003. SHOP2: An HTN
planning system. Journal of Artificial Intelligence Re-
search 20:379–404.
Pistore, M., and Traverso, P. 2001. Planning as model
checking for extended goals in non-deterministic do-
mains. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI), 479–484.
Seattle, USA: Morgan Kaufmann.
Rintanen, J. 1999. Constructing conditional plans
by a theorem-prover. Journal of Artificial Intelligence
Research 10:323–352.
Rintanen, J. 2002. Backward plan construction for
planning as search in belief space. In Proceedings of
the International Conference on AI Planning Systems
(AIPS).
Smith, D. E., and Weld, D. S. 1998. Conformant
Graphplan. In AAAI/IAAI Proceedings, 889–896.
Weld, D. S.; Anderson, C. R.; and Smith, D. E. 1998.
Extending Graphplan to handle uncertainty and sens-
ing actions. In AAAI/IAAI Proceedings, 897–904.
Menlo Park: AAAI Press.


