
Information Gathering During Planning for

Web Service Composition ?

Ugur Kuter a , Evren Sirin a , Bijan Parsia b , Dana Nau a,
James Hendler a

aUniversity of Maryland, Computer Science Department,

College Park MD 20742, USA

bUniversity of Maryland, MIND Lab, 8400 Baltimore Ave,

College Park MD 20742, USA

Abstract

Hierarchical Task-Network (HTN) based planning techniques have been applied to
the problem of composing Web Services, especially when described using the OWL-S
service ontologies. Many of the existing Web Services are either exclusively informa-
tion providing or crucially depend on information-providing services. Thus, many
interesting service compositions involve collecting information either during execu-
tion or during the composition process itself. In this paper, we focus on the latter
issue. In particular, we present ENQUIRER, an HTN-planning algorithm designed
for planning domains in which the information about the initial state of the world
may not be complete, but it is discoverable through plan-time information-gathering
queries. We have shown that ENQUIRER is sound and complete, and derived sev-
eral mathematical relationships among the amount of available information, the
likelihood of the planner finding a plan, and the quality of the plan found. We
have performed experimental tests that confirmed our theoretical results and that
demonstrated how ENQUIRER can be used for Web Service composition.

Key words: HTN Planning, Information Gathering, Web Service Composition

? This is a revised and extended version of a paper that was presented at ISWC-
2004 with the same title in November 2004.

Email addresses: ukuter@cs.umd.edu (Ugur Kuter), evren@cs.umd.edu (Evren
Sirin), bparsia@isr.umd.edu (Bijan Parsia), nau@cs.umd.edu (Dana Nau),
hendler@cs.umd.edu (James Hendler).

Preprint submitted to Elsevier Science 1 June 2005

1 Introduction

Web Services are Web accessible, loosely coupled chunks of functionality with
an interface described in a machine readable format. Web Services are de-
signed to be composed, that is, combined in workflows of varying complexity
to provide functionality that none of the component services could provide
alone. AI planning techniques can be used to automate Web Service composi-
tion by representing services as actions, and treating service composition as a
planning problem. On this model, a service composition is a ground sequence
of service invocations that accomplishes a goal or task.

OWL-S [1] provides a set of ontologies to describe Web Services in a more ex-
pressive way than allowed by the Web Service Description Language (WSDL).
In OWL-S, services can be described as complex or atomic processes with pre-
conditions and effects. This view enables us to translate the process-model
constructs directly to HTN methods and operators [2]. Thus, it is possible to
use HTN planners to plan for composing Web Services that are described in
OWL-S.

Using AI planning techniques for Web Services composition introduces some
challenges. In particular, traditional planning systems assume that the plan-
ner begins with complete information about the world. However, in service
composition problems, most of the information (if it is available at all) must
be acquired from Web Services, which may work by exposing databases, or
may require prior use of such information-providing services. For example,
consider the scenario described in the Scientific American article about the
Semantic Web [3]. This scenario involves two people who are trying to take
their mother to a physician for a series of treatments and follow-up meetings.
The planning problem in this scenario is to come up with a sequence of ap-
pointments that will fit in to everyone’s schedules, and at the same time, to
satisfy everybody’s preferences. In this setting, the planner needs to determine
an available appointment time first, or to learn the locations of the treatment
centers. In many cases, however, it is not feasible or practical to execute all
the information-providing services up front to form a complete initial state of
the world. In such cases, it makes sense to gather the required information
during planning.

In this paper, we describe ENQUIRER, an HTN-planning algorithm that can
solve Web Service composition problems that require gathering information
during the composition process. ENQUIRER is based on the SHOP2 planning
system [4], and designed for planning domains in which the information about
the initial world state may not be complete. In such cases, ENQUIRER issues
queries to obtain the necessary information, it postpones all decisions related
to that information until a response comes in, and it continues examining

2

alternative branches of the search space. By gathering extra information at
plan time, the planner is able to explore many more branches in the search
space than the initial state ordinarily permits. Since external queries often
dominate planning time, and, being distributed, are strongly parallelizable,
ENQUIRER’s non-blocking strategy is sometimes able to dramatically improve
the time to find a plan. We investigate two different extensions to this base
strategy: (1) Continue planning in a search branch as soon as one answer
is available from any information source and use the information from other
sources only when a plan (or a plan of sufficient quality) cannot be found. (2)
Handle conflicting information coming from different sources when there is an
explicit ranking criteria that tells how much an information source should be
trusted.

We also provide the sufficient conditions to ensure the soundness and com-
pleteness of ENQUIRER, derive a recurrence relation for the probability of
ENQUIRER finding a plan, and prove theoretical results that give mathemat-
ical relationships among the amount of information available to ENQUIRER
and the probability of finding a plan. These relationships are confirmed by our
experimental evaluations. We describe how the generic ENQUIRER algorithm
can be used to solve the problem of composing Web Services, and test the
efficiency of the algorithm on two real-world problems.

2 Motivations

HTN-planning algorithms have proven promising for Web Service composition.
Many service-oriented objectives can be naturally described with a hierarchi-
cal structure. HTN-style domains fit in well with the loosely-coupled nature
of Web Services: different decompositions of a task are independent so the
designer of a method does not have to have close knowledge of how the fur-
ther decompositions will go. Hierarchical modeling is the core of the OWL-S
[1] process model to the point where the OWL-S process model constructs can
be directly mapped to HTN methods and operators. In our previous work [2],
we have shown how such a translation can be done for SHOP2 [4]. In this
work, we have kept the basic SHOP2-language mapping intact, and focused
on extending the way SHOP2 deals with plan-time information gathering. 1

We call the extended algorithm ENQUIRER.

We have identified three key features of service-oriented planning:

1 In this paper, we focus on information gathering as plan-time execution of Web
Services. Nothing in this work, however, is specific to information-providing Web
Services, and could be immediately adapted to any oracular query-answering mech-
anism, e.g., a user could interactively supply answers to the system.

3

• The planner’s initial information about the world is incomplete. When the
size and nature of Web is considered, we cannot assume the planner will have
gathered all the information needed to find a plan. As the set of operators
and methods grows very large (i.e., as we start using large repositories of
heterogeneous services) it is likely that trying to complete the initial state
will be wasteful at best and practically impossible in the common case.
• The planning system should gather information during planning. While not

all the information relevant to a problem may have already been gathered,
it will often be the case that it is accessible to the system. The relevance of
possible information can be determined by the possible plans the planner is
considering, so it makes sense to gather that information while planning.
• Web Services may not return needed information quickly, or at all. Exe-

cuting Web Services to get the information will typically take longer time
than the planner would spend to generate plans. In some cases, it will not
be known a priori which Web Service gives the necessary information and
it will be required to search a Web Service repository to find such capable
services. It may not be possible at all to find those services. Furthermore, in
some cases the found service cannot be executed because the service requires
some password that the user cannot provide or the service is inaccessible
due to some network failure. The system should not cease planning while
waiting for answers to its queries, but keep planning to look for other plans
that do not depend on answering those specific queries.

ENQUIRER is designed to address all of the issues above. In the subsequent
sections, we first give a brief background on HTN Planning and the SHOP2
planning system, and then we present the ENQUIRER planning algorithm, as
well as our theoretical and experimental evaluations of it.

3 Background: HTN Planning and SHOP2

The purpose of an HTN planner is to produce a sequence of actions that
perform some activity or task. The description of a planning domain includes
a set of planning operators and methods, each of which is a prescription for
how to decompose a task into its subtasks (smaller tasks). The description of a
planning problem contains an initial state as in classical planning. Instead of a
goal formula, however, there is a partially-ordered set of tasks to accomplish.

Planning proceeds by decomposing tasks recursively into smaller and smaller
subtasks, until primitive tasks, which can be performed directly using the plan-
ning operators, are reached. For nonprimitive each task, the planner chooses
an applicable method, instantiates it to decompose the task into subtasks, and
then chooses and instantiates other methods to decompose the subtasks even
further. If the constraints on the subtasks or the interactions among them pre-

4

vent the plan from being feasible, the planning system backtracks and tries
other methods.

SHOP2 is an HTN planner that generates actions in the order they will be ex-
ecuted in the world. Its backtracking search considers the methods applicable
to the same task in the order they are specified in the knowledge base given to
the planner. In SHOP2, for each primitive task, the description of a planning
domain must include only one planning operator. For nonprimitive tasks, on
the other hand, there can be one or more methods in a domain description.
As an example, consider a Delivery Domain, in which the task is to deliver a
box from one location to another. Figure 1(a) shows two SHOP2 methods for
this task: delivering by car, and delivering by truck. Delivering by car involves
the subtasks of loading the box to the car, driving the car to the destination
location, and unloading the box at the destination. Note that each method’s
preconditions are used to determine whether or not the method is applicable:
thus in Figure 1(a), the deliver by car method is only applicable if the delivery
is to be a fast one, and the deliver by truck method is only applicable if it can
be a slow one.

Now, consider the task of delivering a box from the University of Maryland to
MIT and suppose we do not care about a fast delivery. Then, the deliver by
car method is not applicable, and we choose the deliver by truck method. As
shown in Figure 1(b), this decomposes the task into the following subtasks:
(1) reserve a truck from the delivery center at Laurel, Maryland to the cen-
ter at Cambridge, Massachusetts, (2) deliver the box from the University of
Maryland to Laurel, (3) drive the truck from Laurel to Cambridge, and (4)
deliver the box from Cambridge to MIT. The tasks for reserving a truck and
for driving the truck are primitive and they are accomplished by the plan-
ning operators specified for them. For the two delivery subtasks produced by
this decomposition, we must again consider our delivery methods for further
decomposing them until we do not have any other task to decompose.

As any traditional HTN planner, SHOP2 evaluates the preconditions of the
operators and methods with respect to the world state it maintains locally
during planning and it assumes that it has all the required information in
its local state in order to evaluate these preconditions. For example, in our
delivery example, it is assumed that the planner knows all the routes for
traveling by car between the initial and final locations so that it can determine
which route to take. Certainly, this information may not be available before the
planning process starts. Considering that the amount of information available
on the Web is huge, a planner should gather the information as needed by the
planning process. Since gathering information may take some considerable
amount of time, it would be wise to continue planning while the queries are
being processed. For example, the planner can continue planning with the
truck delivery method until the answer to the query about the possible routes

5

deliver(box,UMD,MIT)

reserveTruck(Laurel, Cambridge)

deliver(box, UMD, Laurel)

driveTruck(Laurel, Cambridge)

deliver(box,Cambridge, MIT)

loadCar(box, UMD)

driveCar(UMD, Laurel)

unloadCar(box, Laurel)

loadCar(box, Cambridge)

driveCar(Cambridge, MIT)

unloadCar(box, MIT)

deliver(B,X,Y)
Deliver by truck

Quick delivery

Slow delivery

reserveTruck(W,Z)

Deliver by car

driveTruck(W,Z)

deliver(B,X,W)

loadCar(B,X) driveCar(X,Y)

deliver(B,Z,Y)

Methods

Preconditions

Subtasks

deliver(box,UMD,MIT)

Deliver by car Deliver by truck Deliver by train

The order of methods in a SHOP2

domain description specifies a user

preference

(a)

(b) (c)

unloadCar(B,Y)

Fig. 1. Delivery planning example.

has been received.

As described above, SHOP2 considers the methods applicable to a nonprim-
itive task in the order they are specified in the knowledge base given to the
planner. This feature of the planner allows for specifying user preferences
among such methods, and therefore, among the solutions that can be gener-
ated using those methods. For example, in our delivery example, suppose we
have the alternative of delivering the box by train, in addition to the delivery
by car and deliver by truck methods. Furthermore, suppose delivering the box
by car is the fastest delivery method among the three available alternatives,
and delivering by train is the slowest one. Then, we can specify a user prefer-
ence for fastest possible delivery method by ordering these three methods in
SHOP2’s knowledge base, as illustrated in Figure 1(c).

4 Definitions and Notation

We use the same definitions for variables, constants (i.e., objects), logical
atoms, states, task symbols, tasks, task networks, actions, operators, methods,
and plans as in SHOP2. A state is complete if it contains all of the atoms
that are true in the world. Otherwise, it is incomplete. A plan is a sequence of
actions (i.e., ground operator instances). As in SHOP2, we denote a plan as an
ordered set {o1, o2, . . . , ok}, where each oi is a ground instance of an operator.

6

A query is an expression of the form

Q(~x)← C(~y),

where Q is the unique label of the query, C is a conjunction of (possibly
unground) literals, ~y is the set of variables appearing in C and ~x is the set of
variables whose values are being sought. In this paper, we require that ~x = ~y.
If ~x = ~y = ∅ then Q is said to be ground.

The intent of a query is to gather information during planning about the state
of the world before planning started (i.e., about the initial state). For example,

Example 1 (Query) Suppose we want to find the hospitals lo-
cated in Maryland that provides eye treatment services. Also sup-
pose we have types City, State, Hospital and Treatment along
with the relations hasCity(State, City), locatedIn(Hospital, City) and
provides(Hospital, T reatment). Then the corresponding query can be written
as

Q(H, C)←Hospital(H) ∧ locatedIn(H, C) ∧ City(C) ∧

hasCity(maryland, C) ∧ provides(H, eye treatment),

where maryland and eye treatment are objects, and H and C are variables.

The answer for a query Q(~x) ← C(~y) in a state S is a set of variable substi-
tutions A = {σ1, σ2, . . . , σn}, where σk specifies a value for each variable in
~x such that all the positive atoms in σk(C) are in state S and none of the
negative atoms in σk(C) are in S.

An information source is defined to be any external source that can pro-
vide information during planning. The specification of an information source
describes the contents of the information provided. More formally, the speci-
fication of an information source is

I(~xi; ~xo)→ D(~y),

where I is the unique label of the source, D, called the body of the source
description, is a conjunction of logical atoms, ~y is the set of variables appearing
in D, ~xi is a set of input variables, and ~xo is a set of output variables. An
information source is fully specified if we have ~xi ∪ ~xo = ~y. In this paper, we
require that the information-source specifications to be fully specified.

Example 2 (Information Source) Suppose that there is an information
source that returns all the cities located in a state for any given state. The
specification of this source would be:

I(S; C)→ State(S) ∧ hasCity(S, C) ∧ City(C).

7

The reason we require that information sources be fully specified is that the
answer for a query is a variable substitution that defines a value for each
variable in the head of that query. That variable substitution is applied to
the body of the source description and the ground predicates can be inserted
in the state of the world. If the description of an information source contains
existentially-quantified variables (i.e., variables that do not appear in the list of
input or output variables) then we need to introduce new objects represented
by skolem constants, which would make the reasoning process more complex.

An information source I can be queried by supplying a variable substitution
Θ that specifies a value for each of the input variables in ~xi. The result of the
execution of the information source is a set of variable substitutions R(I, Θ) =
{σ1, σ2, . . . , σn} where each σk is a variable substitution that specifies a value
for each variable in ~xo such that σk(Θ(D)) is true in the world. This means
that the information returned is sound but does not need to be complete —
i.e., R(I, Θ) may not contain all of the possible substitutions that make Θ(D)
true.

Let X be a set of information sources. Then, we define δ(X) as the total
amount of information that can be gathered from these sources. More formally,

δ(X) =
⋃

I∈X,σ∈R(I,Θ)

σ(Θ(D)),

for every variable substitution Θ that specifies a value for every input variable
in I.

A complete-information planning problem is a tuple P C = (S, T, D), where
S is a complete initial state, T is a task network, and D is an HTN-domain
description that consists of a set of planning operators O and methods M ,
respectively. A solution for the planning problem P C is a sequence of actions
(i.e., ground operator instances) that, when executed in the initial state, ac-
complishes the goal task network T .

A search tree T for a complete-information planning problem is defined recur-
sively as follows:

• The root node is a pair (T, π) where T is the goal task network to be
accomplished and π is the empty plan.
• Let (T ′, π′) be a node in T , and let t be a task that has no predecessors in

T ′. If t is primitive then let o be the planning operator for t. Then, the node
(T ′′, π′′) is the only child of (T ′, π′) where T ′′ is the task network generated
by removing t from T ′ and π′′ = append(π′, o). We also label the arc from
(T ′, π′) to (T ′′, π′′) with o.

If t is not primitive then let m be a method instance applicable to t.
Then, the node (T ′′, π′) is a child of (T ′, π′) where T ′′ is the task network

8

(T,nil)
m1 m2

(T1,nil) (T2,nil)
o11

(T11,{o11})
m21 m22

m111 m112

m23

o1121

(T1121,{o11,o1121})

(T112,{o11})

…
…

…

(nil,{o11,o1121,…,})

PLAN FOUND!

(Tk,{o11,o1121,…,})

FAIL: there is no operator or
method to decompose the
tasks in Tk

Fig. 2. The search tree for a complete-information planning problem.

generated from removing t from T ′ and adding the subtasks specified by
m, preserving the ordering constraints among those tasks. We label the arc
from (T ′, π′) to (T ′′, π′) with m.

Figure 2 shows an example of a search tree for a complete-information planning
problem P C. Note that the state information regarding a node n = (T, π) in
the search T are implicitly specified by the initial state S and the current
partial plan π; that is, the state at each node in a search tree can be generated
by simulating the effects of the actions in π in the initial state S. A node n

in T is called a terminal node if n does not have any children in T . A search
trace in T of a complete-information planning problem P C is the sequence
of method and operator instances that label the arcs along a branch of T .
A search trace corresponds to a solution for P C if the terminal node of that
trace is of the form (nil, π); i.e., if it reaches to the empty task network which
marks the successful termination of the planning process. Note that π is equal
to the ground instances of the operators specified in the sequence of labels of
such a search trace, which constitutes a solution for P C .

An incomplete-information planning problem is a tuple P I = (J, X, T, D),
where J is a set of ground atoms that are initially known, X is a set of infor-
mation sources, T is a task network, and D is an HTN-domain description.
The search tree for an incomplete-information problem is defined similarly to
that of a complete-information problem, except that, in this case, the infor-
mation available about the world in a node n = (T, π) of the search tree is
defined by T , π and the total information available about the initial state

9

J ∪ δ(X) where J denotes an incomplete state of the world, and X is the set
of available information sources.

An incomplete-information planning problem P I = (J, X, T, D) is consistent
with a complete-information planning problem P C = (S, T, D) if and only if
J ∪ δ(X) ⊆ S. We are assuming that the results returned from information
sources will not change during the course of planning. In other words, for an
information source I, R(I, σ) is fixed and does not change during planning,
and therefore, δ(X) is fixed — although, we may not know δ(X) a priori.

Note that the above restriction is the same information persistence assumption
that is first introduced in [5]. However, we do not require that the information
gathered from external sources cannot be changed by the planner itself as in
[5]. This assumption specifies a class of service-composition problems in which
the information collected from the Web Services are static during the planning
process. Some examples of such service-composition problems is discussed in
Section 9, where we present the experimental evaluation of our approach.

We define an information-providing Web Service as a service that returns in-
formation only about the initial state, and does not have any world-altering
effects. It is straightforward to create an information source specification for
an information-providing Web Service provided that the inputs, outputs, pre-
conditions and effects of the service is known.

Example 3 (Information-providing OWL-S Service) The OWL-S de-
scription (in OWL-S abstract syntax) that results in the information source
specification of Example 2 is as follows:

define atomic process FindCities(

inputs: (s - State),

outputs: (c - City),

precondition: (),

result: (hasCity(s, c)))

We define a service-composition problem to be a tuple of the form P W =
(J, W, C, K), where J is a (possibly incomplete) initial state, W is a set of
information-providing Web Services that are available during the planning
process, C is a (possibly) composite OWL-S process, and K is a collection
of OWL-S process models such that we have C ∈ K. A solution for P W is a
service composition, which is a sequence of atomic OWL-S processes such that,
when executed, achieves the functionality desired by the process C.

Let P W = (J, W, C, K) be a service-composition problem. Then, we say that
W is equivalent to an incomplete-information problem P I = (J, X, T, D),
where T is the SHOP2 translation for the OWL-S process C, D =
TRANSLATE-PROCESS-MODEL(K) is the HTN-domain description gener-

10

ated by the translation algorithm of [6], and X is the information source
specifications for services in W generated as explained above – i.e., we
have δ(X) = δ(W). Note that, we do not need the TRANSLATE-ATOMIC-
PROCESS-OUTPUT function anymore because there is no need to encode
where and when the information-providing services will be called. ENQUIRER
uses the information source specifications to decide which service may provide
relevant information during planning.

5 The ENQUIRER Planning Algorithm

ENQUIRER starts with an incomplete initial world state, gathers relevant in-
formation during planning, and continues to explore alternative possible plans
while waiting for information to come in. The algorithm is shown in Fig.3. The
input is an incomplete-information planning problem (J, X, T, D) as defined
above. With this input, ENQUIRER first initializes the Query Manager by us-
ing the routine QueryManager::Initialize. We discuss the details of the Query
Manager in the next section, so we defer the definition of this routine until
then. Secondly, ENQUIRER initializes its OPEN list to (T, π) where T is the
goal task list, and π is the empty plan. Intuitively, the OPEN list holds the
information about the partial plans ENQUIRER has generated during planning
and ENQUIRER may choose to explore any of these possibilities as explained
next.

At each iteration of the planning process, we first check if the OPEN list is
empty. If so, then we report failure since this means that every trace in the
search tree for the input problem is exhausted without success. Otherwise, we
select a tuple (T, π) from OPEN . Note that this selection is arbitrary in the
pseudocode of Figure 3. However, in the implementation of the planner, we can
exploit different selection mechanisms, which determines the way ENQUIRER
performs its search under the conditions of incomplete information. For exam-
ple, always selecting the first tuple in OPEN implements a depth-first search
strategy for ENQUIRER. We discuss the importance of different such imple-
mentations of search strategies in ENQUIRER in Section 9, where we discuss
our implementation of the planner and experiments.

After selecting a tuple (T, π) from OPEN , the next step is to check if the task
network T is empty or not. If so, we have π as our plan since all of the goal
tasks have been accomplished successfully. Otherwise, we nondeterministically
choose a task t in T that has no predecessors in T . If t is primitive then we
decompose it using the operators in O. Otherwise, the methods in M must be
used.

Suppose t is primitive. Then, we first find the operator o that matches to the

11

procedure ENQUIRER(J,X, T,D = (O,M))
π ← ∅; OPEN ← {(T, π)}
QueryManager::Initialize(J,X, T, π)
loop
if OPEN = ∅ then return(failure)
select a tuple (T, π) from OPEN and remove it
if T = ∅ then return(π)
nondeterministically choose a task t ∈ T that has no predecessors
if t is a primitive task then

let o be an operator for t

if there is no such operator in D for t then return(failure)
let C be the preconditions of o

answer ← QueryManager :: IssueQuery(C, T, π)
OPEN ← ProcessQueryResponse(t, o, T, π,OPEN, answer)

else
let m be a method for t

if there is no such method in D for t then return(failure)
let C be the preconditions of m

answer ← QueryManager :: IssueQuery(C, T, π)
OPEN ← ProcessQueryResponse(t,m, T, π,OPEN, answer)

Fig. 3. The ENQUIRER algorithm.

task t. If there is no such operator in O, then this is a backtracking point in the
search; that is, ENQUIRER does not report failure for the input planning prob-
lem, but it backtracks and tries other tuples from the OPEN list. Otherwise,
ENQUIRER calls the Query Manager to gather information on the precondi-
tions C of o. It does so by invoking the procedure QueryManager::IssueQuery
as shown in Figure 3. If t is not primitive, then ENQUIRER finds a method m

for the task t, and invokes QueryManager::IssueQuery to gather information on
the preconditions C of m.

The QueryManager::IssueQuery procedure returns one of the following three
types of answers for a query request. First, it may return the empty set,
which means that the precondition C cannot be satisfied in the world, given
the incomplete information about the initial state of the world and the set
of available information sources that can be queried. Secondly, QueryMan-
ager::IssueQuery may return wait, which means that the Query Manager have
invoked one or more services to obtain information about C, but those ser-
vices did not complete their executions. In this case, ENQUIRER proceeds
with planning for other solutions by considering alternative search traces in
its search space. Finally, the procedure may return a set of variable bind-
ings {σi}

k
i=1 such that each variable binding σi can be used to ground the

particular method or the operator and generate the successor search node
in ENQUIRER. The ProcessQueryResponse is responsible for checking the an-
swers from the Query Manager, process them, and update the OPEN list of

12

procedure ProcessQueryResponse(t, x, T, π,OPEN, answer)
if answer = ∅ then return(∅)
if answer = wait then return(OPEN ∪ (T, π))
// Otherwise, answer is a set of variable substitutions
choose a substitution σ ∈ answer

if x is an operator then
let T ′ be the task network generated by removing t from T ′

QueryManager::UpdateInternalState(π, σ(x))
insert the tuple (T ′, append(π, σ(x))) into the OPEN list

else
let T ′ be the task network generated by removing t from T ′

and adding the subtasks specified by σ(x)
insert the tuple (T ′, π) into the OPEN list

return OPEN

Fig. 4. The ProcessQueryResponse procedure.

the planner accordingly.

The ProcessQueryResponse procedure takes as input a tuple of the form
(t, x, T, π, OPEN, answer), where t is the current task selected by ENQUIRER
for decomposition, x is either an operator or a method depending on whether
t is primitive or not, T is the current task network, π is the current partial
plan, OPEN is the current open list, and answer is the answer received from
the Query Manager. It first checks if the answer marks a failure in planning.
If so, then it returns ∅. This way, the OPEN list is set to be the empty list,
and ENQUIRER returns failure immediately in the next iteration.

If the answer is not the empty set, then the next step is to check whether
it is wait. This case occurs when the Query Manager starts to execute some
Web Services to generate the answer for the current query, but those services
has not finished their execution. Therefore, the planner must defer its decision
about the information being queried, and possibly try other alternative search
traces to find a solution. To do this, ProcessQueryResponse re-inserts the tuple
(T, π) into OPEN list and returns the updated OPEN list. Note that the
way the tuple (T, π) is re-inserted in to the OPEN list depends on the way
ENQUIRER selects tuples from this list during planning. As described earlier,
ENQUIRER can exploit different selection mechanisma to implement different
search methodologies. For example, if ENQUIRER always selects the first tuple
in the OPEN , implementing a depth-first search, and if ProcessQueryResponse
re-inserts tuples in the front of OPEN , then this will yield to implementing
a busy waiting scheme, and in effect, to blocking the search until the Query
Manager returns some answers for the current query. On the other hand, if we
re-insert the current tuple (T, π) at the end of the OPEN list, this will enable
ENQUIRER to search alternative branches in the search space, and come back
to the branch specified by (T, π) only when it cannot find any solutions in the

13

alternative search branches.

If answer is not wait, then it is a set of variable substitutions for the variables
that appear in the head of the query that was issued. In this case, Process-
QueryResponse nondeterministically chooses one of such substitutions σ, and
applies it to the operator or the method specified by x in its input. Then,
it generates the successor task network to be accomplished as follows. If t is
primitive and x is an operator then ProcessQueryResponse first generates the
ground operator instance, i.e., the action, σ(x). Then, it removes t from T ,
sends the changes that needs to be made in the state of the world due to
the effects of this action the Query Manager, and updates the current partial
policy with the action σ(x). If t is not primitive and x is method for it, then
ProcessQueryResponse first generates the ground method instance, σ(x). Then,
it updates the current task network with the subtasks in σ(x). Finally, in ei-
ther of the cases above, ProcessQueryResponse updates the OPEN list with
the newly-generated task network and policy, and returns it to ENQUIRER.

6 The Query Manager

The Query Manager is responsible for processing and directing ENQUIRER’s
queries about the world to the available Web Services, collecting the informa-
tion gathered from them, processing this information for consistency and cor-
rectness of the planning process, and returning the information to ENQUIRER
to let the planner generate solutions.

The Query Manager maintains five different kinds of information during plan-
ning: (1) an internal-state table QM InternalState, (2) a set of information
sources QM AvailableServices, (3) a set of queries QM PendingQueries for
which one or more services have been invoked, but no answers have been re-
ceived yet, (4) a set of queries QM AnsweredQueries for which one or more
services have returned the answers for them, and a set QM QueriedNodes of
pairs of the form (T, π) where T is a task network and π is a partial plan.
Intuitively, the internal-state table QM InternalState specifies a (possibly
incomplete) state of the world for each node in the search tree of ENQUIRER.
Each such state in this table is associated with the partial plan specified in the
corresponding node of ENQUIRER’s search tree. The set QM QueriedNodes

corresponds to the search nodes that ENQUIRER keeps track of in its OPEN

list. If a node (T, π) is in QM QueriedNodes then this means that ENQUIRER
requested information at least once while exploring that node during planning.

The set of information sources QM AvailableServices is the set of Web Ser-
vices given in the description of the current incomplete-information problem
being solved. The Query Manager initializes QM AvailableServices at the

14

beginning of the planning process, and uses it every time a query needs to
be directed to a Web Service. More specifically, when a query Q is issued by
the planner, the query manager attempts to answer Q using the information
in its internal state QM InternalState(π) and the information available from
QM AvailableServices.

In this paper, we only consider the information sources I(~xi, ~xo)→ D(~y) where
~xi ∪ ~xo = ~y. This means that, for any substitution σo ∈ R(I, σi), applying the
input and output bindings σo(σi(D)) yields a set of ground atoms.

Using the routine QueryManager::IssueQuery, suppose ENQUIRER requests in-
formation about a conjunction C. Recall that C denotes the conjunction
of (possibly unground) atoms that describes the preconditions of an HTN
method or an operator. When invoked, the QueryManager::IssueQuery first
checks whether the answers for any of the previously-issued queries have been
received from the Web Services. More specifically, the procedure first checks if
there is a previously-issued query of the form Q(~x)← C(~x) such that the body
of the query Q specifies the condition C. For each such query Q whose answer
has been received, it removes Q from the set of previously-issued queries, in-
serts it in the set of answered queries, and updates the internal states of the
Query Manager with the ground set of atoms generated by applying the vari-
able substitutions to the specification of the service that returned the answer
for Q.

An explanation about processing the incoming answers of the previously-
issued queries is in order. As we described before, ENQUIRER issues queries
for collecting information about the initial state of the world. Thus, when an
answer is received for a query, we update each state in QM InternalState

such that the partial policy π′ that is associated with that internal state does
not contain any actions that deletes the information collected from the in-
formation source. This ensures the correctness of the Query Manager, and in
turn, the ENQUIRER algorithm.

After processing the answers received for the pending queries, the QueryMan-
ager::IssueQuery routine performs the following checks on the atoms in C, the
set of possibly unground atoms being queried. First, QueryManager::IssueQuery
checks if C can be satisfied in the current incomplete internal state J of
the planner — i.e., it checks the state generated by executing the actions
in the current plan π in the initial state of the world. Note that QueryMan-
ager::IssueQuery performs this check only if it did not attempt to satisfy C in
that current state before. If QueryManager::IssueQuery returned information
about C from the state J before and ENQUIRER is still requesting informa-
tion about C in this invocation of QueryManager::IssueQuery then this means
that the information obtained from J did not help the planner to generate
a solution. Therefore, more information from the relevant services must be

15

gathered.

If the internal state for the current (T, π) pair does not provide informa-
tion about C, then QueryManager::IssueQuery first checks whether there are
pending queries for C – i.e., QueryManager::IssueQuery checks if there are any
queries that has not been answered yet. If there are any, then the pending
queries will provide a set of bindings for the variables in C so the Query Man-
ager need not issue any queries about C. So, the Query Manager returns wait,
forcing ENQUIRER to look for other plans along other search traces until the
answers for those pending queries are received.

If there are no pending queries for C then the Query Manager checks whether
there are already-answered queries for it. If there are any, since their answers
have already been incorporated into every state in the QM InternalState, all
the information about C is in QM InternalState. In this case, we first check
if there is a substitution σ such that σ(C) is ground and σ(C) can be satisfied
in the current state of the planner — i.e., if they can be satisfied in the state
generated by executing the actions in the current plan π in the initial state of
the world. If they cannot be satisfied in the current state of the world, then
this means that one of more atoms in σ(C) have been deleted by the actions π.
In this case, C cannot be satisfied in the world, so the Query Manager return
∅ marking failure (i.e., a backtracking point) for ENQUIRER.

If there are no pending and no already-answered queries about C, then this
means that C consists of atoms that the Query Manager never encountered be-
fore. In this case, the Query Manager creates a query for C, finds and executes
the services that are relevant to this query, and returns wait to ENQUIRER
as before. In this paper, we do not address the problem of discovering the in-
formation sources relevant to a particular query. As we discuss in our related
work, there are various techniques developed for this problem, and they can be
incorporated in our framework easily. In our implementation of the ENQUIRER
algorithm and the Query Manager, however, we assumed that if the body of a
query can be satisfied in the body of an information source, then we matched
the query to that information source. Note that this is correct since we require
queries be always ground and information sources be always fully-specified, as
described above.

7 Formal Properties of ENQUIRER

In this section, we discuss the formal properties of the ENQUIRER planning
algorithm. The proofs of our theorems are given in the Appendix A.

We first establish the correctness of our algorithm. To do so, we will use the

16

procedure QueryManager::Initialize(J,X, T, π)
QM AvailableServices← X

QM InternalState(π)← J

QM QueriedNodes← ∅
QM PendingQueries← ∅
QM AnsweredQueries← ∅

end-procedure

procedure QueryManager::IssueQuery(C, T, π)
for every query Q(~x)← C(~x) ∈ QM PendingQueries do
if an answer has been received for Q from a service I(~x)→ D(~x) then

remove Q from QM PendingQueries

insert Q into QM AnsweredQueries

for every variable substitution σ ∈ answer

insert σ(Y) into each entry QM InternalState(π ′) such that π′ does not
contain any action that deletes a ground atom in σ(D)

unless (T, π) ∈ QM QueriedNodes then
J ← QM InternalState(π)
A← {σ | σ is a substitution such that σ(C) ⊆ J}
QM QueriedNodes← QM QueriedNodes ∪ {(T, π)}
if A 6= ∅ then return A

if there is a pending query in QM PendingQueries for C then return wait

else if there are queries for C in QM AnsweredQueries then
J ← QM InternalState(π)
A← {σ | σ is a substitution such that σ(C) ⊆ J}
return A

else
create a query Q(~x)← C(~x)
find all services from QM AvailableServices that can answer Q and execute them
return wait

end-procedure

procedure QueryManager::UpdateInternalState(π, action)
S ← QM InternalState(π)
let S′ be the state that arises from applying action in S

QM InternalState(π)← S ′

end-procedure

Fig. 5. The Query Manager.

following lemma:

Lemma 4 Let P I = (J, X, T, D) be an incomplete-information planning prob-
lem, and let P C = (S, T, D) be a complete-information planning problems that
is consistent with P I. Then, every search trace of the search tree for P I is also
a search trace in the search tree for P C .

The following theorem establishes the correctness of our approach.

17

Theorem 5 Let P W = (J, W, C, K) be a service-composition problem, and
P I = (J, X, T, D) be an incomplete-information planning problem that is
equivalent to P W . ENQUIRER returns a plan π for P I if and only if π is
a solution composition for P W .

Let χ(P I) be the set of all solutions returned by any of the non-deterministic
traces of ENQUIRER on an incomplete-information problem P I. Furthermore,
we let πP I be the shortest solution in χ(P I), and let |πP I | denote the length
of that solution (i.e., plan). We now establish our first informedness theorem:

Theorem 6 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems. Then χ(P I

1) ⊆ χ(P I
2), if

J1 ∪ δ(X1) ⊆ J2 ∪ δ(X2).

A corollary immediately follows:

Corollary 7 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems. Then |πP I

2

| ≤ |πP I

1

|, if J1∪δ(X1) ⊆
J2 ∪ δ(X2).

Let P I = (J, X, T, D) be an incomplete-information planning problem. For
the rest of this section, we will assume that there are constants c, p, q, m, and
k such that c is the probability of a task being composite, p is the probability
of a ground atom a being true, q is the probability of the truth-value of an
atom a being known to ENQUIRER, m is the average number of methods
that are applicable to a composite task, k is the average number of distinct
preconditions for the methods in D, and d is the depth of the solution.

Without loss of generality, we assume that the task network T is a set of
totally-ordered tasks. Furthermore, we assume that the search tree for a given
incomplete-information problem is a complete tree whose depth is d, and there
are no negated atoms in the preconditions of the methods in D.

Lemma 8 Given an incomplete-information planning problem P I =
(J, X, T, D) that satisfies the assumption given above, the probability ρ of
ENQUIRER finding a solution for P I is

ρ0 =1; and

ρd =(1− c) ∗ (p.q)k + c ∗ [1− (1− γd)
m],

where γd = (p.q)k × ρd−1.

The following theorem establishes our second informedness result.

Theorem 9 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems satisfying the assumption given ear-

18

lier. Furthermore, let ρ1 and ρ2 be the probabilities of ENQUIRER finding so-
lutions for P I

1 and P I
2 , respectively. Then, ρ1 ≤ ρ2, if J1∪ δ(X1) ⊆ J2∪ δ(X2).

8 Extending the Query Manager

The ENQUIRER planning algorithm and the Query Manager described so far
are together designed to solve service-oriented planning problems under cer-
tain conditions of uncertainty. ENQUIRER is capable of gathering informa-
tion during planning and explore different possible plans while the answers
are generated by external information sources. However, ENQUIRER design
is based on some restrictive assumptions that may create some difficulties in
solving certain kinds of composition problems. In our study of such problems,
we identified two additional key features that, we believe, are important for
ENQUIRER to to handle. These key features are

• Eager Planning. When ENQUIRER requests information about a conjunc-
tion C, it issues a query to the Query Manager. The Query Manager finds
and executes all of the services that can provide information about C, and
returns that information only after all of those services are finished their ex-
ecutions. In many situations, however, it is possible for the planner to find
a plan by using the information obtained from only some of those services.
In such cases, the planner need not wait for all relevant services to finish
their executions.
• Conflicting Information. In ENQUIRER, we assumed that the information

gathered from the available Web Services is non-conflicting; e.g., when the
Query Manager issues a query to two different Web Services, we assumed
that the information returned by these services will always be consistent.
In real world, however, this assumption does not always hold.

In the rest of this section, we focus on how to extend ENQUIRER to address
these issues, and discuss the modifications to our original framework described
above.

8.1 Extending the Query Manager for Eager Planning

Note that the Query Manager shown in Figure 5 returns all the information
regarding a query Q at a search node (T, π) at once. That is, if X is the set of
services that are relevant with a query Q, then the Query Manager executes
all the services in X and returns the answers generated by these services as
well as the answers that can be generated from the current internal state
QM InternalState(π). In other words, the answers returned by the Query

19

Manager regarding a query Q are generated as if QM InternalState(π)∪δ(X)
has been queried for Q all at once, where δ(X) denotes the total amount of
information that can be obtained through querying the Web Services in X.

Although the Query Manager described above is provably sound and practical
in many cases, it does not exploit a key feature of service-oriented planning:
different Web Services that can answer a given query Q usually requires differ-
ent execution times to return their answers, and the planner need not have all
the possible information that can be gathered from those services to generate
a plan. Therefore, it make sense for Query Manager to return the information
gathered from the services invoked regarding Q as such information arrives
from the services, and let the planner continue with planning as other services
continue their execution. This way, if the planner fails to generate a plan with
the answers from the finished services, then it backtracks and requests more in-
formation regarding Q, and as more information is received from the services,
the Query Manager feeds the planner with that information as needed. Note
that this requires the Query Manager to perform accessing, executing, and
processing the information returned from the services in an iterative manner;
contrary to the all-at-once approach as in its original description above.

In order to access and execute the Web Services that are relevant to a given
query in such an iterative manner, we made the the following modifications
to the ENQUIRER algorithm and the Query Manager of the Figures 3 and
5, respectively. The modification to the planning algorithm is as follows: The
ENQUIRER algorithm keeps an OPEN list as the set of nodes in the fringe of
the search process. It performs its search by selecting a tuple from this list and
by expanding it to generate the its successor in the search, and so on. Note
that this way of using the OPEN list ensures completeness in the planning
process, when the planner receives all of the relevant information to its queries
at once.

When the queries are answered in an iterative manner, it is not sufficient to
keep only the fringe nodes of the search process in OPEN . Instead, we should
keep every visited search node in OPEN , since the planner can backtrack
any of those nodes and request for more answers for the queries it issued at
those nodes. This requires the following simple modification in the ENQUIRER
algorithm: After we issue a query Q and process the answer we received from
the Query Manager regarding Q, we insert the current search node (T, π) into
the OPEN list again. This way, we keep all of the visited nodes in OPEN ,
enabling ENQUIRER to request more answers about the queries issued while
visiting those nodes in an iterative manner. Note that, actually, we do not
need to insert the search node (T, π) if the Query Manager tells ENQUIRER
that there are no further answers about Q can be obtained from the available
services — i.e., if the Query Manager returns ∅ when ENQUIRER invokes the
QueryManager::IssueQuery procedure.

20

procedure QueryManager::IssueQuery(C, T, π)
for every query Q(~x)← X(~x) ∈ QM PendingQueries do
if an answer has been received for Q from a service I(~x)→ Y (~x) then

remove Q from QM PendingQueries

insert Q into QM AnsweredQueries

for every variable substitution σ ∈ answer

insert σ(Y) into each entry in QM InternalState

unless (T, π) ∈ QM QueriedNodes then
J ← QM InternalState(π)
A← {σ | σ is a substitution such that σ(C) ⊆ J}
QM QueriedNodes← QM QueriedNodes ∪ {(T, π)}
if A 6= ∅ then return A

if there is a query for C in QM AnsweredQueries then
J ← QM InternalState(π)
A← {σ | σ is a substitution such that σ(C) ⊆ J}
if A = ∅ and there are queries for C in QM PendingQueries then return wait

return A

else if there are queries for C in QM PendingQueries then return wait

else
create a query Q(~x)← C(~x)
find all services from QM AvailableServices that can answer Q and execute them
return wait

end-procedure

Fig. 6. The modified Query Manager for eager planning. The underlines indicate the
modification made to the original algorithm of Figure 5.

Secondly, we modify the QueryManager::IssueQuery routine of the Query Man-
ager as shown in Figure 6 where modifications are shown as underlined. Given
a conjunction C to be queried, the modified QueryManager::IssueQuery proce-
dure first checks if there are any queries that have been issued for C before
and if the Query Manager has received answers for them. If this is the case,
then we return those answers immediately, without waiting for all of the ser-
vices executed for C complete their execution. If there are no already-answered
queries for C but there are pending ones, then QueryManager::IssueQuery re-
turns wait, forcing ENQUIRER to search for other solutions. If none of the
above is the case, then QueryManager::IssueQuery creates a new query for C,
finds and executes the services that can provide information about C, and
returns the wait signal to ENQUIRER.

8.2 Dealing with Conflicting Information

In certain cases, the Web Services invoked to obtain an answer for a query may
return conflicting answers. For example, in our doctor-patient example, a Web

21

Service can tell the planner that a particular time of the day is available for
appointment in the hospital, whereas another service may specify that time
slot as already occupied for another patient requiring the same treatment in
the same hospital. In such cases, the planner must be able to resolve the con-
flicts in the information it gathers from the services, if possible, and generate
a solution for the input planning problem under such conditions.

Our extensions to ENQUIRER to handle conflicting information during plan-
ning is as follows. First, we describe how to incorporate a way to detect con-
flicts in the Query Manager of Figure 5. To achieve this objective, we assume
that the Query Manager is given a set of integrity constraints. These con-
straints can be defined as type and range constraints on certain arguments
of a predicate, cardinality restrictions on some relationships, and so on. Note
that, we do not have to restrict ourselves to only data integrity constraints. If
a more expressive representation language such as OWL is being used, then
the conflicts would be detected when the gathered data is not consistent with
respect to the definitions in the ontologies.

When the Query Manager detects a conflict with the information returned
by services for a given query, then it needs to attempt to resolve that conflict
instead of bailing out immediately. In our framework, such a conflict resolution
can be done as follows. We assume that a ranking schema is available for the
Query Manager such that this schema specifies a rank, e.g. a positive real
number, for each service in QM AvailableServices. This ranking schema can
be implemented either as static or context-dependent. A static schema assigns
a rank for each available service, and uses the same ranks for all queries issued
to those services. A context-dependent schema, on the other hand, specifies a
rank for the available services based on the query issued by the planner.

This simple sort of ranking scheme seems well suited for Web Service de-
velopers and easy to integrate with WSDL or OWL-S descriptions. Similar
ranking schemes have been proposed for Web Service registries [7] to improve
the Web Service discovery results. It is also possible to utilize the trust and
reputation models designed for Web-based social networks [8]. For example,
[9] proposes such a model to rank Web Services in a peer-to-peer framework.
In a more complex system, the planner might store historical information and
build a complex model for trust and reputation. The details of such systems
are beyond the scope of this paper.

In our system, given a query Q, there is a a total-order that tells the Query
Manager in which order to process the information from the services. The
Query Manager, returns the answers received from the services to ENQUIRER
starting with the answers of the highest-ranked service to that of the lowest-
ranked service. Therefore, the Query Manager always inserts the set of ground
atoms specified by the service into its internal state QM InternalState based

22

on this total-order, and can check whether the specified set of ground atoms
are in conflict with this state. If a lower ranked service provides information
conflicting with a higher ranked service the results are simply rejected. It is
possible to accommodate more elaborate policies to resolve these conflicts, e.g.
conflicts could be resolved differently when two high-ranked services are in dis-
agreement compared to the case where a low-ranked service is in conflict with
a high-ranked service. In either case, it would be easy to integrate such policies
within the current framework and the algorithms of Figure 5 can be used in
the presence of conflicting information without any further modifications.

9 Experimental Evaluation

For our experiments, we wanted to investigate (1) how well ENQUIRER would
perform in service-composition problems where some of the information was
completely unavailable, and (2) the trade-off between the time performance
and the desirability of the solutions generated by the planner by using differ-
ent query-processing strategies. We built a prototype implementation of the
ENQUIRER algorithm that could be run with different query strategies. We
also built a simulation program that would generate random response times
for the queries issued by ENQUIRER. We ran our experiments on a Sun SPARC
Ultra1 machine with 192MB memory running Solaris 8.

Experimental Case 1. In this case, we have investigated how the number
of solutions (i.e., plans) found by the ENQUIRER algorithm is affected by the
amount of the information available during planning. In these experiments,
we used a set of Web Service composition problems on the Delivery domain
described in Section 3. In these problems, a delivery company is trying to
arrange the shipment of a number of packages by coordinating its several local
branches. The company needs to gather information from the branches about
the availability of vehicles (i.e., trucks and planes) and the status of packages.
Such information is provided by Web Services, and the goal is to generate a
sequence of confirmation messages that tells the company that every package
is delivered to its destination.

In these experiments, we have ENQUIRER run the planner on 100 randomly-
generated problem instances. For each problem instance, we ran ENQUIRER
several times as described below, varying the amount of information available
about the initial state by varying the following quantities: |J |, the number of
atoms of S that were given initially; and |δ(X)|, the amount of atoms of S

that were made available through the input Web Services X, where S is the
set of all possible ground atoms in the domain.

We measured the percentage of times that ENQUIRER could find plans, as a

23

0

20

40

60

80

100

120

0
%

1
0
%

2
0
%

3
0
%

4
0
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Percentage of Information Available

P
e

rc
e

n
ta

g
e

 o
f

P
ro

b
le

m
s

 S
o

lv
e

d

Fig. 7. The percentage of times ENQUIRER could find plans for the Deliv-
ery-Company problems, as a function of the amount of information available during
planning.

function of the quantity |J∪δ(X)|
|S|

. The fraction |J∪δ(X)|
|S|

is the fraction of atoms

about the initial state that are available during planning. We varied |J∪δ(X)|
|S|

from f = 0% to 100% in steps of 10% as follows: we first randomly chose a set
of atoms for |S| such that the size of this set is equal to the fraction specified
by the particular f value. Then, for each atom in this set, we randomly decided
whether the atom should go in J – the incomplete initial state –, or it should
be provided from the Web Services in X. Using this setup, we performed 100
runs of ENQUIRER for each value of |J∪δ(X)|

|S|
. The results, shown in Fig.7,

show that the success rate for ENQUIRER increased as we increased |J∪δ(X)|
|S|

.

ENQUIRER was able to solve 100% of the problem instances even when |J∪δ(X)|
|S|

was as low as 60%.

Experimental Case 2. We also aimed to investigate the comparison between
the time performance of the non-blocking nature of the search performed by
the ENQUIRER algorithm and the desirability of the plans generated — i.e.,
how much the generated plans conforms to the user preferences encoded in the
domain descriptions given to the algorithm in terms of the ordering among
the methods applicable to the same task.

In this respect, we have implemented three variations of the ENQUIRER al-
gorithm. All of these variations are based on how the planning algorithm
maintains its OPEN list. The original algorithm, shown in Figure 3, always
searches for solutions that can be found regardless of the incompleteness of
the information about the initial state: when ENQUIRER issues a query, it
does not wait for an answer; instead it continues its search for solutions that
can be found without issuing any queries at all. We call this strategy as the

24

0

10

20

30

40

50

60

p0 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

Problems

A
v
e
ra

g
e
 C

P
U

 T
im

e
s

IWC FIFO FILO ISO

Fig. 8. The comparison of the average CPU times (in secs.) of the four search
strategies in ENQUIRER.

Issue-Search-Other (ISO) strategy. Similar to ISO, all the other three strategies
are also based on different implementations of the OPEN list. The Issue-Wait-
Continue (IWC) strategy involves blocking the search until a query, which is
issued recently, gets answered. In the First-In-Last-Out (FILO) strategy, if the
planner has asked many queries during its search and several of them have
been answered, then it always returns to the point in the search space that
corresponds to the most recently-issued query that has been answered. Finally,
in FIFO which is a complete symmetric version of FILO, the planner always
considers the answers corresponding to the least-recent query it has asked.

In our experiments with these variations of ENQUIRER, we compared their
time performances on the domain used in [2], which is partly based on the
scenario described in the Scientific American article about the Semantic Web
[3]. This scenario describes two people who are trying to take their mother to
a physician for a series of treatments and follow-up meetings. The planning
problem is to come up with a sequence of appointments that will fit in to
everyone’s schedules, and at the same time, to satisfy everybody’s preferences.

We have created 11 random problems in this domain and we have run all
strategies 10 times in each problem. We have set the maximum response time
for a query asked by ENQUIRER to be 1 seconds. Fig.8 reports the average
CPU times required by the four strategies described above.

These results provide several insights regarding the trade-off between time
performance of ENQUIRER and the desirability of the solutions it generates
under incomplete information. As we described above, in our framework, the
desirability of a solution is determined by the set of methods available for the
nonprimitive tasks that are provided to ENQUIRER and the order specified

25

over the methods for a particular task provided to the planner.

From a performance-oriented point of view, our results showed that it is very
important for the planner not to wait until its queries get responded, especially
when it takes a very long time to get responses for those queries. In our
experiments, the IWC strategy performed worst than the others in most of the
problems. However, IWC was able to generate the most-desirable solutions for
our problems, since it always considers the methods in ENQUIRER knowledge
base in the order they were specified.

In most of the problems, the FILO strategy was able to find solutions more
quickly than the other strategies; in particular, it was consistently more effi-
cient than IWC. However, these solutions were usually less-desirable ones with
respect to the user preferences encoded as orderings among the methods in
ENQUIRER knowledge base, since FILO always tends to consider the answers
for the most-recently issued queries, which usually correspond to less-desirable
preferences because of the queries waiting for an answer.

Our experiments also suggest that the ISO strategy can be particularly useful
on planning problems that have few solutions. In particular, the problem p10
of our experiments is one such problem, and ISO was able to find solutions
for this problem more quickly than others. The reason for this behavior is
that ISO performs a less organized and less structured search compared to
other strategies, enabling the planner to consider different places in the search
space. On the problem p10 which has only 48 solutions compared to the 4248
solutions of the problem p9, this characteristic enabled ISO to perform better
than the other strategies. However, in most of the problems, the solutions
generated by the planner using ISO were not the desirable ones.

10 Related Work

The first approach for Web Service Composition, described in [5], is based on
the notion of generic procedures and customizing user constraints. This work
extends the Golog language to enable programs that are generic, customiz-
able and usable in the context of the Web. They also successfully augment a
ConGolog interpreter that combines online execution of sensing actions with
offline simulation of world altering services. Our approach is very similar to
this in spirit, with the following two key differences 1) We allow the planner
to change (i.e. simulate the changes) the information gathered from external
sources whereas the Invocation and Reasonable Persistence (IRP) assumption
of [5] prevents such changes. Note that, however, we still require that no agent
other than the planner can change the state of the world during planning. 2)
We use more flexible information source descriptions where the information

26

returned from the service is described as a conjunction of atoms. On the other
hand, [5] relates single fluents to one or more external service calls. Having
more than one atom in the body of source descriptions enables us to describe
a wider range of information sources and answer more complex queries. Also,
note that, the approach described in [5], is based on situation calculus and such
a general logic-based system has the ability to do arbitrary reasoning about
first-order theories. This is important because planning with OWL-S service
descriptions requires a reasoner capable of handling the expressivity of OWL.
However, Golog implementation uses regression to reason about actions, i.e.
to solve executability and projection problems. As discussed in detail in [10],
translating OWL-S descriptions (or descriptions of similar expressitivity) to
situation calculus and applying regression yields a standard first-order theory
which is not in the scope of what Golog can handle without calling a general
first-order theorem prover. On the other hand, integrating an OWL reasoner
with an HTN planner is a relatively easy task (since the planner and the rea-
soner are modular components) and such integration has been shown to be
practical and efficient [11].

The first work that enables us to use HTN-planning techniques for solving
service-composition problems is described in [6]. This work presents a formal
model of the relationship between the OWL-S process ontology [1] used for
describing Web Services and Hierarchical Task Networks as in SHOP2 planning
system [4]. In this formulation, the atomic and composite OWL-S processes
are mapped into primitive and nonprimitive tasks in SHOP2, and the planner
is used for generating a collection of atomic process instances that, when
executed in the initial state of the world, achieves the desired functionality. In
this paper, we extend this approach to be able to cope better with the fact that
information-providing Web Service may not return the needed information
immediately when they are executed, or at all. In particular, our ENQUIRER
algorithm does not cease the search process while waiting answers to some
of its queries, but keeps searching for alternative compositions that does not
depend on answering those specific queries.

Another planning approach is a technique proposed by [12]. This technique is
based on an estimated-regression planner, called Optop, that is used for gen-
erating compositions for WSC problems. In Optop, a state of the planner is
a situation, which is essentially the current partial plan. Optop works with
classical-planning goals; thus, it checks whether the current situation satisfies
the conjunction of the goal literals given to the planner as input. During its
search, Optop computes a regression-match graph as described in [12], which
essentialy provides information about how to reach to a goal state from the
current situation. The planner returns the successor situations that arises from
applying the actions specified by that graph in the current situation. Note that
this technique is very different than our approach since, in Optop, only the
precondition and effect information about services are used to generate compo-

27

sitions whereas our HTN-based approach generates plans using the structure
of composite services.

In a different approach, [13] proposed to model the services and the informa-
tion about the world by using the “knowledge-level formulation” first intro-
duced in the PKS planning system [14]. This formulation involves modeling
Web Services based on not what is actually true or false about them, but what
the agent that performs the composition actually knows to be true or false
about their operations and the results of those operations. In this approach, a
composition is formulated as a conditional plan, which allows for interleaving
the executions of information-providing and world-altering services, unlike the
works described above.

Another approach for Web Service composition is proposed in [15] and [16].
This approach is a planning technique based on the “Planning as Model Check-
ing” paradigm for the automated composition of web services described in
OWL-S process models. The OWL-S process models are translated into state
transition systems that describe the dynamic interactions with external ser-
vices. The composition goals are expressed in a language where temporal re-
strictions on goals and preferences about goals can also be specified. With the
composition goal and the state transition systems, the planner, based on sym-
bolic model checking techniques, returns an executable process rather than a
linear sequence of actions.

An important difference between the works described in [13,15,16] and our
approach is that we do not model the information sources as sensing actions
and generate plans that include branching points which correspond to the
possible outcomes of those sensing action that will be observed when the plan
is actually executed. Instead, following [5,6], we assume that the information
sources are executed during planning. As a result, ENQUIRER can generate
simple plans since observational actions are not included in the plan, and it
can interact with external information sources and clear out the “unknown”s
during planning time as much as possible. As a future work, we are planning
to investigate a hybrid approach where some information is gathered during
planning and the remaining information is gathered by sensing actions that
are placed in the generated conditional plan. Such an approach would be more
robust to changes in the environment because the modifications done by other
agents would not necessarily invalidate the plans generated.

In the AI planning literature, there are various approaches to planning with
incomplete-information, designed for gathering information during execution
by inserting sensing actions in the plan during planning time and by gener-
ating conditional plans conditioned on the possible pieces of information that
can be gathered by those actions. In addition to the ones mentioned above,
examples include the following. [17] presents a planning language called UWL,

28

which is an extension of the STRIPS language, in order to distinguish between
(1) the world-altering and the observational effects of the actions, and (2) the
goals of satisfaction and the goals of information. [18] describes he XII planner
for planning with both complete and incomplete information, which is an ex-
tension of UCPOP [19], and is able to generate sensing actions for information
gathering during execution.

There are various algorithms developed for information integration prob-
lems [20–22] which have recently been applied to the problem of composing
information-providing services [23]. These algorithms find and combine a set
of information sources to answer a given query. Note that, this is the same task
ENQUIRER’s Query Manager needs to perform to answer the issued queries.
In our work, we have not specifically addressed this problem because these
existing algorithms can easily be integrated in our system. We note that this
integration is straight-forward as our definitions of a query and an information
source aligns with the existing work.

A speculative execution method is described in [24] for generating information-
gathering plans in order to retrieve, combine, and manipulate data located in
remote sources. This technique exploits certain hints received during plan exe-
cution to generate speculative information for reasoning about the dependen-
cies between operators and queries later in the execution. ENQUIRER differs
from this method in two aspects: (1) it searches different branches of the
search space when one branch is blocked with a query execution, and (2) it
runs the queries in planning time, whereas speculative execution was shown
to be useful for executing plans. Combining speculative execution with our
approach would enable us to run queries down in a blocked branch; however,
since the time spent for a query is lost when speculations about that query
are not valid, it is an open question if combining the two approaches will lead
to significant results.

11 Conclusions and Future Work

In our previous work [2], we have shown how a set of OWL-S service descrip-
tions can be translated to a planning domain description that can be used by
SHOP2. The corresponding planning problem for a service composition prob-
lem is to find a plan for the task that is the translation of a composite process.
This approach differentiates between the information-gathering services, i.e.
services that have only outputs but no effects, and the world-altering services,
i.e. services that have effects but no outputs. The preconditions of information-
gathering services include an external function to call to execute the service
during planning and add the information to the current state. This can be seen
as a specialized application of the ENQUIRER algorithm, when the queries are

29

explicitly specified as special primitive tasks that correspond to atomic service
executions.

ENQUIRER overcomes the following limitations in our previous work:

• The information providing services do not need to be explicitly specified
in the initial description. The Query Manager can be used to select the
appropriate Web Service on the fly when the information is needed. Note
that matching service description does not need to be an atomic service. A
composite service description matching the request could be recursively fed
to the planner, or an entirely different planner could be used to plan for
information gathering.
• The planning process does not need to wait for the information gathering

to finish and can continue planning while the service is still executing. Fur-
thermore, the Query Manager can collect and return the answers for those
queries as they are received from the information sources to ENQUIRER,
enabling the planner to perform an eager search without waiting all of the
information regarding its queries and asking more information only if it
needs it to generate solutions.
• The information sources may provide conflicting answers to ENQUIRER’s

queries. In our framework, it is the Query Manager’s responsibility to detect
and resolve such conflicts. In this work, we assumed that the Query Manager
is equipped with a mechanism that ranks the available Web Services, and
it processes the information received from those services based on their
ranking. As we described in the paper, this provides a simple, yet effective,
technique for conflict detection and resolution.

In this paper, we have assumed that information-providing services cannot
have world-altering effects. Otherwise, the correctness of the plans generated
cannot be guaranteed since the changes done by the information-providing ser-
vice may invalidate some of the steps planner already committed to. However,
this restriction is not necessary when the effects of the information-gathering
services do not interact with the plan being sought for. As an example, consider
a service that charges a small amount of fee for the service. If we are looking
for a plan that has nothing to do with money, then it would be safe to exe-
cute this service and change the state of the world. In general, this safety can
be established when the original planning problem and information-gathering
problem correspond to two disconnected task networks that can be accom-
plished without any kind of interaction. Verifying that there is no interaction
between two problems is a challenging task that we will address in our future
work.

ENQUIRER is designed for information gathering at plan time; however, it is
important to do so in execution time as well. We hypothesize that it should
possible to extend our framework for this purpose as follows. ENQUIRER’s

30

queries are about the initial state of a planning problem, to ensure that the
planner is sound and complete. However, in principle, we should be able to
issue queries about any state during planning. This would allow us to insert
queries, similar to sensing actions, in the plan generated by the planner, lead-
ing conditional plans to be generated by the planner based on the possible
answers to such queries. We are currently exploring this possibility and its
ramifications on planning.

Acknowledgments

We would like to thank our anonymous reviewers for their insightful comments
that were very helpful in preparing the final version of this paper.

This work was supported in part by the following grants, contracts, and
awards: NSF grant IIS0412812, Air Force Research Laboratory F30602-00-
2-0505, Army Research Laboratory DAAL0197K0135, the Defense Advanced
Research Projects Agency (DARPA), Fujitsu Laboratory of America at Col-
lege Park, Lockheed Martin Advanced Technology Laboratories, the National
Science Foundation (NSF), the National Institute of Standards and Technol-
ogy (NIST), and NTT Corp. The opinions expressed in this paper are those
of authors and do not necessarily reflect the opinions of the funders.

References

[1] OWL Services Coalition, OWL-S: Semantic markup for web services, OWL-S
White Paper http://www.daml.org/services/owl-s/0.9/owl-s.pdf (2003).

[2] D. Wu, B. Parsia, E. Sirin, J. Hendler, D. Nau, Automating daml-s web services
composition using SHOP2, in: Proceedings of 2nd International Semantic Web
Conference (ISWC2003), Sanibel Island, Florida, 2003.

[3] T. Berners-Lee, J. Hendler, O. Lassila, The Semantic Web, Scientific American
284 (5) (2001) 34–43.

[4] D. Nau, T.-C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, F. Yaman,
SHOP2: An HTN planning system, Journal of Artificial Intelligence Research
20.

[5] S. McIlraith, T. Son, Adapting Golog for composition of semantic web
services, in: Proceedings of the Eighth International Conference on Knowledge
Representation and Reasoning, Toulouse, France, 2002.

[6] E. Sirin, B. Parsia, D. Wu, J. Hendler, D. Nau, HTN planning for web service
composition using SHOP2, Journal of Web Semantics 1 (4) (2004) 377–396.
URL http://www.mindswap.org/papers/SHOP-JWS.pdf

31

[7] I. Constantinescu, W. Binder, B. Faltings, An extensible directory enabling
efficient semantic web service integration, in: International Semantic Web
Conference, 2004, pp. 605–619.

[8] J. Golbeck, B. Parsia, J. Hendler, Trust networks on the semantic web, in:
Proceedings of Cooperative Intelligent Agents 2003, Helsinki, Finland, 2003.
URL http://www.mindswap.org/papers/CIA03.pdf

[9] F. Emekci, O. D. Sahin, D. Agrawal, A. E. Abbadi, A peer-to-peer framework
for web service discovery with ranking, in: IEEE International Conference on
Web Services (ICWS’04), 2004, pp. 192–199.

[10] F. Baader, C. Lutz, M. Milicic, U. Sattler, F. Wolter, Systematic nonlinear
planning, in: Proceedings of the Twentieth National Conference on Artificial
Intelligence (AAAI-05), Pittsburgh, 2005.

[11] E. Sirin, B. Parsia, Planning for semantic web services, in: Semantic Web
Services Workshop at 3rd International Semantic Web Conference (ISWC2004),
Hiroshima, Japan, 2004.
URL http://www.mindswap.org/papers/SWS-ISWC04.pdf

[12] D. McDermott, Estimated-regression planning for interactions with web
services, 2002, pp. 204–211.

[13] E. Martinez, Y. Lespérance, Web service composition as a planning task:
Experiments using knowledge-based planning, in: Proceedings of the ICAPS-
2004 Workshop on Planning and Scheduling for Web and Grid Services, 2004,
pp. 62–69.

[14] R. Petrick, F. Bacchus, A knowledge-based approach to planning with
incomplete information and sensing, in: In Proceedings of the Fourth
International Conference on AI Planning and Scheduling (AIPS’98), 1998, pp.
86–93.

[15] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, P. Traverso, Planning and
monitoring web service composition, in: The 11th International Conference
on Artificial Intelligence, Methodologies, Systems, and Applications (AIMSA),
2004, pp. 106–115.

[16] P. Traverso, M. Pistore, Automated composition of semantic web services into
executable processes., in: International Semantic Web Conference, 2004, pp.
380–394.

[17] O. Etzioni, D. Weld, D. Draper, N. Lesh, M. Williamson, An approach to
planning with incomplete information, in: Proceedings of KR-92, 1992.

[18] K. Golden, O. Etzioni, D. Weld., Planning with execution and incomplete
information, Tech. Rep. TR96-01-09, Department of Computer Science,
University of Washington (February 1996).

[19] J. S. Penberthy, D. Weld, UCPOP: A Sound, Complete, Partial Order Planner
for ADL, in: Proceedings of KR-92, 1992.

32

[20] O. M. Duschka, A. Y. Levy, Recursive plans for information gathering., in:
IJCAI (1), 1997, pp. 778–784.

[21] A. Y. Levy, A. Rajaraman, J. J. Ordille, Querying heterogeneous information
sources using source descriptions, in: Proceedings of the Twenty-second
International Conference on Very Large Databases, VLDB Endowment,
Saratoga, Calif., Bombay, India, 1996, pp. 251–262.

[22] A. Y. Levy, A. Rajaraman, J. J. Ordille, Query-answering algorithms for
information agents., in: AAAI/IAAI, Vol. 1, 1996, pp. 40–47.

[23] J. L. A. Snehal Thakkar, C. A. Knoblock, A data integration approach to
automatically composing and optimizing web services, in: In Proceeding of 2004
ICAPS Workshop on Planning and Scheduling for Web and Grid Services, 2004.

[24] G. Barish, C. A. Knoblock, Planning, executing, sensing, and replanning for
information gathering, in: Proceedings of Sixth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS 2002), AAAI Press, Menlo
Park, CA, 2002, pp. 184–193.

33

A Proofs of Our Theorems

Lemma 4 Let P I = (J, X, T, D) be an incomplete-information planning prob-
lem, and let P C = (S, T, D) be a complete-information planning problems that
is consistent with P I. Then, every search trace of the search tree for P I is also
a search trace in the search tree for P C .

PROOF. Let P I = (J, X, T, D) be an incomplete-information planning prob-
lem, and let P C = (S, T, D) be a complete-information planning problem that
is consistent with P I. By the definition of consistency, we have J ∪ δ(X) ⊆ S.
Let T1 and T2 be the search trees for the problems P I and P C, respectively.

The proof is by induction on the length d of a search trace in a search tree.
Let d = 0. Obviously, this marks the search node that is the root of the trees
T1 and T2. Note that both T1 and T2 have the same root node since both
problems P I and P C specify the same goal task network T . This establishes
the base case for our induction.

Now, assume that every search trace with length d in T1 is also in T2. Let
n = (T, π) be a leaf node of a search trace with length d. If T = nil then n is
a leaf node in the search tree for both P I and P C. Suppose T 6= nil and let t

be a task that has no predecessors in the task network in T . If t is primitive
and there is an operator o for it in D, then both T1 and T2 will have the same
search node as a child of n at depth d + 1, where this child of n will mark
the task network obtained by removing t from the task network of n. If t is
nonprimitive, the set of methods applicable to t given J ∪ δ(X) is a subset
of the set of methods applicable to t given S, since J ∪ δ(X) ⊆ S. Then, it
follows that the set of child nodes of n in T1 is a subset of the child nodes of n

in T2 at depth d+1 in both trees, and therefore, the set of search traces going
out from n in T1 is a subset of those going out from n in T2. This completes
the proof of the theorem.

Theorem 5 Let P W = (J, W, C, K) be a service-composition problem, and
P I = (J, X, T, D) be an incomplete-information planning problem that is
equivalent to P W . ENQUIRER returns a plan π for P I if and only if π is
a solution composition for P W .

PROOF. Suppose P W = (J, W, C, K) is a service-composition problem and
suppose P I = (J, X, T, D) is an incomplete-information planning problem
that is equivalent to P W . Then, by the definition of equivalency, we have
δ(X) = δ(W), T is the SHOP2 translation for the OWL-S process C, and D

= TRANSLATE-PROCESS-MODEL(K) is the HTN-domain description gen-
erated by the translation algorithm of [6].

34

The proof proceeds by showing that there is a bijection between the set of
solution plans for P I and the set of solution compositions for P W . First of
all, we define the complete version of a service-composition problem P W =
(J, W, C, K) as the problem P WC = (S, C, K) such that S = J ∪ δ(W). That
is, in the complete version of P W , we have in the initial state S all the in-
formation that can be gathered through the Web Services in W . Clearly, the
set of solutions for P W is the same as the set of solutions for P WC since both
problems uses the same total amount of information about the world, the same
goal process C, and the same set of process models K.

Let P C = (S, T, D) be the complete-information planning problem corre-
sponding to P WC = (S, C, K). By the Theorem 5 of [6], there is a bijection
between the solutions for P C and P WC . Then,it follows that the set of so-
lutions for the complete-information planning problem P C = (S, T, D) and
the incomplete-information planning problem P I = (J, X, T, D) are the same,
since we have S = J ∪ δ(X) by Lemma 4. Therefore, it follows that there is a
bijection between the set of solutions for P I and the set of solutions for P W .

Theorem 6 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems. Then χ(P I

1) ⊆ χ(P I
2), if

J1 ∪ δ(X1) ⊆ J2 ∪ δ(X2).

PROOF. Let χ(P I) be the set of all solutions returned by any of the non-
deterministic traces of ENQUIRER on an incomplete-information problem P I .
Furthermore, we let πP I be the shortest solution in χ(P I), and let |πP I | denote
the length of that solution (i.e., plan).

Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two incomplete-
information planning problems. Suppose we have J1 ∪ δ(X1) ⊆ J2 ∪ δ(X2).
Furthermore, let T1 and T2 be the search trees for the problems P I

1 and P I
2 ,

respectively.

The proof starts by showing that the set of search traces of the search tree
T1 is a subset of those of the tree T2. Therefore, the set of successful search
traces in T1 — i.e., the set of search traces that ends in a node that specifying
the empty task network, and therefore, that marks a solution plan — is also
a subset of the set of successful search traces in T2, which means that we have
χ(P I

1) ⊆ χ(P I
2).

The proof is by induction on the depth d of a search trace. Let d = 0. Obvi-
ously, this marks the search node that is the root of the trees T1 and T2. Note
that both T1 and T2 have the same root node since both problems P I

1 and P I
2

specify the same goal task network T . This establishes the base case for our
induction.

35

Now, assume that every search trace with depth d in T1 is also in T2. Let
n = (T, π) be a leaf node of a search trace with length d. If T = nil then n

is a terminal node in the search tree for both P I and P C. Suppose T 6= nil

and let t be a task that has no predecessors in the task network in n. If t is
pritimive and there is an operator o for it in D, then both T1 and T2 will have
the same search node as a child of n at depth d + 1, where this child of n will
mark the task network obtained by removing t from the task network of n. If
t is nonprimitive, the set of methods applicable to t is a subset of the set of
methods applicable to t, since J1 ∪ δ(X1) ⊆ J2 ∪ δ(X2). Then, it follows that
the set of child nodes of n in T1 is a subset of the child nodes of n in T2 at
depth d + 1 in both trees. Therefore, it follows that every search trace of T1 is
also a search trace in T2.

Corollary 7 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems. Then |πP I

2

| ≤ |πP I

1

|, if J1∪δ(X1) ⊆
J2 ∪ δ(X2).

PROOF. Immediate from Theorem 6.

Lemma 8 Given an incomplete-information planning problem P I =
(J, X, T, D) that satisfies the assumption given above, the probability ρ of
ENQUIRER finding a solution for P I is

ρ0 =1; and (A.1)

ρd =(1− c) ∗ (p.q)k + c ∗ [1− (1− γd)
m], (A.2)

where γd = (p.q)k × ρd−1.

PROOF. Let P I = (J, X, T, D) be an incomplete-information planning prob-
lem. Suppose that there are constants c, p, q, m, and k such that c is the
probability of a task being composite, p is the probability of a ground atom a
being true, q is the probability of the truth-value of an atom a being known
to ENQUIRER, m is the average number of methods that are applicable to a
composite task, and k is the average number of distinct preconditions for the
methods in D.

Without loss of generality, suppose that the task network T is a set of totally-
ordered tasks, and that the search tree for a given incomplete-information
problem is a complete tree whose depth is d, and there are no negated atoms
in the preconditions of the methods and operators in D.

Note that ENQUIRER finds a solution for P I if and only if there is a search
trace that starts from the root node of the search tree for P I and ends at

36

a leaf node that marks the empty task network. Then, it follows that the
probability that ENQUIRER finds a solution for P I is equal to the probability
that a search trace in the search tree for P I reaches to a leaf node, starting
from the root node of the tree. Below, we show that this probability is given
by the recurrence relation of the Lemma 8.

The proof is by induction on the depth of a solution. We define d as the depth-
to-go value for a search node (T, π) in the search trace of ENQUIRER that
corresponds to a solution. That is, d is the number of node that the planner
visits after expanding (T, π) until it reaches to the leaf node with the empty
task network. If d = 0 then we have T = nil for the input planning problem.
In this case, ENQUIRER will return the empty plan immediately. Therefore,
the probability of finding the empty plan as the solution for the input planning
problem is 1 as given in Eqn A.1. This establishes the base of our inductive
proof.

Now assume that the theorem correctly gives the probability of reaching to
a leaf node, starting from a node with a depth-to-go value d. Now consider a
search trace with depth d+1 whose leaf node specifies the empty task network.
Let T be the goal task network that this search trace accomplishes and let
J ′ ∪ δ(X) be the amount of information available to accomplish T . In other
words, T is the task network in the start node of this trace and J ′ is the
incomplete state for that search node. Note that J ′ is defined by applying the
actions in π to the incomplete initial state J given the information gathered
along this search trace from the services in X. Furthermore, let t be the first
task T — recall that T is a totally-ordered task network by our assumptions
stated earlier. By the same assumptions, we know that t is a primitive task with
the probability (1− c) and it is nonprimitive with probability c. In the former
case, the probability that t will be accomplished is (p.q)k;i.e., the probability
that the preconditions of the operator that matches to the task t is satisfied
in J ∪ δ(X).

The case in which t is not primitive is more complicated. Suppose that there
are m methods that matches to t. Let γd+1 be the probability that each such
method will be successfully applied to t. Note that a method will be success-
fully applied iff (1) its preconditions will be satisfied in J ′ ∪ δ(X), and (2)
the task network that will be generated by removing t from T and adding the
subtasks for t. Note that this task network is a search node in the search tree
for the input problem with a depth d. By the induction hypothesis, the prob-
ability of that node is given by the theorem. Therefore, the probability that a
method will be successfully applied to t with a depth d+1 is γd+1 = (p.q)k.ρd.

Then, assuming that the application of each method is independent from each
other, the probability that t will be decomposed successfully into subtasks
is c.[1 − (1 − γd+1)

m]. Therefore, the probability of t will be accomplished is

37

(1− c).(pq)k + c.[1− (1− γd+1)
m]. This completes the proof of the theorem.

Theorem 9 Let P I
1 = (J1, X1, T, D) and P I

2 = (J2, X2, T, D) be two
incomplete-information planning problems satisfying the assumption given ear-
lier. Furthermore, let ρ1 and ρ2 be the probabilities of ENQUIRER finding so-
lutions for P I

1 and P I
2 , respectively. Then, ρ1 ≤ ρ2, if J1∪ δ(X1) ⊆ J2∪ δ(X2).

PROOF. Immediate from Corollary 7 and Lemma 8.

38

