
Using Domain-Configurable Search Control for Probabilistic
Planning

Ugur Kuter and Dana Nau
Department of Computer Science

and Institute for Systems Research
University of Maryland

College Park, MD 20742, USA

Abstract
We describe how to improve the performance of
MDP planning algorithms by modifying them to
use the search-control mechanisms of planners
such as TLPlan, SHOP2, and TALplanner. In our
experiments, modified versions of RTDP, LRTDP,
and Value Iteration were exponentially faster than
the original algorithms. On the largest problems
the original algorithms could solve, the modified
ones were about 10,000 times faster. On another
set of problems whose state spaces were more than
14,000 times larger than the original algorithms
could solve, the modified algorithms took only
about 1/3 second.

Introduction
Planning algorithms for MDPs typically have large
efficiency problems due to the need to explore all
or most of the state space. For complex plan-
ning problems, the state space can be quite huge.
For planning problems expressed using probabilis-
tic STRIPS operators (Hanks & McDermott 1993;
Kushmerick, Hanks, & Weld 1994) or 2TBNs (Hoey
et al. 1999; Boutilier & Goldszmidt 1996), planning
is EXPTIME-hard (Littman 1997). This paper fo-
cuses on a way to improve the efficiency of plan-
ning on MDPs by adapting the techniques used in
domain-configurable classical planners.

A domain-configurable planner consists of a
domain-independent search engine that can make
use of domain-specific (but problem-independent)
search-control knowledge that is given to the plan-
ner as part of its input. Examples include plan-
ners such as TLPlan (Bacchus & Kabanza 2000) and
TALplanner (Kvarnström & Doherty 2001) in which
the search-control knowledge consists of pruning
rules written in temporal logic, and Hierarchi-
cal Task Network (HTN) planners such as SIPE-
2 (Wilkins 1990), O-Plan (Currie & Tate 1991),
and SHOP2 (Nau et al. 2003), in which the
search-control knowledge consists of HTN “meth-
ods” (task-decomposition templates).

Copyright c© 2005, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Domain-configurable planners have been highly
successful. In the AI planning competitions, such
planners consistently worked in most domains,
solved the most problems, and solved them fastest
(Bacchus 2001; Fox & Long 2002). They are used in
a large variety of real-world applications (Wilkins
1990; Currie & Tate 1991; Nau et al. 2003).

Our contributions are as follows:

• We describe how to modify any forward-chaining
MDP planning algorithm, by incorporating into
it the search-control algorithm from any forward-
chaining domain-configurable planner.

• We describe conditions under which our mod-
ified MDP planning algorithms are guaranteed
to find optimal answers, and conditions under
which they can do so exponentially faster than
the original MDP planners.

• We have applied our approach to Real-time Dy-
namic Programming (RTDP) (Bonet & Geffner
2000), Labeled RTDP (LRTDP) (Bonet & Geffner
2003), and a forward-chaining version of Value
Iteration (Berstekas 1995). Our experimental re-
sults show our modified algorithms running ex-
ponentially faster than the original ones. On the
largest problems the original algorithms could
solve, the modified ones ran about 10,000 times
faster. In only about 1/3 second, the modified al-
gorithms could solve problems whose state spaces
were more than 14,000 times larger.

Background

Domain-Configurable Classical Planners.
We use the usual definition of a classical planning
problem. In Fig. 1, Controlled-Plan is an abstract
version of a forward-chaining domain-configurable
planner. s is the current state, G is the goal, π is
the current plan, D is the domain description, and
x is the auxiliary information used by the search-
control function acceptable(s, a, x,D). result(s, a)
is the state produced by applying the action a to s,
and progress(s, a, x,D) is the auxiliary information
to use in the next state. Here are two examples:

Procedure Controlled-Plan(s, G, π, x, D)
if s ∈ G then return(π)
actions← {a | a is applicable to s

and acceptable(s, a, x, D) holds}
if actions = ∅ then return(failure)
nondeterministically choose a ∈ actions
s′ ← result(s, a); π′ ← append(π, a)
x′ ← progress(s, a, x, D)
return(Controlled-Plan(s′, G, π′, x′, D))

Figure 1: An abstract version of a forward-chaining
domain-configurable classical planner.

• TLPlan (Bacchus & Kabanza 2000) maintains
a control formula written in a modal temporal
logic, and backtracks whenever the current con-
trol formula evaluates to false. TLPlan is an
instance of Controlled-Plan in which x is the cur-
rent control formula, D is the set of all actions
in the domain, progress(s, a, x,D) is the next
control formula generated by TLPlan’s temporal-
progression algorithm, and acceptable(s, a, x,D)
holds for all actions a applicable in s such that
the state result(s, a) satisfies progress(s, a, x,D).

• SHOP2 (Nau et al. 2003), an HTN planner, is an
instance of Controlled-Plan in which x is the cur-
rent task network and D contains all actions and
methods in the domain. acceptable(s, a, x,D)
holds for all actions a such that (i) a appears
in some task network x′ that is produced by re-
cursively decomposing tasks in x, and (ii) a has
no predecessors in x′. progress(s, a, x,D) is the
task network produced by removing a from x′.

MDP-based Planning. We consider MDPs of
the form M = (S, A, app, P r, C,R), where:

• S and A, the sets of states and actions, are finite.
• app(s) is the set of all actions applicable in s.
• For every a ∈ app(s), Pr(s, a, s′) is the probabil-

ity of the state-transition (s, a, s′).
• For every s ∈ S and every a applicable to s,

C(s, a) ≥ 0 is the cost of applying a to s.
• For every s ∈ S, R(s) ≥ 0 is the reward for s.

An MDP planning problem is a triple P =
(M,S0, G), where M = (S, A, app, P r, C,R) is an
MDP, S0 ⊆ S is the set of initial states, and G ⊆ S
is the set of goal states.

For a state s in an MDP problem P = (M,S0, G),
we define results(s, a) = {s′ | Pr(s, a, s′) > 0} if
a ∈ app(s); results(s, a) = ∅ otherwise. We define
succ(s) =

⋃
{s′ ∈ results(s, a) | a ∈ app(s)}. We

say that s is a terminal state if s is a goal state (i.e.,
s ∈ G) or app(s) = ∅.

The value of a state s and a state-action pair
(s, a) are defined recursively as follows:

V (s) =
{

R(s), if s is terminal
maxa∈app(s) Q(s, a), otherwise (1)

Q(s, a) = R(s)− C(s, a)

+ γ
∑

s′∈results(s,a)

Pr(s, a, s′) V (s′) (2)

where 0.0 ≤ γ ≤ 1.0 is the discount factor. The
residual of a state s is defined as the difference be-
tween the left and right sides of the Eqn. 1.

A policy is a partial function from S into A; i.e.,
π : Sπ → A for some set Sπ ⊆ S. The size of π is
|Sπ|. Vπ(s), the value of s induced by the policy π,
is defined similarly to V (s) except that the actions
applied to each state s are only the ones in π(s).

An optimal solution for an MDP planning prob-
lem P = (M,S0, G) is a policy π such that when π
is executed in any of the initial states S0, it reaches
a goal state in G with probability 1, and for every
state s ∈ S0, there is no other policy π′ such that
Vπ′(s) > Vπ(s).

Note that the value function V defined in Eqn. 1
need not to be a total function. Given an MDP
planning problem P = (M,S0, G) and an optimal
solution π for it, the set of states that are reachable
from the initial states S0 by using π constitute a
minimal set of states over which the value function
V needs to be defined.

Researchers have often defined MDP versions of
classical planning problems. An MDP planning
problem PF is an MDP version of a classical prob-
lem P iff the two problems have the same states,
initial state, and goal, and if there is a one-to-
one mapping det from PF ’s actions to P’s actions
such that for every action a in PF , a and det(a)
are applicable to exactly the same states, and for
each such state s, result(s, det(a)) ∈ results(s, a).
The additional states in results(s, a) can be used
to model various sources of the uncertainty in the
domain, such as action failures (e.g., a robot grip-
per may drop its load) and exogenous events (e.g.,
a road is closed). We call det(a) the deterministic
version of a, and a the MDP version of det(a).

Search Control for MDPs
We now describe how to incorporate the search-
control function acceptable of Fig. 1 into MDP plan-
ning algorithms. Many MDP planning algorithms
can be viewed as forward-search procedures em-
bedded inside iteration loops.1 The forward-search
procedure starts at S0 and searches forward by ap-
plying actions to states, computing a policy and/or

1For example, in Fig. 2, a forward-chaining version
of Value Iteration, the iteration loop is the outer while
loop, and the forward-search procedure is everything
inside that loop.

Procedure Fwd-VI
select any initialization for V ; π ← ∅
while V has not converged do
S ← S0; V isited← ∅
while S 6= ∅ do

for every state s ∈ S ∩G, V (s)← R(s)
S ← S \G; S′ ← ∅
for every state s ∈ S

for every a ∈ app(s)
Q(s, a)← (R(s)− C(s, a))

+γ
P

s′∈results(s,a) Pr(s, a, s′) V (s′)

S′ ← S′ ∪ {s | s ∈ results(s, a)}
V (s)← maxa∈app(s) Q(s, a)
π(s)← argmaxa∈app(s)Q(s, a)

V isited← V isited ∪ S
S ← S′ \ V isited

return π

Figure 2: Fwd-VI, a forward-chaining version of
Value Iteration.

a set of utility values as the search progresses. The
iteration loop continues until some sort of conver-
gence criterion is satisfied (e.g., until two successive
iterations produce identical utility values for every
node, or until the residual of every node becomes
less than or equal to a termination criterion ε > 0).

Planners like RTDP and LRTDP fit directly into
this format. These planners repeatedly (1) do a
greedy search going forward in the state space,
then (2) update the values of the visited states
in a dynamic-programming fashion. Even the well
known Value Iteration algorithm can be made to fit
into the above format, by making sure to compute
the values in a forward-chaining manner (see the
Fwd-VI algorithm in Fig. 2).

During the forward search, at each state s that
the planner visits, it needs to know app(s), the set
of all actions applicable to s. For example, the
inner for loop of Fwd-VI iterates over the actions in
app(s); and RTDP and LRTDP choose whichever
action in app(s) currently has the best value.

Let Z be a forward-chaining MDP planning algo-
rithm, F be an instance of Controlled-Plan (see Fig.
1), and acceptableF be F ’s search-control function.
We will now define ZF , a modified version of Z in
which every occurrence of app(s) is replaced by

{a ∈ app(s) | acceptableF (s, det(a), x,D) holds}.

The reason we require Z to be a forward-chaining
MDP algorithm is because the auxiliary informa-
tion x is computed by progression from s’s parent.

Here are some examples of ZF :

• Fwd-VITLPlan is the forward-chaining version of
Value Iteration combined with TLPlan’s search
control function,

• RTDPTALplanner is RTDP combined with TALplan-
ner’s search control function,

• LRTDPSHOP2 is LRTDP combined with SHOP2’s
search control function.

Formal Properties
Let Z be a forward-chaining MDP planning al-
gorithm that is guaranteed to return an opti-
mal solution if one exists, F be an instance of
Controlled-Plan, and acceptableF be F ’s search con-
trol function. Suppose M = (S, A, app, P r, C,R) is
an MDP and P = (M,S0, G) be a planning prob-
lem over M . Then we can define the reduced MDP
MF and planning problem PF as follows:

appF (s) = {a ∈app(s) | acceptableF (s, det(a), x,D)
holds};

resultsF (s, a) =
{

results(s, a) if a ∈ appF (s),
∅ otherwise;

succF (s) =
⋃
{s′ ∈ resultsF (s, a) | a ∈ appF (s)};

SF =transitive closure of succF over S0;

GF =G ∩ SF ;

MF =(SF , A, appF , P r, C,R);

PF =(MF , S0, G
F).

Recall that in every place where the algorithm
Z uses app(s), the algorithm ZF instead uses {a ∈
app(s) | acceptableF (s, det(a), x,D) holds}. Thus
from the above definitions, it follows that running
ZF on P is equivalent to running Z on PF .

We say that acceptableF is admissible for P if
for every state s in P, there is an action a ∈
app(s) such that acceptableF (s, det(a), x,D) holds
and V (s) = Q(s, a), where V (s) and Q(s, a) are as
in Eqs. 1−2. From this we get the following:
Theorem 1 Suppose Z returns a policy π for P.
Then, ZF returns a policy π′ for P such that
Vπ(s) = Vπ′(s) for every s ∈ S0, if acceptableF
is admissible for P.

Next, we consider the computational complexity
of Z and ZF . This depends heavily on the search
space. If P = (M,S0, G) is a planning problem
over an MDP M = (S, A, app, P r, C,R), then the
search space for Fwd-VI on P is a digraph ΓP =
(N,E), where N is the transitive closure of succ
over S0, and E = {(s, s′) | s ∈ N, s′ ∈ succ(s)}.
For algorithms like RDTP and LRTDP, the search
space is a subgraph of ΓP .

If F is an instance of Controlled-Plan, then the
search space for Fwd-VIF is ΓF

P = (SF , EF), where
SF is as defined earlier, and EF = {(s, s′) | s ∈
SF , s′ ∈ succF (s)}.

The worst case is where ΓP = ΓF
P ; this happens if

F ’s search-control function, acceptableF , does not
remove any actions from the search space.

On the other hand, there are many planning
problems in which acceptableF will remove a large

number of applicable actions at each state in the
search space (some examples occur in the next sec-
tion). In such cases, acceptableF can produce an
exponential speedup, as illustrated in the following
simple example.

Suppose ΓP is a tree in which every state at
depth d is a goal state, and for every state of depth
< d, there are exactly b applicable actions and each
of those actions has exactly k possible outcomes.
Then ΓP ’s branching factor is bk, so the number
of nodes is Θ((bk)d). Next, suppose F ’s search-
control function eliminates exactly half of the ac-
tions at each state. Then ΓF

P is a tree of depth d and
branching factor (b/2)k, so it contains Θ(((b/2)k)d)
nodes. In this case, the ratio between the number
of nodes visited by Fwd-VI and Fwd-VIF is 2d, so
Fwd-VIF is exponentially faster than Fwd-VI.

Experimental Evaluation

For our experiments, we used Fwd-VI, RTDP, and
LRTDP, and their enhanced versions Fwd-VISHOP2,
RTDPSHOP2, and LRTDPSHOP2. For meaningful
tests of the enhanced algorithms, we needed plan-
ning problems with much bigger state spaces than
in prior published tests of RTDP and LRTDP. For
this purpose, we chose the following two domains.

One was the Probabilistic Blocks World (PBW)
from the 2004 International Probabilistic Planning
Competition, with a 15% probability that a pickup
or putdown action would drop the block on the ta-
ble. The size of the state space grows combina-
torially with the number of blocks: with 3 blocks
there are only 13 states, but with 10 blocks there
are 58,941,091 states.

The other was an MDP adaptation of the Robot
Navigation domain (Kabanza, Barbeau, & St-Denis
1997; Pistore, Bettin, & Traverso 2001). A building
has 8 rooms and 7 doors. Some of the doors are
called kid doors. Whenever a kid door is open, a
“kid” can close it randomly with a probability of
0.5. If the robot tries to open a closed kid door, this
action may fail with a probability of 0.5 because
the kid immediately closes the door. Packages are
distributed throughout the rooms, and need to be
taken to other rooms. The robot can carry only
one package at a time. When there are 5 packages,
the state space contains 54,525,952 states.

In both domains, we used a reward of 500 for
goal states and 0 for all other states, a cost of 1
for each action, a discount factor γ = 1.0, and a
termination criterion ε = 10−8.

The RTDP and LRTDP algorithms use domain-
independent heuristics to initialize their value func-
tions. We used two such heuristics. One, h500, ini-
tializes the value of every state to 500. The other,
hmax, is Bonet & Geffner’s (2003) hmin heuristic

RTDP
LRTDP

0.001

0.01

0.1

1

10

100

1000

b=3 b=4 b=5 b=6 b=7 b=8 b=9 b=10

Number of Blocks

A
vg

. C
PU

 T
im

es
 (s

ec
s)

Fwd-VISHOP2

RTDPSHOP2

LRTDPSHOP2

Figure 3: Running times for PBW using h500, plot-
ted on a semi-log scale. With 6 blocks (b = 6), the
modified algorithms are about 10,000 times as fast
as the original ones.

RTDP

LRTDP

0.001

0.1

10

1000

b=3 b=4 b=5 b=6 b=7 b=8 b=9 b=10

Number of Blocks

A
vg

. C
PU

 T
im

es
 (s

ec
s)

Fwd-VISHOP2

RTDPSHOP2

LRTDPSHOP2

Figure 4: Running times for PBW using hmax, plot-
ted on a semi-log scale. Like before, when b = 6 the
modified algorithms are about 10,000 times as fast
as the original ones.

adapted to work on maximization problems:

Q(s, a) = R(s)− C(s, a)

+ max
s′∈results(s,a)

Pr(s, a, s′) V (s′) (3)

We implemented all six of the planners in Lisp,2,
and tested them on a HP Pavilion N5415 with
256MB memory running Linux Fedora Core 2.

On most of the problems, Fwd-VI failed due to
memory overflows, so we do not report any results
for it. Figures 3 and 4 show the average run times
of all the other five planners in the PBW domain.
Each run time includes the time needed to com-
pute h500 or hmax, and each data point is the av-
erage of 20 runs. The run times for RTDP and
LRTDP were almost the same, and so were those
of the three enhanced planners. Every algorithm’s

2The authors of RTDP and LRTDP were willing to
let us use their C++ implementations, but we needed
LISP in order to use SHOP2’ search-control mechanism.

Table 1: Run times using h500 on Robot-Navigation
problems with one kid door. p is the number of pack-
ages. Each data point is the average of 20 problems.

p = 1 2 3 4 5

RTDP 10.213 254.642 - - -

LRTDP 11.804 1622.679 - - -

Fwd-VISHOP2 0.009 0.026 0.056 0.076 0.137

RTDPSHOP2 0.01 0.023 0.046 0.069 0.11

LRTDPSHOP2 0.016 0.031 0.063 0.088 0.167

run time grows exponentially, but the growth rate
is much smaller for the enhanced algorithms than
for the original ones—for example, at b = 6 they
have about 1/10,000 of the run time of the origi-
nal algorithms. Once we got above 6 blocks (4,051
states in the state space), the original algorithms
ran out of memory.3 In contrast, the modified al-
gorithms could easily have handled problems with
more than 10 blocks (more than 58,941,091 states).

The reason for the fast performance of the mod-
ified algorithms is that in an HTN planner like
SHOP2, it is very easy to specify domain-specific
(but problem-independent) strategies like “if there
is a clear block that you can move to a place where
it will never need to be moved again, then do so
without considering any other actions,” and “if you
drop a block on the table, then pick it up again im-
mediately.” Such strategies reduce the size of the
search space tremendously.

Tables 1 and 2 show the running times for the
planners in the Robot Navigation domain. The
times for RTDP and LRTDP grew quite rapidly, and
they were unable to solve many of the problems at
all because of memory overflows. RTDPSHOP2 and
LRTDPSHOP2 had no memory problems, and their
running times were quite small.

An explanation about the performance of RTDP
and LRTDP in our experiments is in order. As men-
tioned before, LRTDP uses a labeling mechanism to
mark states whose values have converged so that
the algorithm does not visit them again during the
search process. In cases where the value of a state
does not converge until towards the end of planning,
labeling states does not help much to improve the
performance. We observed in our experiments that
LRTDP required significant times for attempting to
label the states it visits. On the other hand, RTDP
was free from such overhead, and it was able to
perform better than LRTDP on our problems.

3Each time RTDP or LRTDP had a memory over-
flow, we ran it again on another problem of the same
size. We omitted each data point on which there were
more than five memory overflows. Thus our data make
the performance of RTDP and LRTDP look better than
it really was—but this makes little difference since
they performed so much worse than RTDPSHOP2 and
LRTDPSHOP2.

Table 2: Run times using hmax on Robot-Navigation
problems with one kid door. p is the number of pack-
ages. Each data point is the average of 20 problems.

p = 1 2 3 4 5

RTDP 23.847 629.458 - - -

LRTDP 15.078 383.173 - - -

Fwd-VISHOP2 0.011 0.034 0.085 0.136 0.251

RTDPSHOP2 0.01 0.031 0.082 0.125 0.224

LRTDPSHOP2 0.011 0.040 0.089 0.141 0.258

Related Work
In addition to the RTDP and LRTDP algorithms
described earlier, another similar algorithm is LAO*
(Hansen & Zilberstein 2001), which is based on the
classical AO* search algorithm. LAO* can do Value
Iteration or Policy Iteration in order to update the
values of the states in the search space, and can
generate optimal policies under certain conditions.

Domain-specific knowledge has been used to
search MDPs in reinforcement learning research
(Parr 1998; Dietterich 2000). These approaches are
based on hierarchical abstraction techniques that
are somewhat similar to HTN planning. Given an
MDP, the hierarchical abstraction of the MDP is
analogous to an instance of the decomposition tree
that an HTN planner might generate. However,
the abstractions must be supplied in advance by
the user, rather than being generated on-the-fly by
the HTN planner.

In envelope-based MDP planning (Dean et al.
1995), an envelope of an MDP M is a smaller MDP
M ′ ⊆ M . Envelope-based planning algorithms are
anytime algorithms. An envelope-based planner
begins with an initial envelope, and computes an
optimal policy for this envelope. On subsequent
iterations, it does the same thing on larger and
larger envelopes, stopping when time runs out or
when the current envelope contains all of M . The
initial envelope is typically generated by a search
algorithm, which often is a classical planning al-
gorithm such as Graphplan. This suggests that
domain-configurable planning algorithms such as
TLPlan and SHOP2 would be good candidates for
the search algorithm, but we do not know of any
case where they have been tried.

Our ideas in this paper, and in particular the no-
tion of a search-control function, were influenced
by the work of Kuter & Nau (2004), in which they
described a way to generalize a class of classical
planners and their search-control functions for use
in nondeterministic planning domains, where the
actions have nondeterministic effects but no prob-
abilities for state transitions are known.

Conclusions and Future Work
In this paper, we have described a way to take
any forward-chaining MDP planner, and modify

it to include the search-control algorithm from a
forward-chaining domain-configurable planner such
as TLPlan, SHOP2, or TALplanner.

If the search-control algorithm satisfies an “ad-
missibility” condition, then the modified MDP
planner is guaranteed to find optimal solutions. If
the search-control algorithm generates a smaller set
of actions at each node than the original MDP al-
gorithm did, then the modified planner will run ex-
ponentially faster than the original one.

To evaluate our approach experimentally, we
have taken the search-control algorithm from the
SHOP2 planner (Nau et al. 2003), and incorpo-
rated it into three MDP planners: RTDP (Bonet
& Geffner 2000), LRTDP (Bonet & Geffner 2003),
and Fwd-VI, a forward-chaining version of Value It-
eration (Berstekas 1995). We have tested the per-
formance of the modified algorithms in two MDP
planning domains. For the original planning algo-
rithms, the running time and memory requirements
grew very quickly as a function of problem size, and
the planners ran out of memory on many of the
problems. In contrast, the modified planning algo-
rithms had no memory problems and they solved
all of the problems very quickly.

In the near future, we are planning to do ad-
ditional theoretical and experimental analyses of
our technique. We also are interested in extend-
ing the technique to MDPs that have continuous
state spaces; such state spaces often arise in fields
like control theory and operations research. We
are currently working on that problem jointly with
researchers who specialize in the fields of control
theory and operations research.

Acknowledgments. This work was supported in
part by NSF grant IIS0412812, DARPA’s REAL
initiative, and ISR seed funding. The opinions ex-
pressed in this paper are those of authors and do
not necessarily reflect the opinions of the funders.

References

Bacchus, F., and Kabanza, F. 2000. Using Tem-
poral Logics to Express Search Control Knowledge
for Planning. Artificial Intelligence 116(1-2):123–
191.
Bacchus, F. 2001. The AIPS ’00 planning compe-
tition. AI Magazine 22(1):47–56.
Berstekas, D. 1995. Dynamic Programming and
Optimal Control. Athena Scientific.
Bonet, B., and Geffner, H. 2000. Planning with
Incomplete Information as Heuristic Search in Be-
lief Space. In AIPS-00, 52–61.
Bonet, B., and Geffner, H. 2003. Labeled
RTDP: Improving the Convergence of Real-Time
Dynamic Programming. In ICAPS-03, 12–21.

Boutilier, C., and Goldszmidt, M. 1996. The
frame problem and bayesian network action repre-
sentation. In Canadian Conference on AI, 69–83.
Currie, K., and Tate, A. 1991. O-Plan: The
open planning architecture. Artificial Intelligence
52(1):49–86.
Dean, T.; Kaelbling, L. P.; Kirman, J.; and
Nicholson, A. 1995. Planning under time con-
straints in stochastic domains. Artificial Intelli-
gence 76(1–2):35–74.
Dietterich, T. G. 2000. Hierarchical reinforcement
learning with the MAXQ value function decompo-
sition. JAIR 13:227–303.
Fox, M., and Long, D. 2002. International plan-
ning competition. http://www.dur.ac.uk/d.p.long/
competition.html.
Hanks, S., and McDermott, D. 1993. Modeling
a dynamic and uncertain world I: Symbolic and
probabilistic reasoning about change. Technical
Report TR-93-06-10, U. of Washington, Dept. of
Computer Science and Engineering.
Hansen, E. A., and Zilberstein, S. 2001. LAO*: A
Heuristic Search Algorithm that Finds Solutions
With Loops. Artificial Intelligence 129:35–62.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C.
1999. SPUDD: Stochastic planning using decision
diagrams. In UAI-99.
Kabanza, F.; Barbeau, M.; and St-Denis, R. 1997.
Planning Control Rules for Reactive Agents. Ar-
tificial Intelligence 95(1):67–113.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1994.
An algorithm for probabilistic planning. Artificial
Intelligence 76(1-2):239–286.
Kuter, U., and Nau, D. 2004. Forward-Chaining
Planning in Nondeterministic Domains. In AAAI-
04, 513–518.
Kvarnström, J., and Doherty, P. 2001. TALplan-
ner: A Temporal Logic-based Forward-chaining
Planner. Annals of Math and AI 30:119–169.
Littman, M. L. 1997. Probabilistic propositional
planning: Representations and complexity. In
AAAI/IAAI Proceedings, 748–761.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Mur-
dock, W.; Wu, D.; and Yaman, F. 2003. SHOP2:
An HTN Planning System. JAIR 20:379–404.
Parr, R. 1998. Hierarchical Control and learning
for Markov decision processes. Ph.D. Dissertation,
Univ. of California at Berkeley.
Pistore, M.; Bettin, R.; and Traverso, P. 2001.
Symbolic Techniques for Planning with Extended
Goals in Nondeterministic Domains. In ECP-01.
Wilkins, D. 1990. Can AI planners solve practical
problems? Computational Intelligence 6(4):232–
246.

