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Abstract

Researchers have developed a huge number of algorithms to
solve classical planning problems. We provide a way to use
these algorithms, unmodified, to generate strong-cyclic solu-
tions in fully-observable nondeterministic planning domains.
Our experiments show that when using our technique with FF
and SGPlan (two well-known classical planners), its perfor-
mance compares quite favorably to that of MBP, one of the
best-known planners for nondeterministic planning problems.

Introduction
Despite the promising performance of planning algorithms
such as MBP (Cimatti et al. 2003), nondeterministic plan-
ning problems,1 in which each action may nondeterminis-
tically produce any of several outcomes, are generally very
difficult to solve. This difficulty persists even when the plan-
ning problems are fully observable, i.e., the states of the
world can be completely observed at runtime. One reason
is that in nondeterministic planning problems, the planning
algorithm must reason about all possible different execution
paths to find a plan that works despite the nondeterminism,
hence the size of the generated conditional plan may grow
exponentially.

In contrast, researchers have developed many highly effi-
cient planning algorithms for domain-independent classical
planning. In this paper we describe a way to use these al-
gorithms to solve nondeterministic planning problems. We
provide the following contributions:

• NDP, an algorithm that can use any classical planner to
generate cyclic solutions in nondeterministic planning do-
mains. NDP accomplishes this without requiring any in-
ternal modifications to the classical planner itself. Given a
classical planner R and a nondeterministic planning prob-
lem P , NDP calls R on a sequence of classical planning
problems and uses the results of these calls to construct a
solution for P .
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1Unfortunately, the term “nondeterministic planning problem”
seems to have two meanings in the current literature: some re-
searchers attach probabilities to the action outcomes (as in a
Markov Decision Process), and others omit the probabilities (as
in a nondeterministic automaton). Our usage is the latter one.

• Conjunctive abstraction, in which conjuncts of literals are
used to represent classes of states rather than individual
states. This compresses the state space in a similar way to
the Binary Decision Diagrams (BDDs) used in the MBP
planner (Cimatti et al. 2003). The compression is less
powerful than BDDs, but has the advantage that it can be
used in any planner that uses nondeterministic STRIPS
operators, without any modifications to the planner.
To provide insight about the strengths and weakness of

our approach, we report on experimental tests of NDP
and conjunctive abstraction, using four well-known classi-
cal planners in three different planning domains:
• NDP worked especially well with FF (Hoffmann and

Nebel 2001) and SGPlan (Hsu et al. 2006). In two of
our experimental domains (Robot Navigation (Cimatti et
al. 2003) and nondeterministic Blocks World (Kuter and
Nau 2004)), NDP with those planners dramatically out-
performed MBP.

• In our third experimental domain, Hunter-Prey (Kuter et
al. 2005), conjunctive abstraction did not provide as much
compression as MBP’s BDDs did. Consequently, MBP
outperformed NDP in this domain regardless of which
classical planner we used.

Definitions and Notation
Nondeterministic Planning Domains. Intuitively, a non-
deterministic planning domain is one in which each action
may have more than one possible outcome. Formally, it is
a triple D = (S,A, γ), where S is a finite set of states, A
is a finite set of actions, and γ : S × A → 2S is the state-
transition function. An action a is applicable in s if γ(s, a)
is nonempty. We let AD(s) be the set of all actions that are
applicable in s in the domain D. If a ∈ AD(s), then execut-
ing a in s may produce any of the states in γ(s, a).

A policy is a function from a set Sπ ⊆ S into A, such
that for each s ∈ Sπ , the action π(s) is applicable to s. π’s
execution structure is a digraph Σπ representing all possible
executions of π. Formally, Σπ = (Vπ, Eπ), where Vπ =
Sπ ∪

⋃
{γ(s, π(s)) | s ∈ Sπ} and Eπ = {(s, s′) | s ∈

Sπ, s′ ∈ γ(s, π(s))}. If there is a path in Σπ from s to s′

then s is a π-ancestor of s′ and s′ is a π-descendant of s. If
the path has length 1, s is a π-parent of s′ and s′ is a π-child
of s. A node is a leaf if it has no π-children.



If S is any set of states, then π’s execution structure on S,
Σπ(S), is the subgraph of Σπ rooted at S. (Note that if π is
empty then Σπ(S) = (S, ∅)).

A nondeterministic planning problem is a triple P =
(D,S0, G), where D = (S,A, γ) is a nondeterministic
planning domain, S0 ⊆ S is a set of initial states, and G ⊆ S
is a set of goal states. A strong-cyclic solution for P is a
policy π such that every state s in Σπ is a π-ancestor of at
least one goal state and the leaf nodes in Σπ are goal states
(Cimatti et al. 2003). Note that for each initial state in Σπ ,
there is at least one path that ends in a goal state and the col-
lection of those paths is called a weak solution to P (Cimatti
et al. 2003). (Cimatti et al. 2003) also defines strong solu-
tions, but we will not need that definition in this paper.

Classical Planning Domains. An action a is classical if
|γ(s, a)| ≤ 1 ∀s, i.e., a never has more than one outcome. A
planning domain D = (S,A, γ) is classical if every action
in A is classical. A planning problem P = (D,S0, G) is
classical if D is classical and there is just one initial state,
i.e., S0 = {s0} for some s0 ∈ S.

In a classical planning problem P , solutions are conven-
tionally defined to be sequential plans rather than policies.
But if a plan p is an irredundant solution for P , i.e., if no
proper subsequence of p is a solution for P , then it is quite
easy to translate p into a policy πp,s0 that is equivalent to p
at s0, in the sense that both p and πp,s0 produce exactly the
same sequence of state transitions. We’ll omit the details due
to lack of space. The following lemma follows immediately:

Lemma 1 An irredundant plan p is a solution for a classical
planning problem P = (D, {s0}, G) iff πp,s0 is a solution
for P .

Relaxations of Nondeterministic Domains. Let D =
(S,A, γ) be a nondeterministic planning domain whose ac-
tions are A = {a1, . . . , an}. A classical relaxation of an
action ai ∈ A is a set of classical actions {ai1, . . . , aik}
and a state-transition function γ such that for every state s,
γ(s, ai) = γ(s, ai1) ∪ . . . ∪ γ(s, aik).

Let D = (S,A, γ) be a classical planning domain such
that S = S, and suppose there is a partition {A1, . . . , An}
of A such that for i = 1, . . . , n, Ai is a classical relaxation
of the action ai ∈ A. Then D is a classical relaxation of
D. By extension, we will say that the classical planning
problem P = (D, {s0}, G) is a classical relaxation of the
planning problem P = (D, {s0}, G).

For example, suppose D is a nondeterministic version of
the Blocks World in which the action unstack(x, y) has two
possible outcomes: either we’re holding x, or else x drops
onto the table. Then we can produce a classical relaxation
of D by replacing this action with an action unstack1(x)
whose outcome is that we are holding x, and an action
unstack2(x) whose outcome is that x is on the table.

The following theorem provides a foundation for the plan-
ning procedure in the next section. We omit the proof due to
lack of space.

Theorem 1 Let D = (S,A, γ) be a nondeterministic plan-
ning domain, P = (D, {s0}, G) be a planning problem in

Procedure NDP(D,S0, G,R)
1. D ← a classical relaxation of D; π ← ∅; S0 ← S0 \G
2. if S0 = ∅ then return π
3. loop
4. if ∃s ∈ S0 s.t. AD(s) = ∅ then return FAILURE
5. S ← {all non-goal leaf states in Σπ(S0)}
6. if S = ∅ then
7. π ← π \ {(s, a) ∈ π|s isn’t a π-descendant of S0}
8. return π
9. arbitrarily select a state s ∈ S

10. call R on the planning problem (D, s,G)
11. if R returns a solution plan p then
12. π̂ ← p’s policy image in D
13. π ← π ∪ {(s, a) ∈ π̂ | s 6∈ Sπ}
14. else, R returns FAILURE
15. for every s′ and a such that s ∈ γ(s′, a)
16. π ← π − {(s′, a)}
17. modify D to make the actions in a’s relaxation

inapplicable at s′

Figure 1: The NDP algorithm. Sπ is the set of states in the
policy π and AD(s) is set of applicable actions in the state s

given the domain D.

D, and P be a classical relaxation of P . Suppose P has a
solution plan p = 〈a1, . . . , an〉. For each ai in p, let âi be
the action in A whose classical relaxation includes ai; and
let π = {(si−1, âi) | (si−1, ai) ∈ πp,s0}. Then π is a weak
solution for P .

If p and π are as above, we’ll call π the policy image of p
in D.

Strong-Cyclic Planning in Nondeterministic
Domains Using Classical Planners

The NDP procedure is shown in Figure 1. Its input includes
a nondeterministic planning problem P = (D,S0, G), and
a classical planning algorithm R. NDP successively invokes
R on one or more classical planning problems, and con-
structs its strong-cyclic solution from R’s solutions.

In Line 1, NDP generates a classical relaxation D of D,
and initializes π to be the empty policy. At this point, NDP
also removes any goal state in S0 since the solution does
not need to specify those states. If all initial states are goal
states, NDP simply returns the empty policy (Line 2).

In Line 4, NDP checks whether there is an initial state
in which there are no actions applicable; if so, there are no
strong-cyclic solutions to the input planning problem.

In Line 5, NDP checks whether Σπ(S0) contains any non-
goal leaf nodes. If the answer is no, then π is a solution for
P ; so in line 9, NDP constructs a smaller solution for P by
removing the “unreachable” parts of π, i.e, removing state-
action pairs that can’t be reached by executing π starting at
S0 (Line 7). Theorem 2 shows that the policy returned by
NDP is a solution for P .

If Σπ(S0) contains one or more non-goal leaf nodes, NDP
arbitrarily selects one such node s and constructs a classical
planning problem (D, {s}, G) on which to call R. When R



D

D

Figure 2: A nondeterministic planning domain D and its
classical relaxation D. Circles are states, arrows are actions,
and black circles are states that have no applicable actions.

returns, there are two cases:

• Case 1. R returns a solution plan p for (D, {s}, G). Then
p’s policy image π̂ is a weak solution for (D, {s}, G), so
NDP incorporates into π every state-action pair (s′, a) ∈
π̂ such that s′ does not already appear in π (Lines 12–13).

• Case 2. R returns FAILURE since it is unable to find a
solution at s, which can happen if no solution exists or
if R is incomplete. Hence if s ∈ S0, then NDP returns
FAILURE. Otherwise, NDP removes from π every state-
action pair (s′, a) such that s′ is a π-parent of s, and mod-
ifies D to prevent the classical relaxation of a from being
used at s′ (Lines 16 –17).

Note that when NDP removes the action a specified by the
current policy π for the parent s of a failed state, the parent
becomes a leaf state in Σπ in the next iteration. Since NDP
modifies the domain D to make a inapplicable in s, the clas-
sical planner R does not generate a plan (if any) that starts
with a in the next iteration. This provides NDP, in effect, an
implicit backtracking mechanism.

As an example, consider the nondeterministic planning
domain, D and its classical relaxation, D, both shown in
Figure 2. The circles illustrate the states in the domain, the
arrows correspond to the state transitions induced by the ac-
tions, the states shown as black do not have any applicable
actions, and s0 is the only initial state.

• In NDP’s first iteration, the classical planner returns the
plan 〈a02, a21, . . .〉, so NDP incorporates this plan in the
policy π (Lines 12–13).

• s6 is now a leaf node, so suppose NDP calls R on s6 in
the next iteration. Since no actions are applicable to s6, R
returns FAILURE. Since a2 was the action that led to s6,
NDP modifies D to make a2’s two classical relaxations,
a12 and a22, inapplicable to s1.

• The above change makes s1 into leaf node; so in the next
iteration, suppose NDP calls R on s1. Since s1 no longer
has any applicable actions, R returns FAILURE, and NDP
removes from D the classical relaxations a01 and a02 of
the action a0 that leads to s1.

Figure 3: A state in the Robot Navigation domain.

• There is now just one leaf node, namely s0. Hence in the
next iteration, NDP calls R on s0. This time, R returns a
plan that includes a12. Thus NDP incorporates a1 into its
policy, which makes s4 a new leaf node.

• Since s4 has no applicable actions, what eventually will
happen is that R will eventually return FAILURE at s4,
NDP will remove a11 and a12 so that s0 now has no ap-
plicable actions. Hence R will return FAILURE at s0, and
at this point NDP will return FAILURE too.

The following theorem (the proof is omitted due to lack of
space) establishes conditional soundness and completeness
for NDP. In this theorem (and throughout the rest of the
paper), the notation NDP/R refers to using NDP with R as
its classical planning algorithm.

Theorem 2 If R is sound and/or complete, so is NDP/R.

Conjunctive Abstraction
In some cases, a nondeterministic action may have a huge
number of possible outcomes. Thus, NDP may make a huge
number of calls to its classical planner in order to generate
a solution policy, and in the worst case, the number of such
calls will be exponential in the size of the domains.

For example, consider the Robot Navigation Domain,
which is often used as a benchmark problem for nondeter-
ministic planning domains (Cimatti et al. 2003). This do-
main is a variant of a similar domain described in (Kabanza,
Barbeau, and St-Denis 1997). It consists of a building with 8
rooms connected by 7 doors (see the map in Figure 3), where
several objects that need to be moved to desired locations,
and a robot that is responsible for moving them. The robot
can open and close doors, move through doorways, and pick
up and put down objects. It can hold at most one object at a
time. Some or all of the doors are “kid doors,” and a “kid”
can open or close any combination of those doors after each
of the robot’s actions. The kid is modeled not as a separate
agent, but as a set of nondeterministic effects for each action.

In the Robot Navigation domain with k “kid doors,” open-
ing a door has 2k possible outcomes (2k possible com-
binations of open and closed kid doors). Thus it would
take Θ(2k) space to write the action as a nondeterministic



STRIPS operator, it would require to make Θ(2k) calls to the
classical planner R from NDP, and therefore, solving plan-
ning problems that contain this operator would take time and
space Ω(2k). The MBP planner (Cimatti et al. 2003) tack-
les this problem by using Binary Decision Diagrams (BDDs)
to encode sets of states and planning operators that operate
over those sets.

In NDP, we cannot exploit a BDD-based (or a sim-
ilar) machinery, because NDP does not know the inter-
nals of its classical planner R, nor can it modify R to
use BDDs. Instead, we developed a way to accomplish
a similar (though less powerful) effect within a conven-
tional nondeterministic-STRIPS-operator representation, by
changing some of the planning operators’ effects and intro-
ducing one new planning operator. These modifications pro-
vide a way to go back and forth, in a controlled fashion, be-
tween individual states and classes of states during planning.

We start with a planning domain D using the conventional
state representation in which a state s is a set of ground
atoms, and a ground atom is true iff it is in s. Let Q be the
set of all ground atoms in D. Let S be the set of all states in
which one set of atoms QT ⊂ Q are each true, another set
of atoms QF ⊂ Q are each false. Let QI = Q−QT −QF .
Then S contains 2|QI | states such that for each atom q ∈ QI ,
there is a state s ∈ S in which q is true and another state
s′ ∈ S in which q is false.

We’ll now define D̂, D’s conjunctive abstraction domain
(so called because conjuncts represent sets of states). D̂’s
initial states and goal states are the same as in D. D̂’s atoms
and operators are as follows:

The atoms. In D̂, the set of ground atoms Q̂ consists of
Q, plus a new ground atom ignore-q for each atom a ∈
Q. Here, ignore-q’s intended meaning is that there are two
states s, s′ in S such that q is true in s and it is false in s′.
In D, we can represent S as a single state, namely Ŝ =
QT ∪ {ignore-q | q ∈ QI}.

As an example, consider Fig. 3 again. If we don’t care
which doors are open and which doors are closed, then the
figure corresponds to a set SFig2 of 27 different states. In the
conjunctive abstraction domain, the abstract state ŜFig2 is
{loc(robot, r1), loc(c, r1), loc(d,r1), loc(b,r4),
ignore-open(d1c), ignore-open(d12), ignore-
open(d23), ignore-open(d4c), ignore-open(d5c),
ignore-open(d6c), ignore-open(d67) } .
It is important to note that, S does not represent uncer-

tainty in the state knowledge and thus, its semantics are quite
different a “belief state ” as in partially observable planning.
Instead, S represents sets of those states can be clustered to-
gether because searching over them together is equivalent to
searching over each of them individually in terms of gener-
ating a solution to a fully observable nondeterministic plan-
ning problem.
The operators. We can translate a planning operator o of D
into an operator ô that produces an abstract state, by adding
an effect ignore-q if o’s effects don’t already include q or
¬q. Whether we’ll prefer to do this or to retain o unmodified
will depend on the planning domain.

Let S be a set of states and Ŝ be S’s abstract state. If
an operator o has a precondition q, we cannot apply o in Ŝ
unless we know whether q is true or false. For example,
in the Robot Navigation Domain, we can’t move through a
doorway unless we know whether the doorway is open or
closed. To get q’s truth value, we may need to split S into
subsets. To enable this to happen, D̂ will include, for each
predicate p in D, a splitting operator split-p.

split-p(x1, . . . , xn)
precond: ignore-p(x1, . . . , xn),
effects1: ¬ignore-p(x1, . . . , xn), p(x1, . . . , xn)
effects2: ¬ignore-p(x1, . . . , xn),¬p(x1, . . . , xn)

For example, split-open(d1c) splits ŜFig2 into two abstract
states that represent {s ∈ S | open(d1c) is true} and {s ∈
S | open(d1c) is false}. This tells NDP to reason separately
about what to do when the door is open and when it is closed.

Note that although splitting operators resemble nondeter-
ministic planning operators syntactically, their semantics is
quite different. First, since their intent is to manage abstract
states, they do not appear in the solution policies returned by
NDP. Second, their possible outcomes do not model nonde-
terminism; instead they’re used to tell NDP to plan for all
possible truth values of some atom.

Experimental Evaluation
We implemented NDP in Common Lisp, and compared it
with MBP on three fully-observable nondeterministic plan-
ning domains that are well-known from previous experimen-
tal studies: Robot Navigation (Cimatti et al. 2003), Hunter-
Prey (Kuter et al. 2005)2 , and a nondeterministic version
of the Blocks World (Kuter and Nau 2004). All of these
domains admit strong-cyclic solutions.

For NDP, we used the conjunctive abstraction scheme
described in the previous section; but we did not use this
scheme for MBP. MBP already uses BDDs, a more pow-
erful abstraction scheme, and our preliminary trials showed
that MBP performed much worse with conjunctive abstrac-
tion than without it.3

For NDP’s classical planner, we used the most recent
available versions of the four well-known classical planners:
FF (Hoffmann and Nebel 2001), LPG (Gerevini, Saetti,
and Serina 2003), SatPlan (Kautz, Selman, and Hoffmann
2006), and SGPlan (Hsu et al. 2006).

Recall that “NDP/SGPlan” means NDP using SGPlan,
“NDP/FF” means NDP using FF, and so forth. We ran the
experiments on a Macbook Pro with a 2.16GHz Intel Core
Duo processor, running Fedora Core 6 Linux on a virtual
machine with 512MB memory.4

2The Hunter-Prey domain is a “moving target” problem first
introduced in (Koenig and Simmons 1995) as a testbed for real
time search, in which planning and execution may sometimes be
interleaved. As demonstrated in (Kuter et al. 2005), it is also a
non-trivial benchmark for offline generation of solutions for non-
deterministic planning problems; thus, we also used it here.

3With conjunctive abstraction, MBP had two ways to create ab-
stract states (its BDDs and our operators), and its search algorithm
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Figure 4: Average running times in seconds in Robot-
Navigation with 7 kid doors, as a function of the number
of objects.
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Figure 5: Average solution size in Robot-Navigation with
7 kid doors, as a function of the number of objects. The
solution sizes of NDP/FF, NDP/LPG, NDP/SatPlan, and
NDP/SGPlan were nearly equal, hence the label NDP/R
refers to all of them.

Robot Navigation. The first set of experiments were in the
Robot Navigation domain described previously, with k = 7
(i.e., all 7 doors were kid doors). We varied the number of
objects n from 1 to 10. For each value of n, we measured
each planner’s average CPU time on 20 randomly-generated
problems.5 As shown in Figure 4, the best running times
were achieved by NDP/FF and NDP/SGPlan, followed by
NDP/LPG and MBP, followed by NDP/SatPlan.

MBP cannot use the search heuristics in the classical
planners, hence it searched most of the state space in most
of the planning problems. The heuristics in NDP/SGPlan
and NDP/FF avoided visiting most of the state space, hence
they had much better running times than MBP.

We were surprised that NDP/SatPlan performed so

insisted on visiting both sets of states.
4In all these experiments, we ran LPG with its “-speed” option.

We also did not use LPG’s default value for the maximum variables
that could a planning problem have in order to avoid memory over-
flow problems even in small problem instances in our experiments.

5As in (Pistore and Traverso 2001), MBP’s CPU times include
both its preprocessing and search times. Omitting the former would
not have significantly affected the results: they were never more
than a few seconds, and usually below one second.

badly. We inspected the CNF formulas that SatPlan pro-
duces while planning, and found that their sizes were on
the order of 10MB in this domain. As SatPlan always at-
tempts to generate optimal plans, this leads us to suspect that
SatPlan was generating a CNF representation of most of the
state space at the beginning of the planning process and/or
making excessive use of splitting operators to generate lots
of non-abstract states during that process.

Figure 5 shows the average sizes of the solutions gen-
erated by the planners in these experiments, where size is
measured as the number of terms in the policy representa-
tions produced by the planners. In our opinion, size is a
very good measure of solution quality—but to the best of
our knowledge, no good measure of solution quality exists
for nondeterministic planning problems. One might like to
measure something like a solution’s average-case or worst-
case execution length, but the average-case execution length
is undefined since there are no probabilities on the actions’
outcomes, and if the solution contains a cycle, the worst-case
execution length has no upper bound.6

As shown in Figure 5, MBP’s solutions were much larger
than the ones found by NDP. One reason for this is that
the boolean formulas in MBP’s solutions weren’t in simplest
form: MBP has an option for doing boolean simplification
on its BDD representations, but we didn’t use this option
because it increases MBP’s running time. Another reason is
that the solution policies produced by MBP tell what actions
to perform even in states that can never be reached in any
execution of the policy. If we could somehow remove the
parts of the BDD that represent these “unreachable” states
and then do boolean simplification, then we suspect the re-
sulting solution size might be similar to NDP’s.

Hunter-Prey. In our version of the Hunter-Prey domain,
the world is an n × n grid in which a hunter wants to catch
one or more prey. The world is fully observable: the hunter
can always observe the locations of the prey. The hunter has
five possible actions; move north, south, east, or west, and
catch (the latter is applicable only when the hunter and prey
are in the same location). The prey has also five actions: the
four movement actions plus a stay-still action. But (anal-
ogously to the kid doors in the Robot Navigation domain),
the prey is not represented as a separate agent: instead, its
possible actions are encoded as nondeterministic outcomes
for the hunter’s actions.

Figure 6 shows the running time for each planner when
there is just one prey and the grid size varies from 2 × 2
to 6 × 6. Each data point is the average of 20 randomly
generated problems. In some cases, NDP’s classical planner
had a memory overflow or could not solve a problem within
our time limit (20 minutes), and in those cases we omitted
the corresponding data point.

MBP’s running time were significantly better than
NDP’s, regardless of which classical planner NDP used.

6In other words, for every finite number n, there is an execution
of length greater than n. It would be tempting to conclude from
this that the worst-case execution time is infinite, but this wouldn’t
be quite correct since every fair execution has finite length.
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Figure 7: Average running times in seconds in Hunter-Prey
as a function of the number of prey, on a 5× 5 grid.

This occurred because in the Hunter-Prey domain, MBP’s
BDD-based abstract states did a much better job of com-
pressing the search space than conjunctive abstraction did.
For example, MBP could use a single BDD to represent the
set of all states in which the hunter needed to move in a par-
ticular direction, but NDP could not represent these states as
a single abstract state because the states did not have enough
ignore atoms in common.

To investigate this further, we have also done experiments
with varying number of prey in fixed grid. As shown in Fig-
ure 7, MBP still did best when we fixed the grid size at 5×5
and varied the number of prey from 2 to 6. On the larger
problems, NDP/FF and NDP/LPG exceeded our 20-minute
time limit, and NDP/SatPlan and NDP/SGPlan generated
error messages. We think these messages occurred during
SatPlan’s and SGPlan’s preprocessing phases, but we did
not investigate this in detail since it would have required
modifying the planners’ source code.

Nondeterministic Blocks World. The nondeterministic
Blocks World is like the classical Blocks World, except that
an action may have three possible outcomes: (1) the same
outcome as in the classical case, (2) the block slips out of
the gripper and drops on the table, and (3) the action fails
completely and the state does not change.

Figure 8 shows the planners’ average CPU times in this
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Figure 8: Average running times in seconds in the non-
deterministic Blocks World, as a function of the number
of blocks. The running times of NDP/FF, NDP/LPG,
NDP/SatPlan, and NDP/SGPlan were nearly equal, hence
the label NDP/R refers to all of them.

domain, as a function of the number of blocks. Each data
point represents the average running time on 20 random
problems. MBP did badly compared to NDP regardless of
which classical planner NDP used. The reasons are twofold.
First, there were no large sets of states that could be clus-
tered together; hence neither MBP’s BDD-based represen-
tation nor conjunctive abstraction could make much differ-
ence. Second, MBP did not exploit the heuristics used in
the classical planners, hence MBP searched the most of the
state space in most planning problems.

Related Work
Early works on fully-observable nondeterministic domains
include the CASSANDRA planning system (Pryor and
Collins 1996), CNLP (Peot and Smith 1992), PLINTH
(Goldman and Boddy 1994), and UCPOP (Penberthy and
Weld 1992), and QBFPLAN (Rintanen 1999). These algo-
rithms do not perform as well as planners such as MBP, and
cannot scale up to large planning problems.

One of the earliest attempts to use model-checking tech-
niques for planning under nondeterminism is first introduced
in the SIMPLAN planner of (Kabanza, Barbeau, and St-
Denis 1997). SIMPLAN is based on model checking tech-
niques that work over explicit representations of states in the
state space; i.e., the planner represents and reasons explic-
itly about every state visited during the search. Symbolic
model-checking techniques, such as Binary Decision Dia-
grams (BDDs), to do planning in nondeterministic domains
under the assumptions of fully-observability and classical
reachability goals were first introduced in (Giunchiglia and
Traverso 1999; Cimatti et al. 2003). MBP is one of the best
planners that uses BDDs for this purpose.

UMOP (Jensen, Veloso, and Bowling 2001; Jensen,
Veloso, and Bryant 2003) combines BDDs with a heuristic-
search algorithm for strong and strong-cyclic planning
(Jensen, Veloso, and Bryant 2003). Heuristic search
provides some performance improvements over unguided
BDD-based planning on some toy examples (Jensen, Veloso,



and Bryant 2003); the authors discuss how the approach
would scale up to real-world planning.

Conformant planning is a special case of nondetermin-
istic planning in which the goal is to generate a linear se-
quence of actions (rather a than policy) with no observa-
tions. There are many nondeterministic planning problems
that have strong and/or strong-cyclic solutions but don’t
have conformant solutions. The conformant-planning ap-
proach closest to our work is (Palacios and Geffner 2006;
2007), which describes how to translate any conformant
planning problem into a classical problem for a classi-
cal planner. Their approach generates a single translation
(rather than a sequence of translations as we do), and can
only find conformant solutions.

Planners such as MBP (Bertoli et al. 2006), POND
(Bryce, Kambhampati, and Smith 2006) and Contingent-FF
(Hoffmann and Brafman 2005) are developed for partial ob-
servable planning, where actions may or may not have non-
deterministic outcomes and the state of the world is only
partially observable during the execution of a plan. These
planners cannot generate cyclic solutions; instead, they gen-
erate acyclic solution graphs. (Bertoli, Cimatti, and Pistore
2006) demonstrated cases of partial observability in which
it is possible to generate strong-cyclic solutions, but the def-
inition of such solutions does not apply in the conventional
fully observable case.

FF-Replan (Yoon, Fern, and Givan 2007) uses the FF
planner (Hoffmann and Nebel 2001) to first generate a plan
(i.e., a weak policy) for a determinized version of a Markov
Decision Process (MDP), similar to our classical relaxation
schema in this paper. However, FF-Replan does not pro-
duce strong-cyclic policies that guarantee to reach a goal
state despite nondeterminism, as we do. If the simulated ex-
ecution of a weak plan reaches a goal state, the system does
not perform any further planning (even though other execu-
tions would not necessarily reach a goal state). Otherwise, if
the execution produces an unexpected state, then FF-Replan
attempts to generate another weak policy from that state to
the goal state, until a successful execution occurs.

Other approaches to reactive planning, including (Schop-
pers 1987; Haigh and Veloso 1996; Despouys and Ingrand
1999) are used in situations where it is unrealistic to com-
pute in advance how to react to all of the possible outcomes
of an action. These approaches generally interleaves plan-
ning and execution; NDP, on the other hand, is designed
for generating offline policies. The early work on “universal
planning” (Schoppers 1987) depends on backward-chaining
from the given goals towards an initial state (or to an ob-
served current situation), in order to perform goal regres-
sion similar to early STRIPS. An important point difference
between this work and NDP is that the latter is a forward-
chaining state-space planner, which enables it to know the
state of the world at all times. This allows using any classi-
cal planner as R in our abstract planning procedure.

Finally, (Fox et al. 2001) reports an approach for analyz-
ing deterministic planning domains and identifying struc-
tural features and dependencies among those features us-
ing model-checking techniques. Although this approach has
some similarities to our conjunctive abstraction technique,

their approach focusing of using the results of a domain
analysis to prune search space whereas we use conjunctive
abstraction for state-space compression. It would be inter-
esting to investigate as a future work if the domain analysis
method can be used for identifying more general and effec-
tive features for state compression.

Conclusions
We have described NDP, an algorithm that can use any clas-
sical planner R to generate strong-cyclic solutions to non-
deterministic planning problems by calling R on a sequence
of classical planning problems and combining R’s results
on those problems. We have presented theoretical results on
NDP’s soundness and completeness.

We also have described conjunctive abstraction, a way
to alleviate exponential blowup in nondeterministic plan-
ning by rewriting the planning operators to operate over sets
of states represented as conjuncts of literals. While not as
powerful as MBP’s BDDs, conjunctive abstraction has the
advantage that it can be used with any planner that uses a
nondeterministic-STRIPS-operator representation, without
modifying the planner.

In our experiments with four different classical planners,
FF was the one that worked best with NDP and conjunc-
tive abstraction. SGPlan also did quite well (except in the
Hunter-Prey domain, where it generated error messages in
most cases). The classical planner that did worst with NDP
was SatPlan; and from our examination of SatPlan’s output,
we suspect it was trying to reason about individual states de-
spite the availability of the abstract ones.

Discussion. NDP’s advantage over MBP is that MBP uses
none of the sophisticated search heuristics used in classical
planners. In the Robot Navigation domain and the Nonde-
terministic Blocks World, the search heuristics of FF and
SGPlan worked well, hence NDP/FF and NDP/SGPlan did
much better than MBP.

On the other hand, conjunctive abstraction can’t provide
much state-space compression as BDDs if we want to plan
the same actions in every state that satisfies some disjunctive
condition c1 ∨ c2 ∨ . . . ∨ cn. In the Hunter-Prey domain,
this enabled MBP to outperform NDP regardless of which
classical planner we used. In general, the planning domains
where conjunctive abstraction works well are the ones where
for each state s and action a, the set of states S′ in which a
is the ”next action” corresponds either to a single conjunct
of literals or a small number of conjuncts of literals. Our
experimental domains were chosen to illustrate this point.

Future work. The above considerations suggest a promis-
ing direction for future work: even better performance may
be achievable by writing an NDP-like planner that incor-
porates an FF-like algorithm operating over BDDs. Such a
planner should be able to outperform both MBP and NDP
in all four of the experimental domains.

In such a planner, even further improvements could be
achieved by more tightly coupling the NDP and FF algo-
rithms. For example, when the current NDP algorithm calls



FF, it must wait until FF reaches a goal. If we could inter-
vene to stop FF as soon as it reaches a state that is already
part of NDP’s current partial solution, this would provide a
substantial speedup because it would prevent FF from wast-
ing time retracing large parts of the solutions that it found
during the previous times NDP called it.

Thirdly, we note that some MDP planning algorithms
such as LAO* (Hansen and Zilberstein 2001) can generate
cyclic solution policies. With proper modifications to these
planners and their inputs, it will be interesting to compare
them with NDP and classical planners. This may provide a
path toward developing an NDP-like algorithm for MDPs.

Finally, we want to investigate the relationship of NDP
to planners such as Contingent-FF and POND that generate
acyclic solutions to partially observable planning problems.
We intend in the near future to develop a modified version
of NDP that produces acyclic solutions and to compare it
experimentally to those planners.
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