UMIACS-TR-90-107 August 1990
- CS-TR-2518 :

" Performance of A* and TDA*—
' A Waorst-Case Ana}ysm

A. Mahanti* A.K. Pal} S Ghoshi
L.N. Kanal§ D.S. Nauf

Abstract

This paper presents a detailed comparison between Algorithms A* and IDA*. A necessary
and sufficient condition has been derived to show when IDA* can have the same worst-case time
complexity as A* for tree searches. This condition is in apparent conflict with conditions stated in
previous analyses of IDA¥.

Under a monotone heurlstlc, A* has O(N) time complexity in the worst case for any dlrected
graph (either cyclic or acyclic), where N is the number of nodes n such that f(n) < f*(s). However,
we show that the worst-case time complexity of IDA* is O(N?) for trees and O(22") for acyclic
graphs. These worst-case bounds hold even if the heuristic function is monotone and has constant
relative error, and the heuristic branching factors is > 1.

We show that, in general, no heuristic search algorithm which runs in limited-memory (i.e.,
- the same order of memory used by IDA*) can have the same O(N) asymptotic time complexity as

A* under a monotone heuristic. However, for trees, IDA* is asymptotically optimal amongst all
limited-memory algorithms. :

*Institute for Adva.nced Computer Studies, Department of. Computer Sc:ence, and Systems Research Center,
University of Maryland, College Park, MD 20742. Email: am@cs.umd.edu.
{Indian Institute of Management Calcutta, Diamond Harbour Road. P. Box No. 16757, Calcutta 700 027, India.
Currently visiting Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.
{Department of Computer Science, University of Maryland, College Park, MD 20742. Email: subrata@cs,umd.edu.
§Department of Computer Science, University of Maryland, College Park, MD 20742: Email: kanal@es. umd.edu.
{Department of Computer Science, Systems Research Center, and Institute for Advanced Computer Studies,
“University of Maryland, College Park, MD 20742. Email: nav@cs.umd.edu. This work was supported in part by an
"NSF Presidential Young Investigator award for Dr. Nau with matching funds from Texas Instruments and General
-Motors Research laboratories, NSF Grant NSFD CDR-88003012 to the University of Maryland Systems Research
‘Center, NSF Equipment grant CDA-8811952, and NSF grant IRI-8907890.

1 Introduction

A network (or search gi‘a.ph_) G is a directed graph with one start node and a nonempty set
of goal nodes t,1;,1,,.... There are qthér..nodes m,n,p,q,r in G. Each directed arc (m, n)in
G has a finite positive arc cost c(m n) 2> 8§ > 0. A path in G is a finite sequence of directed

~arcs starting at'some node m and ending at some other node n. A solution path is a path
- -.*tha.t begms at the root, node s and ends at a goal node. The cost of a path is the sum of the |

sgosts of its arcs. The objective of any heuristic search algonthm for networks is to find a
solution path 6f minimum cost in G. To find such a path, an aigo_rif;hm uses a nonnegative -

: .heufisti_c estimate A(n) associated with every node n in G.

For every node n in G, a node evaluation function

Fin) =g"(n) + &{n)

~is defined. While g*(n) is the cost of a minimal cost path from s to n, A*(n) is the cost of a
path of minimum cost from = to a goal node. If no goal node can be reached from n, then
h*(n) is taken to be infinite. When a heuristic search algorithm is executed, let g{n) be the
cost of the path of least cost currently known from s to n, and A(n) be the estimate of A*(n).
Then f(n) is viewed as an estimate of f*(n). The network G can have infinitely many nodes
and arcs and G can have loops. For each node n in G, we assume that if h*(n) is finite then

| h(n) is finite.

Under this given model Alg.A* [5] works in a best first manner. It maintains two lists
OPEN and CLOSED. OPEN contains nodes which are to be expanded and CLOSED con-
- tains already expanded nodes. At any iteration, A* selects a node from OPEN with minimum

| f-value. Ties are resolved arbitrarily, but always in favour of a goal node. Newly generated
successors are put in OPEN with their g,ih, and f-values. If an immediate successor of the
expanded node is already present in CLOSED, and a better.pa,th to it is now found, the g
value of the node is updated and the node ié brought back to OPEN from CLOSED.

~ One major problem with A* 'fis that for Storing nodes in QP.EN and CLOSED, it requires

exponential amount of memory as the search goes deeper and deeper. Thus it becomes im-
possible to solve any practical problem of resonable size using A*: In a recent study Korf {4]
 presented a new algorithm namely IDA*. IDA* unfolds a graph to a tree. In every iteration,
IDA* starts the search from the root node and makes a depth first search within the current
threshold. Thresho_ld for the next iteration is calculated as the minimum f—valﬁe. of the
.c‘.liscarded nodes of the previous iteration. IDA* has the p'ropeﬁrty that it can ovércome the.
| storage limitation of A*. Assuming that the branching factor of a node is constant, IDA*
requires O(L) memory, where L 1s the mammum possible length of any minimal cost solution
path. Thus, given sufficient execution time IDA* can solve relatively harder combinatorial
optimisation problems. Following the idea of IDA*, several other limited-memory algorithms

have been designed [1, 2, 3, 7].

It ._has beer shown in [4] that IDA* is asympfotically optimal amongst all admissible best
first search algorithms for tree searches. However, the optimality proof of IDA* assumes a
- very stringeﬁt condition that the number of new nodes grow exponentially from threshold to
threshold. In this paper we present a necessary and sufficient condition for the O(N) time
complexity of IDA* where N is the total number of nodes having f-value < h*(s). We show
that IDA™ can become O(N ?) for tree searches in absence of any such conditions. When the
heuristic is monotone, A* can handle a graph like a tree and it never -expands a node more
than once. But, for graphs IDA* can not prevent the reexpansmn of a node through a costlier
pa,th. Thus the performance of IDA* is bound to become worse than A*. We show that for
‘ #cyclic graphs the worst case time complexity of IDA* is O(2%M). In the last iteration of

IDA* there can be O(2") node expansions. Total number of node expansions can i_nérea.se in
presence of cycles. These O(N?) and O(2*") u;ﬁper bounds for tree'sl and acyclic graphs hold
“under all possibie assumptions such as monotone heuristic, constant relative error, heuristic

branching factor > 1, and identical tie resolutions with A*,

Finally we show that there can not exist any limited-memory best first search algorithm
which will have the linear time complexity as A* in trees, and in graphs with monotone

heuristic. We conjecture, IDA* is asymptotically optimal among all limited-memory best

first search algorithms for trees.

2 IDA* on Trees

Definition 1: For any given tree (or network) G, by N we mean the number of nodes in G

having f-value < &*(s).
Definition 2: [is the maximum number of nodes in any path generated by A*.

Definition 3: Let G be a.tree and s = ny,na,.. .'., ny be the nodes in @ such that, 0 <
| f(n.) < h*(s). Since the branching factor of a node is assumed to be constant, there can be
| . only finitely many such njs. Let 0 < f; < fo < fa < fX h*(s) be the (maxunum

possible) distinct f-values of all n}s. Clea,rly if IDA* 18 run on &, there will be X thresholds

~ and it will run for X 1tera,t10ns '

Pretinition 4: Let ¢; be the number of new nodes at threshold . Let 21,22, ..., 1y be the.

‘:;thresholds such that ¢;,,, >¢;,,1 <7< Let by be the average of the ratlos i,J alti;
Definition 5: let M = X —u.

Example 1.

~Consider the search graph given in Figure 1(a)

b = Node branching factor = 2. ‘

Cost of each arc (m,n) is ¢(m,n) =1, V(m,n) € G.

-k(n) = 0 ¥n € G (monotone heuristic)_

Error in the heuristic function = 100% {constant relative)

-beuristic branching factor = [1 4+ 2 + 2 +240.25 -I-U2 42} + 7 =1.607

Every leaf node is nonterminal except the rightmost one, which is a goal node. Now, let us
generalize the search tree G of figure 1(a}, such that the tota,l number of nodes N = 2N',
and the cost of the solutlon pa.th = 2{10gb(N’+ 1)=1] (Whlch is not exponential in the depth

of the search tree).
Let |
o d'=logy(M + 1) — 1]

and . .
No = b4+ 265 4+ 36%% ...+ db.

Now the total number of node ekpansions_by IDA* is

dNo + (1% + 2641 + 3692 4.+ db)'= No(d +1) = O(Nlog, N).
Similarly, if we consider the search tree in ﬁgufe l(b) whgre there are N = 2N! nodes as in
figure 1{a) and the last N’ nodes form a deg_énra.te tree. Every leaf node is a nonterminal
except the rightmost one, which is a goal node. Co.sf of the solution path = N ' + log, N,
node branching factor > 1, and heuristic branching factor > 1. All other conditions are same
* as in Figure 1({a). Clearly, IDA* will make O(N %) node expansions for this search tree in

the worst case.

Remark: It is easy to construct an example tree with varying arc cost so that the heuristic
function satistfies proportional error {6] and the heuristic branching factor will be greater
than 1 but the number 6f thresholds will be proportional to N. And, in that case IDA* will
have O(N?) asymptotic complexity again.

Theorem 1. The asymptotic time complexity of IDA* is O(N) iff the following conditions
hold: | - S

(z) lim u =00

N—oo
and .
(3) Jim M < oo
Proof: : S
~ Case 1: (If part) By assumption the conditions hold. Let ¥ = b} + 2b¥ 4L +l.ubl.
Therefore, the total number of node expansions by IDA*is <Y + M Y = Y(l + M). Since
M is finite, the upperbound for the total number of node expansions by IDA* is O(N).

4

Case 2: (only if Part) Given that IDA™ has the asymptotic complexity of O(N), we need to

| show that the two conditions hold. We prove it by contradiction. As in case 1, suppose the
" total number of node expansions by IDA* is ¥(1 + M). Now we consider the three subcases

“below:

{a) Condition 1 is true_bﬁt condition 2 is false.
Clearly, then (1 + M)Y = O(N?) - a contradiction.

{b) Condition 1 is false and condition 2 is true.
Then the total number of node expansions by IDA* will be bounded by a constant,
‘which is impossible. This is because, in the worst é_ase, every node must be expanded

-at least once. Thus a contradiction is' immediate.

(c) Condition 1 and condition 2 are both false. _
Clearly, the total number of node. expansions by IDA* will be grea.ter than or equal to
-ﬁﬂ—l which will be O(N?) - a contradiction.

Theorem 2. In case of trees with heuristic branching factor > 1, there does not exist

-any limited-memory best-first search algorithm which uses O(L) memory and has worst-case

time complexity O(N). |

proof: (By contradiction.) Let ni,no, ..., nx (with n; = s) be the nodes in the search tree
having f-value less than or equal to h*(s). Let P, be ﬁhe path from s to n;. In the worst
case, we can assume that for each ni, f(ni) = cost{P;) + h{n;) is distinct. The n;’s can be
placed in the tree in such a way that for ¢ = 2,...,N — 1, P; and P,;; have no nodes in
common except the root node s (see Figure 2). Now, an algorithm under consideration Wiﬂ.
have the following situation. After the expansion of n;, it realizes that the next node to be
expanded is n;y;. However, it might so happen that after the expansion of n;41, it has to

expand one, say immediate'sﬁCcééS6r of n;.. Thus the algorithm will have two choices: to

.- re-expand the nodes from s to n;, or to remember the children of n;. Each case is discussed

below:

Case 1 remember the children of n;. Now we can éxtend this logic further, and find

that after the expansion of n.,, the algorithm has to expand a child of the child of the

5

immediate parent of n; and so on. Thus after the expansion of n;1y, if the algorihtm

- has to find the next node to be expanded which belongs to a different subtree below

s and then the algorithm needs to store that subtree (to avoid re-expans:lon) thena

contradiction is immediate that it cannot run with G(L) memory.

| 5Casé 27: re-exjjé;ﬁd the no'd'e:s from s to ﬁ,-. Sﬁ_nce no nodes (except possibly only the
root node s) of the subtree below s to -w_hich n; belongs havé_béen stored, to find n;’s
- child say n;y, the algorithm has to expand. all nodes of the subtree having f-value
less than f(niys) (because no other identification of n:;5 has been stored). Now there
can be O(N) nodes in the subtree with f-value less than f(nig2). Again, in the worst
case there can be .O(N) such nfs: Thus a contradiction is immediate and the algorithm

cannot run in O(N) time.-
3 IDA* on Acyclic Gfaphs |

What happens if we run IDA* on directed acyclic graphs ? For graphs with monotone
heurlstlc Algorlthm A* runs in O(N) time. When a node is expanded g{n) = ¢g*(n) and no
node is expanded more than once. Since IDA* runs in linear memory (linear in L), it can

not store all expanded nodes for future duplicate checking as in A*. Thus IDA* can expand
| -a‘node several times due to unfolding of a gra,ph into tree. The following two examples will

explain the worst case time complexity of IDA* on directed acyclic graphs.

Example 2:
Consider the search graph shown in Figure 3. Here N =3K +1. Each arc has unit cost and
h(n) = 0 for every node n. If we run Alg. A on G, it will make total N number of node

expa.nsmns But the tota.l number of node expanszons by IDA* W]H be as follows

@%ﬁ‘_}l+l 21{4—1—3)30
=0

Now

Z(K +1-— z)Ac (K +2)28-1

1=0

Thus the total number of node expansions by IDA* is
KK +2)2%7 + K(Q2K +1) = O(K*2%) = O(N"’QN)

In the last iteration of IDA* there will be O(2N) node expansmns Note tha.t the heurlstlc

branchlng factor is grea.ter tha,n 1in thlS case.

~In Example 2, we have considered uniform arc cost. What happens if we allow variable

arc cost in a directed acychc gra.ph'? We conSJder that in the next example |

Example 3:
Consider the search gra.ph G éhown in Figure 4. We can generalize thé graph for N = K +2
“nodes where ng is the sta.rt node' and ng, is the goal node. The cost structure can be -

described as foIlows

9l 1<i<K:

e(no,n;) =
Ce(n,meg) = 28— ,
c(ni,nimy) = 2772, 1<i<K
e(ni,n;) = 271, T 1<j<il<i < K;
k(n;) = 0, 0<:<K+1L

The total number of node expansions by A* and IDA* will be as follows:
A% OW)
IDA*: O(22V)
. Conjecture 1. If a limited-memory algorithm uses O(L) memory (where L is the maximum

_-number of nodes in any path generated by A*), then it will make Q(N?) node expansions in

the worst case for trees.

Theorem 3. IDA* does not make more than O(N %) and O(2*") node expansions at the
worst, in the case of trees and acyclic graphs, respectlvely

proof: There can be N and 2% thresholds for trees and acychc gra,phs respectively.

Thus IDA* has optimal asymptotic time complexity amongst all limited-memory best-first

search algorithms which find optimal solutions under admissible heuristics for tree searches.

7

Remarks.

L Although in most theoretical analysis the error of the heuristic function is a,ssumed to
‘be constant relative, it is hard to find any practical example where this holds. Constant
 relative error is as good as perfect heuristic if we consider unit arc cost. Because if the

_ heuristic ¢ error is constant relatwe a.nd we 1gnore g (or may. be by multlplylng h by a
constant > h“‘()) in f then A* can find an optimal solutlon path w1th0ut expandlng a .
single extraneous node. If we consider an example say 15- puzzle we will find when the
manhattan distance estimate is 35 the actual cost could be 45, 47, 49 or 57 etc. (see [4]).
This means the heuristic error in 15—puzzle' is not constant relative. Therefore if the

~ heuristic bra,nchmg factor va,lue depends on the constant relatlve error assumption, we

can infer that IDA* may not be asymptotlcally optimal W1th A*on 15- puzzle problem

2. Quite often to gauge the time complexity of A* on a problem, the time complexity
of IDA* in its last iteration is considered. This estimate would be fine if the problem
space is a tree. However, if the problem space is a graph, then this estimate may be

grossly erroneous.

3. To reduce the number of lteratlons of IDA*, often the threshold value for the ne\t
_1terat10n is increased. On the avera.ge this may be helpful but any arbitrary increase

of threshold would affect the asymptotic optimality of IDA*.

4. Tt can be observed that under monotone heuristic for tree search problems if we consider
A* and IDA* under best and worst possible threshold distributions then the number
of node expansions under the best and the worst situations by these two algorithms

- would be as follows:

Distribution of Total Number of IDA™ . A*

Thresholds node Expansions

Best Best - O(L) O(L)
Best - Worst - O(N)} O(N)
Worst Best Oy 0oL)

Worst - Worst ' " O(N?%Y O(N)

5. Because of the very different natures of A* and any limited-memory algorithms, it
1s not possible for any limited-memory algorithm to follow the tie resolution strategy
of A* even if the complete tie resolution inforina.tiori is available during the search.
Moreover, in case of a tie, A* always fairburs a goal node over a nongoal node. This

simple strategy would be quite hard to implement-in any limited-memory algorithm.
4 Conclusion
IDA* and several other heuristic search algorithms are “limited- -memory” algorithms, in the
sense that they run in O(L) memory, where L is the maximum number of nodes in any path
generated by A*. Because of the limited memory, these algorlthms must in most cases make _
* “more node expansions. than A*. When' the heuristic is monotone, A* runs in time O(N),

‘where N is the number of nodes n such that f (n) £ f*(s). Butno limited-memory algorithm

-can expioit this monotone property of the heuristic function.

In 4], it was stated that for tree searching, if certain conditions are satisfied, then IDA*
h_a.chleves the same O(N) time complex1ty as A*, and thus is asymptotically optimal among all
best-first algorithms for tree searching which find optimal solutions using non-overesmma,tmg
heuristic functions. The specific set of conditions used in [4] is that the heuristic function
1s underestimating and has constant relative error, and the heuristic branching factor is >
1. However, in the current papér, we have shown that these conditions are neither sufficient
nor necessary for the result stated in [4] to be true—but if a different set of conditions is
satisfied, then the result is true. If these conditions are not safisﬁed, then the worst-case

time complexity of IDA* is Q(N?) for trees and £(22V) for acyclic graphs.

Although IDA* has higher worst-case time complexity than A*, It is currently unknown
whether there exists any limited-memory heuristic search algorithm which has better worst-

case time complexity than 7D A*.

References

[1] Chakrabarti P Ghosh S., Acha.rya A. and De Sa,rkar S Heunstlc Search in Restrlcted
Memory, Artzﬁcml Intellzgence 41, 1989.

[2] Evett M Hendler J., Mahanti A., and Nau D., PRA*: A Memory- L1m1ted Heuristic
Search Procedure for the Connection Machine, Frontiers ’90 Frontzers of . Masswely

~ Parallel Computatzon, College Pa,rk MD 1990 (to appear).

[3] Huang, S Deszgn and Analysis of .S'ome Hzgh -Performance H euristic Search Algorithms.
Ph.D. Dissertation, Unlverszty of Maryland, 1990.

14] Korf, R Depth First Iteratlve Deepenmg An Optlmal Admlssxble Tree Search Artzﬁczal
Intelhgence 27,1985, pp. 97—109 '

[5] Nilsson, N. J. Principles of Artiﬁcial Intelligence, Tioga Publications Co., Palo Alto,
CA, 1980. | |

[6] Pearl J., 'i{euristics, Intelligent Search Strategies for C‘omputer Problem Solving,
Addison-Wesley, 1984. ' ' SR : . . o

_ [7’] Sen A. and Bagchi A., Fast Recursive Formulations for Best-First Search That Allow
- Controlled Use of Memory, Proc. IJCAI-89, 1989.

10

Root

1]
‘ 1/ \u
UBELYAR\ ERVA IR VAN
] 0
Figuri(a)
1/ N\ 1/ \
I P 1 1 1 1 |
goal
Root
N' Nodes

— Bt 51— 0031

> o oo » goal

goal

Figure4

