
Performance Of IDA* on Trees and Graphs�Ambuj Mahantiy Subrata Ghoshz Dana S. Naux Asim K. Pal Laveen Kanal{Systems Res. Ctr. Comp. Sci. Dept. Comp. Sci. Dept. IIM, Calcutta Comp. Sci. Dept.U. of Maryland U. of Maryland U. of Maryland Calcutta U. of MarylandCollege Park College Park College Park 700 027 College ParkMD 20742 MD 20742 MD 20742 India MD 20742AbstractWe present the following results about IDA* andrelated algorithms:� We show that IDA* is not asymptotically op-timal in all of the cases where it was thoughtto be so. In particular, there are trees satisfy-ing all of the conditions previously thought toguarantee asymptotic optimality for IDA*, suchthat IDA* will expand more than O(N ) nodes,where N is the number of nodes eligible for ex-pansion by A*.� We present a new set of necessary and suf-�cient conditions to guarantee that IDA* ex-pands O(N ) nodes on trees.� On trees not satisfying the above conditions,there is no best-�rst admissible tree search algo-rithm that runs in S = N= (N ) (where  (N ) 6=O(1)) memory and always expands O(N ) nodes.� There are acyclic graphs on which IDA* ex-pands 
(22N ) nodes.IntroductionHeuristic search is applicable to a wide range of combi-natorial optimization problems. The objective of manyheuristic search algorithms is to �nd a minimum costsolution path in a directed graph G. A solution pathis a path from the start node s to a goal node. To �ndsuch a path, many algorithms use a node evaluationfunction f(n) = g(n) + h(n);�Supported in part by NSF Grant IRI 8802419, NSFGrant NSFD CDR-88003012 to the University of Mary-land Systems Research Center, NSF grant IRI-8907890,and CMDS project (Work order no. 019/7-148/CMDS-1039/90-91.)yAlso in the Computer Science Department. Email:am@cs.umd.eduzEmail: subrata@cs.umd.eduxAlso in the Systems Research Center and the Institutefor Advanced Computer Studies. Email: nau@cs.umd.edu{Email: kanal@cs.umd.edu

where g(n) is the cost of a least-costly path currentlyknown from s to n, and h(n) � 0, the heuristic value ofnode n, is an estimate of h�(n). h is called the heuristicfunction and h�(n) is the cost of a minimum cost pathfrom n to a goal node. A heuristic function h is calledadmissible if 8n 2 G, h(n) � h�(n). The function h issaid to be monotone if 8p 2 G, h(p) � c(p; q) + h(q),where q is a child of p.A* (Hart & Nilsson & Raphael, 1968; Nilsson, 1980)is a well-known heuristic search algorithm. A* hasbeen shown to be very e�cient in terms of numberof node expansions (which is also a measure of its timecomplexity) in most cases (Dechter & Pearl, 1985).However, one major problem with A* is that it re-quires exponential amount of memory to run. Due tothis, A* runs out of memory even on problem instancesof moderate size.To overcome the storage problem, a variant of A*called IDA* (Iterative Deepening A*) was introducedby Korf (Korf, 1985; Korf, 1988). IDA*'s memory re-quirement is only linear in the depth of the search.This enables IDA* to solve much larger problems thanthat A* can solve in practice.One of IDA*'s most important properties is that un-der certain conditions it is \asymptotically optimal intime and space over the class of best-�rst searches that�nd optimal solutions on a tree" (Korf, 1988, p. 236).In this paper, we present the following results:1. We show that IDA* is not asymptotically optimal inall of the cases where it was thought to be so. Inparticular, there are trees satisfying all of asymp-totic optimality conditions given in (Korf, 1988),such that IDA* will expand more than O(N ) nodes,where N is the number of nodes eligible for expan-sion by A*.1 In addition, we present necessary andsu�cient conditions for the desired O(N ) worst-casetime complexity of IDA* for tree searches.1Previous papers have described treees on which IDA*expands more than O(N) nodes (Mahanti & Pal, 1990;Patrick & Almulla & Newborn, 1992), but the trees de-scribed in these papers did not satisfy requirements (Korf,1988) of �nite precision and non-exponential node costs.



2. In the absence of any assumptions (except thatthe heuristic is admissible and the maximum node-branching factor is constant) there does not existany best-�rst admissible tree search algorithmwhichwhen running with S = N= (N ) ( (N ) 6= O(1))memory can have the O(N ) worst-case time com-plexity like A*.3. When the heuristic is monotone, A* handles a graphlike a tree and it never expands a node more thanonce. But for graphs, IDA* can not prevent the reex-pansion of a node through a costlier path. Thus, forgraph search problems the performance of IDA* isbound to become worse than A*. We show that if welet the node-branching factor to grow with the prob-lem size, A* under monotone heuristic has O(N )worst-case time complexity for general graphs, butIDA* under monotone heuristics has 
(22N ) worst-case complexity for acyclic graphs. And, the totalnumber of node expansions by IDA* can only in-crease in presence of cycles. There are many graphand tree search problems where the node-branchingfactor grows with the problem size. Traveling sales-man, 
ow-shop scheduling, etc. are such examples.Due to space limitations, in this paper we omit theproofs of our theorems. For proofs, readers are referredto (Mahanti et al., 1992).IDA* on TreesIn this section we �rst de�ne a set of basic symbols thatwill be used through out the paper, and then formallycharacterize the working of IDA*. Here we assumethat the state space G is a tree, the maximum node-branching factor in G is bounded by a constant b > 0,and every arc of G has a cost � �, where � is a smallconstant.For each z > 0, we de�ne WG(z) as follows:(i) P = (s) is inWG(z) if s is not a goal node andh(s) � z.(ii) For each path P = (s; n1; : : : ; nk) in G, P is inWG(z) if the following conditions are satis�ed:(a) nk is not a goal node,(b) The subpath P 0 = (s; n1; : : : ; nk�1) isin WG(z), and(c) cost(P ) + h(nk) � z.We also de�neVG(z) = fmjm is a node in a path in WG(z)g;NG(z) = jVG(z)j:Since by assumption the maximum node-branchingfactor b is a constant, and each arc (m;n) in G hasa cost at least �, it directly follows that for each z > 0,each of the entities de�ned above is �nite.We de�ne fi, i = 1; 2; : : :; inductively as follows:f1 = h(s);fi = minnff(n)jn is a child of tip(P ) andP is a maximal path in WG(fi�1)g;

where by a maximal path P in WG(fi�1), we mean apath which is not a proper subpath of any other pathin WG(fi�1). Also, by tip(P ) of a path P , we meanthe last node on P .We let IG be the total number of iterations per-formed by IDA* on G, andzG(1) < zG(2) < : : : < zG(IG)be the (distinct) threshold values used by IDA*. Forj = 1; 2; : : :; I, IDA*'s j'th iteration is the set of allnode expansion instants for which the threshold is z(j).By expansion of a node n in IDA*, we mean the gen-eration of at least one child of n. For each j, we de�neXG(j) = the set of nodes expanded by IDA*during iteration j;xG(j) = the number of nodes expanded byIDA* during iteration j;XGnew(j) = the set of new nodes expanded byIDA* during iteration j;xGnew(j) = the number of new nodes expandedby IDA* during iteration j;xGtot = the total number of node expansionsdone by IDA* on G.In the terms de�ned above, we will usually omit thesuperscript G if the identity of G is clear. Alterna-tively, if we are discussing two state spaces G and G0,we will use X(j) for XG(j), X 0(j) for XG0 (j), and soforth.From the above de�nitions, it follows immediatelythatXnew(j) = � X(1); j = 1;X(j) �X(j � 1); j = 2; 3; : : : ; (1)xtot = IXj=1x(j) = IXj=1 jX(j)j: (2)Theorem 1z(j) = fj ; j = 1; : : : ; I; (3)X(j) = V(fj ); j = 1; : : : ; I � 1; (4)x(j) = N (fj); j = 1; : : : ; I � 1; (5)Xnew(j) = � V(f1); j = 1;V(fj )� V(fj�1); j = 2; : : : ; I�1;(6)xnew(j) = � N (f1); j = 1;N (fj)�N (fj�1); j = 2; : : : ; I�1;(7)Furthermore,X(I) � V(fI ); (8)Xnew(I) � V(fI ) � V(fI�1); (9)xnew(I) � N (fI )� N (fI�1); (10)with equality in the worst case.Corollary 1 fI = h�(s).



In view of the above corollary, we make the followingde�nitions:WG = W(fI );V G = V(fI );NG = N (fI );LG = 1 + maxP2WG the number of nodes in P :In the above, we will omit the superscript G when theidentity of G is clear. For example, given a networkG, by N we shall mean the total number of nodes in Gwhich are eligible for expansion by A*.The heuristic branching factor is de�ned as theaverage, over j = 2; : : : ; I, of the quantityxnew(j)=xnew(j � 1). Intuitively, this is the averageratio of the number of nodes of each f-value (assum-ing that the heuristic is monotone) to the the numberof nodes at the next smaller f-value (Korf, 1988).Under the premise that G is a tree with maximumnode-branching factor b, and with admissible heuris-tics, Korf (Korf, 1988) has shown that the worst-caseasymptotic time complexity of IDA* is O(N ) if thefollowing conditions (labelled as mandatory and sec-ondary) are true:Mandatory Condition:Heuristic Branching Factor > 1.Secondary Conditions:1. The search space must be exponential in the depthof the solution;2. Representation of costs must be with �nite preci-sion;3. Cost values must not grow exponentially withdepth.The �rst condition was used explicitly in the op-timality proof of IDA* (thus we call it a mandatorycondition), and the other conditions appeared as pass-ing remarks (thus we call them secondary conditions).In the next section we show that these conditions areneither su�cient nor necessary to ensure the O(N )complexity of IDA*. We illustrate through examplesthat even when all of the above conditions are satis-�ed, IDA* fails to achieve O(N ) time complexity inthe worst-case.IDA* on Example TreesIn this section we illustrate through examples that theanalysis of IDA* given in (Korf, 1988) does not holdin general. We present constructions of example treeswhich satisfy the conditions stated in the previous sec-tion but yet IDA* fails to achieveO(N ) worst-case timecomplexity while run on these trees. We also show thatthese conditions are not necessary either, i.e. IDA* canhave O(N ) complexity without satisfying these condi-tions.

Example 1. In the search tree G given in Figure 1,each non-leaf node has a node-branching factor b = 2,and each arc has unit cost. G consists of two subtrees(called G1 and G2) where each one is a full binary treeof height k. G2 is rooted at the right most node ofG1. Every leaf node, except the one labelled as goal,is a non-terminal leaf node. For each node n in G, weassume h(n) = 0. Then h is monotone. The heuristicbranching factor is2k + 12k�1 + 2(k � 1)(2k) = 2 + 1k2k � 1k � 2:Note that the goal node is at a depth of 2k = O(logN ),where N is the total number of non-goal nodes in G.Therefore the search space is exponential. The maxi-mum cost value is 2k which grows only linearly withdepth. The precision constraint is vacuously satis�edbecause the cost values are not fractions. Thus, all con-ditions (mandatory and secondary) are satis�ed. Nowwe calculate the total number of node expansions byIDA* on the tree G.Clearly G1 and G2 each contain N 0 = dN=2e nodes.The cost of the solution path is 2k = 2[log2(N 0+1)�1].Let N0 = bk + 2bk�1+ 3bk�2 + : : :+ kb:Then the total number of node expansions by IDA* inthe worst-case isxtot = N0 + kN 0 +N0� kN 0 + N 0 = k(N 0 + 1)= 
(N logN ):In the example above, we have shown that the con-ditions stated in (Korf, 1988) for the asymptotic op-timality of IDA* are not su�cient. In the followingexample we show that these conditions are not neces-sary either.Example 2. Consider the search tree G in Figure 2.G consists of two subtrees G1 and G2. G1 is a fullbinary tree with N 0 nodes and G2 contains a constantc number of nodes in the form of a degenerate tree.Every leaf node in G is a non-terminal node exceptthe rightmost one (pc), which is a goal node. Each archas cost 1, h(s) = k and heuristic value at all othernodes is zero. G contains total N = N 0 + c � 1 non-goal nodes and one goal node. All the nodes of G1 willbe expanded by IDA* in the �rst iteration. Thereafter,in each iteration only one new node will be expanded.The heuristic branching factor is(c� 1) � 1 + 1N 0c < 1:Since the total number of iterations (c+1) is constant,IDA* will expand only O(N ) nodes on trees of type G.Note that the mandatory condition stated previouslyis not satis�ed in this case.In the following section we derive a new set of (nec-essary and su�cient) conditions for asymptotic opti-mality of IDA*.
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(N logN ). Figure 2: IDA* O(N ).Asymptotic Optimality of IDA*Let b1 > 1. Then IDA*'s active iterations on G are theiterations iG1 ; iG2 ; : : : ; iGuG de�ned inductively as follows:iG1 = 1.For p = 2; : : : ; u, iGp is the smallest integer suchthat xnew(iG)=xnew(iGp�1) � b1.As usual, we omit the superscript G when the identityof G is obvious.Intuitively the active iterations are the iterations inwhich the number of new nodes expanded by IDA*grows exponentially. We call the remaining iterationsdummy iterations. For each ip, let jp1; jp2; : : : ; jpcp bethe dummy iterations immediately following the activeiteration ip.Dummy iterations can occur anywhere after the �rstactive iteration i1. For q = 1; : : : ; u, let cq be the num-ber of dummy iterations that occur between iterationsiq and iq+1. Note that cq � 0, and c1 + c2 + : : :+ cu =I � u. We de�ne MG = maxq cq , i.e., MG is the max-imum number of adjacent dummy iterations.The total number of node expansions by IDA* de-pends not only on the number of dummy iterationsbut also on their positions. In the following theoremwe show that, keeping the total number of iterations Iand the number of active iterations u �xed, the totalnumber of node expansions by IDA* increases as thedummy iterations are moved to the right, i.e. a dummyiteration j is moved to k where k > j. In particular thetheorem states that the total number of node expan-sions xtot attains its maximum when all the dummyiterations appear after the last active iteration.Theorem 2 For all positive integers N0; u0; I0, letG(N0; u0; I0) be the set of all trees G for whichN = N0,

u = u0, and I = I0. Then for each N; u; I, the maxi-mum value of xGtot over all trees G 2 G(N; u; I) occursin a tree G for which all dummy iterations occur afterthe last active iteration, i.e., c1 = c2 = : : : = cu�1 = 0.Theorem 3 provides a su�cient condition for asymp-totic optimality of IDA*. It states that IDA* expandsO(N ) nodes in every tree in which the maximumnum-ber of adjacent dummy iterations is bounded by a con-stant.Theorem 3 Let G = (G1; G2; : : :) be any arbitarysequence of trees such that M = O(1) in G. Thenxtot = O(N ) in G.Although the condition stated in Theorem 3 is suf-�cient for O(N ) node expansions by IDA*, it is not anecessary condition. The necessary condition is statedin Theorem 4, which can be proved using Lemma1 (see(Mahanti et al., 1992) for details). The lemma showsthat if a tree G0 is constructed from G in such a waythat G0 is identical to G except that one node n in G0has a higher f-value than in G, i.e. fG0 (n) > fG(n),then the total number of node expansions by IDA* onG0 will be less than the number of node expansions byIDA* on G. What this means is that if a new prob-lem instance is created from an old problem instance ofIDA* by pushing a new node of iteration j to the iter-ation k, such that k > j, then xtot in the new probleminstance will be less than in the old problem instance.The lemma holds for the simple reason that the nodesin earlier iterations are expanded more number of timesthan nodes in later iterations.Lemma 1 Let G be any tree such that I � 2, and let1 � j < k � I. If xnew(j) = 1, then let G0 be any treesuch that I 0 = I � 1 andx0new(i) = xnew(i); i = 1; : : : ; j � 1;



x0new(i) = xnew(i + 1); i = j; : : : ; k� 2;x0new(k � 1) = xnew(k) + 1;x0new(i) = xnew(i + 1); i = k; : : : ; I � 1:Otherwise, let G0 be any state space such that I 0 = Iandx0new(i) = xnew(i); i = 1; : : : ; j � 1;x0new(j) = xnew(j) � 1;x0new(i) = xnew(i); i = j + 1; : : : ; k � 1;x0new(k) = xnew(k) + 1;x0new(i) = xnew(i+ 1); i = k + 1; : : : ; I:Then x0tot < xtot.The following theorem says that IDA* achievesO(N ) node expansions only if the number dummy it-erations after the last active iteration is bounded by aconstant.Theorem 4 Let G = (G1; G2; : : :) be any arbitarysequence of trees. Then in G, xtot = O(N ) only ifcu = O(1).Limited-Memory Search on TreesIn this section, we show that in general, limited-memory best-�rst search algorithms can not alwaysperform as well as A*, even on trees.Let G be a tree, and A be any search algorithmused to search G. A stores a node n if during thecurrent state of A's execution, A contains informationabout the identity of node n (plus possibly some otherinformation about n). A properly stores node n if itstores not only n, but also at least one of the parentsof n. A properly runs in storage S � 0 if at all timesduring its operation, it properly stores no more thanS nodes.Lemma 2 Let G be a b-ary tree that is complete todepth k for some k > 0, and A be a search algorithmthat properly runs in storage S on G. Let d be thesmallest integer such that S � bd+1�1b�1 . If d < k, thenA properly stores no more than bd of the nodes atdepth d+ 1 of G.Let Abf be any limited-memory best-�rst tree searchalgorithm. An algorithm is said to perform a best-�rstsearch in limited memory on tree G if for each z > 0, itdoes not expand any node of VG(z) before expandingevery node of VG(z0) at least once, for all z0 < z. Notethat IDA*, MA* (Chakrabarti et al., 1989), MREC(Sen & Bagchi, 1989) are all limited-memory best-�rsttree search algorithms. The following theorem statesthat there exists no best-�rst tree search algorithm,which while using less than a constant fraction of thememory used by A*, can have the same worst-case timecomplexity as A* on all trees. Its proof uses the resultof lemma 2.
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(22N ).Theorem 5 There does not exist any best-�rst al-gorithm Abf such that for every sequence of treesG = (G1; G2; : : :), Abf has O(N ) complexity and prop-erly runs in S = N (N) memory, where  (N ) is a func-tion that is 6= O(1).IDA* on Acyclic GraphsWhat happens if we run IDA* on directed acyclicgraphs? For graphs with monotone heuristic, whena node n is expanded by A*, g(n) = g�(n) and A*does not expand a node more than once. Since IDA*runs in linear memory, it can not store all expandednodes for future duplicate checking as in A*. ThusIDA* can expand a node several times due to both itslimited-memory nature and unfolding of a graph intotree. It has been shown by Korf that depth-�rst searchcan expand 
(2N ) nodes on a directed acyclic graphwith N nodes (Korf, 1988). We extend this result toIDA* and show that IDA* can expand 
(22N ) nodeson directed acycllic graphs with N nodes. The follow-ing example demonstrates the worst-case behavior ofIDA* on directed acyclic graphs.Example. Consider the search graph G shown inFigure 3. We can generalize the graph with N = k+ 1non-goal nodes and one goal node. Let n0 be the startnode and nk+1 be the goal node. The cost structure isde�ned as follows:c(n0; ni) = 2i�1; 1 � i � k;c(n1; nk+1) = 2k � 1;c(ni; ni�1) = 2i�2; 1 < i � k;c(ni; nj) = 2j�1; 1 � j < i; 1 < i � k;h(ni) = 0; 0 � i � k + 1:It can be easily seen that the unfolded tree of G willcontain nodes of all f�values from 0 through 2N .Therefore the total number of node expansions will beO(N ) for A*, and 
(22N) for IDA*.The following theorem gives upper bounds on thetotal number of node expansions by IDA* in the worst-case on trees and graphs.



Theorem 6 IDA* makes no more than N2 node ex-pansions on trees, and no more than 22N node expan-sions on acyclic graphs.ConclusionWe have presented the following results about IDA*and related algorithms:1. The conditions stated by Korf (Korf, 1988) arenot su�cient to guarantee asymptotic optimality ofIDA*; i.e., IDA* will perform badly in some of thetrees on which it was thought to be asymptoticallyoptimal.2. The above failing is not unique to IDA*, for in gen-eral, no best-�rst limited-memory heuristic searchalgorithm can be asymptotically optimal.3. We have presented necessary and su�cient condi-tions for IDA* to be asymptotically optimal. Ourconditions show that IDA* is asymptotically opti-mal in a somewhat di�erent range of problems thanwas originally believed.4. On graphs, with a monotone heuristic IDA* can per-form exponentially worse than A*. Thus, on graphsit may be preferable to use a graph search algorithmrather than using IDA*.ReferencesChakrabarti, P.; Ghosh, S.; Acharya, A.; and DeSarkar, S. 1989. Heuristic Search in Restricted Mem-ory. AI Journal 41 (1): 197-221.Dechter, R.; and Pearl, J. 1985. Generalized Best-First Search Strategies and the Optimality of A*.JACM 32 (3): 505-536.Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968.A Formal Basis for the Heuristic Determination ofMinimum Cost Paths. IEEE Trans. Syst. Cybern. 4(2): 100-107Korf, R. 1985. Depth First Iterative Deepening: AnOptimal Admissible Tree Search. AI Journal 27 (1):97-109.Korf, R. 1988. Optimal Path Finding Algorithms,Search in AI. Edited by Kanal, L., and Kumar, V.,Springer Verlag, Symbolic Computation: 200-222.Mahanti, A., and Pal, A. 1990. A Worst-cast TimeComplexity of IDA*. In Proceedings of SCCC-10 In-ternational Conference in Computer Science, 35-45.Santiago de Chile.Mahanti. A., Ghosh, S., Nau, D. S., Pal, A. K.,Kanal, L. 1992. On the Asymptotic Optimality ofIDA*, Technical Report, CS-TR-xxx. Dept. of Com-puter Science, University of Maryland.Patrick B. G., Almulla M. and Newborn M. M.,An Upper Bound on the Complexity of Iterative-Deepening-A*.Nilsson, N. J. 1980. Principles of Arti�cial Intelli-gence, Tioga Publications Co., Palo Alto, CA.
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