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Abstract
This paper describes SiN, a novel case-based
planning algorithm that combines conversational
case retrieval with generative planning.  SiN is
provably correct, and can generate plans given an
incomplete domain theory by using cases to extend
that domain theory. SiN can also reason with
imperfect world-state information by incorporing
preferences into the cases. Our empirical validation
shows how these preferences affect plan quality.

1 Introduction
Generative planners traditionally require a complete domain
theory, which provides a clear semantics for the planner�s
inferencing mechanism.  This allows a planner to be used in
different domains. However, in many planning domains,
developing a complete domain theory is infeasible.

In this paper we present a case-based planning algorithm
called SiN  (SHOP integrated with NaCoDAE), which
integrates the SHOP generative planner [Nau et al., 1999]
with NaCoDAE, a conversational case retriever [Breslow &
Aha, 1997]. SiN is a provably correct algorithm that does
not require a complete domain theory nor complete
information about initial or intermediate world-states.

In addition to describing SiN, which has been
implemented in HICAP [Muñoz-Avila et al., 1999], we
present sufficient conditions to ensure its correctness, show
how SiN represents preferences in cases to generate plans in
the context of imperfect world state information, and
describe an empirical analysis that demonstrates the impact
of the preferences on plan quality.

In the following sections, we introduce some terminology,
detail SiN, including theoretical results on its semantics
with respect to incomplete domain theory, present SiN�s
empirical evaluation to show the role of preferences to
handle incomplete world state information, and discuss the
implications of these results.

2 Motivation
SiN�s design was partly motivated by the following
characteristics of military planning operations.

•  Military operations are strongly hierarchical  [Mitchell
1997; Muñoz-Avila et al., 1999].  Thus, we chose to
represent plans using Hierarchical Task Networks (HTNs)
[Erol et al., 1994].

•  There is an incomplete domain theory, in the form of
general guidelines (doctrine) and standard operating
procedures (SOPs).  However, neither doctrine nor SOPs
can be used to derive detailed tactical plans, which often
require knowledge about previous experiences. Thus, SiN
uses SHOP to perform first-principles reasoning and
NaCoDAE to employ previous experiences.

•  Military planners do not have complete information about
the current situation; part of the planning includes
dynamic information gathering, typically to assess enemy
capabilities and/or deployment. In SiN, NaCODAE is
used to plan with an incomplete world state using
preferences, which we define in Section 4.

3 Notation and definitions
An HTN is a set of tasks and their ordering relations,
denoted as N=({t1,�,tm},<) (m≥0), where < is a binary
relation expressing temporal constraints between tasks.
Decomposable tasks are called compound, while non-
decomposable tasks are called primitive.

A domain theory consists of methods and operators for
generating plans. A method is an expression of the form
M=(h,P,ST), where h (the method's head) is a compound
task, P is a set of preconditions, and ST is the set of M 's
(children) subtasks. M is applicable to a task t, relative to a
state S (a set of ground atoms), iff matches(h,t,S) (i.e., h and
t have the same predicate and arity, and a consistent set of
bindings _ exists that maps variables to values such that all
terms in h match their corresponding ground terms in t) and
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the preconditions P  are satisfied in S  (i.e., there exists a
consistent extension of _, named _', such that ∀  p ∈ P
{p_'∈ S}), in which case M(t,S)=ST _'.

An operator is an expression of the form O=(h,aL,dL),
where h (the operator's head) is a primitive task, and aL and
dL are the so-called add- and delete-lists. These lists define
how the operator's application transforms the current state S:
every element in the add-list is added to S and every element
in the delete-list is removed from S. An operator O is
applicable to a task t, relative to a state S, iff matches(h,t,S).

A planning problem is a triple (T,S,D), where T is a set
of tasks, S is a state, and D is a domain theory. A plan is the
collection of primitive tasks obtained by decomposing all
compound tasks in a planning problem (T,S,D).

4 Cases in SiN
In many domains it is impossible to assume that a complete
domain theory of the world is known. For example, this is
true when planning for non-combatant evacuations (NEOs).
However, a partial domain theory exists for NEOs, and it
can be elicited from doctrine and standard operating
procedures [DOD, 1997].

Reasoning about parts of the domain for which no
domain theory is available is done through cases. A case C
is an instance of a method, denoted by C=(h,P,ST,Q), where
h, P, and ST are defined as for methods and Q is a set of
<question,answer> pairs. Q  defines preferences for
matching a case to the current state.  Preferences are useful
for ranking cases in the context of incomplete world states
and/or domain theories because, as we will show, they focus
users on providing relevant additional state information.

5 SiN mixed-initiative planner
SiN integrates SHOP and NaCoDAE�s task decomposition
algorithms. A single (current) state S is maintained in SiN
that is accessible to and updateable by both SHOP and
NaCoDAE. Answers given by the user during an interaction
with NaCoDAE are added to S (i.e., each question has a
translation into a ground atom). Changes to the state that
occur by applying SHOP's operators are also reflected in S.

SHOP generative planner. At any point during the
planning process, SHOP is refining a task list T� relative to a
state S and a domain theory D. Initially, T� is the set of tasks
T in the planning problem (T,S,D). SHOP performs ordered
task decomposition [Nau et al., 2000], meaning that the
tasks must be totally ordered (i.e., the < relation on HTNs is
a total order).  SHOP also maintains the partial solution plan
p being derived (i.e., the primitive tasks in T�). Initially p is
empty. SHOP selects the first task t in T� and continues as
follows:

•  If t is primitive and has an applicable operator O, then O
is applied to t, S is updated accordingly, t is removed from
T� and added to the end of p.

•  Else if t is compound and has an applicable method M
(that has not yet been applied to t), then M  is applied,
which replaces t in T� with M�s subtasks.

•  Else if T� is not empty, then SHOP backtracks.

•  Else SHOP fails.

SHOP terminates when T� is empty, in which case p is the
solution, or when SHOP tries to backtrack on a compound
task t whose applicable methods have been exhausted.

NaCoDAE mixed-initiative case retriever. Users interact
with NaCoDAE in conversations, which begin when the
user selects a task t. NaCoDAE responds by displaying the
top-ranked cases whose pre-conditions are satisfied and
whose heads match t.  Cases are ranked according to their
similarity to the current state S, which is the state that exists
at that time during the conversation. Similarity is computed
for each case C by comparing the contents of S with Q, C�s
<q,a> preference pairs. (That is, each pair is represented as a
monadic atom in S, and similarity for a given <q,a>
preference pair becomes a membership test in S). NaCoDAE
also displays questions, whose answers are not known in S,
ranked according to their frequency among the top-ranked
cases.  The user can select and answer (with a) any
displayed question q, which inserts <q,a> into S.  This state
change subsequently modifies the case and question
rankings.  A conversation ends when the user selects a case
C, at which time the task t is decomposed into ST (i.e., C's
subtasks).

SiN integrated planning algorithm. SiN receives as input
a set of tasks T, a state, S, and a knowledge base I∪ B
consisting of an incomplete domain theory I and a collection
of cases B. The output is a solution plan p consisting of a
sequence of operators in I. Both SHOP and NaCoDAE
assist SiN with refining T into a plan. As does SHOP, SiN
maintains the set of tasks in T�  that have not been
decomposed and the partial solution plan p. At any point of
time, either SHOP or NaCoDAE is in control and is
focusing on a compound task t∈ T� to decompose. SiN
proceeds as follows:

•  Rule # 1: If SHOP is in control and can decompose t, it
does so and retains control. If SHOP cannot decompose t,
but NaCoDAE has cases for decomposing t, then SHOP
will cede control to NaCoDAE.

•  Rule # 2: If NaCoDAE is in control, it has cases for
decomposing t whose pre-conditions are satisfied. If the
user applies one of them to decompose t, then NaCoDAE
retains control. If NaCoDAE has no cases to decompose t
or if the user decides not to apply any applicable case,
then if t is SHOP-decomposable, NaCoDAE will cede
control to SHOP.

If neither of these rules applies, then SiN backtracks, if
possible. If backtracking is impossible (e.g., because t is a
task in T), this planning process is interrupted and a failure
is returned.



By continuing in this way, and assuming that the
process is not interrupted with a failure, SiN will eventually
yield a plan p (i.e., consisting only of primitive tasks).

6 Correctness of SiN
In this section we will assume that SiN performs ordered
task decomposition. That is, we assume that all tasks are
totally ordered and at each iteration, when refining a set of
tasks T�, SiN will start by decomposing the first task in T�.
A relaxation of this condition should be possible once we
modify SiN to include the extended version of SHOP that
can represent partial-order task relations [Nau et al, 2001].

If I is an incomplete domain theory and B is a case base
(i.e., a set of cases), then a domain theory D is consistent
with I∪ B  iff (1) every method and operator in I is an
instance of a method or operator in D and (2) for every case
C=(h,P,ST,Q) in B, there is a method M=(h�,P�,ST�) in D
such that h, P , and ST  are instances of h�, P� and ST�
respectively.  Although many different domain theories
might be consistent with I∪ B, in general we will not know
which of these is the one that produced I and B.  However,
we can prove that SiN is correct in the sense that, if it
succeeds in outputting a plan, then that plan could have been
generated by SHOP using any domain theory consistent
with I∪ B.

Proposition (Correctness of SiN). Let T be a collection of
tasks, S be an initial state, I be an incomplete domain theory,
and B  be a case base, and let SiN(T,S,I,B) represent the
invocation of SiN with those items as inputs. Suppose that
SiN performs ordered task decomposition. Then:

(1) If SiN(T,S,I,B) returns a plan p, then for every domain
theory D consistent with I∪ B, p is a solution plan for
the planning problem (T,S,D).

(2) If SiN(T,S,I,B ) cannot find a plan, then there is a
domain theory D consistent with I∪ B  such that no
solution plan exists for (T,S,D).

The proof is done by induction on the number of iterations
of the SiN algorithm. The proof shows that each SiN task
decomposition in (T,S,I∪ B) corresponds to a SHOP task
decomposition in (T,S,D).  This is sufficient to prove
correctness because SHOP is known to be correct [Nau et
al., 1999]. We omit the details of the proof due to space
limitations.

This proposition suggests that cases in SiN supply two
kinds of knowledge: first, they provide control knowledge,
similar to the knowledge encoded in cases using
derivational replay when a complete domain theory is
available [Veloso, 1994; Ihrig & Kambhampati, 1994].
Because cases are instances of methods, applying a case is
comparable to a replay step in which the method selected to
decompose a task is the one in the case�s derivational trace.
The main difference is that, while cases in replay systems
correspond to a complete derivational trace, cases in SiN
correspond to a single step in the derivational trace. Second,

cases in SiN augment the domain theory and, thus, provide
domain knowledge as do cases in many case-based planners
(e.g., [Hammond, 1986]).

7 Imperfect World Information
SiN uses NaCoDAE to dynamically elicit the world state,
which involves obtaining the user�s preferences. Depending
on the user�s answers, cases will get re-ranked. When
solving a task, the user can choose any of the cases,
independent of their ranking, provided that all their
preconditions are met. The preferences play a pivotal role in
determining plan quality due to the absence of a complete
domain theory.

Consider the following two simplified cases:

Case 1:
Head: selectTransport(ISB,NEOsite)
Preconditions: HelosAvailable(ISB)
Questions-Answer pairs: Weather conditions? Fine
Subtasks: Transport(ISB,NEOsite,HELOS)

Case 2:
Head: selectTransport(ISB,NEOsite)
Preconditions: groundTransportAvailable(ISB)
Questions-Answer pairs:

•  Weather conditions? Rainy
•  Imminent danger to evacuees? No

Subtasks:
Transport(ISB,NEOsite,GroundTransport)

These cases both concern the selection of transportation
means between an intermediate staging base (ISB) and the
NEO site (NEOsite). The first case suggests using
helicopters provided that they are available at the ISB. The
second one suggests using ground transportation provided
that the corresponding transportation means are available at
the ISB. If the two cases are applicable, because both
preconditions are met, the answers given by the user will
determine a preference between them. For example if the
weather is rainy and there is no immediate danger for the
evacuees, NaCoDAE would suggest the second case. The
rationale behind this is that flying in rainy conditions is
risky. Thus, selecting ground transportation would be a
better choice.

8 Evaluation
Our experiments focused on the role of preferences in the
plan generation process in the context of incomplete world
state information and how they affect the quality of the
resulting plans. Towards this goal, we developed two
planning domains where the contents of the world state can
significantly impact choices during planning.

For these experiments, we encoded an automatic user
that dynamically provided preferences when asked by
NaCoDAE. The user provided preferences with a pre-



defined bias (defined in the following sections) towards
certain kinds of solutions. The automatic user will always
select the case with the highest similarity. In situations
where several candidate cases had the same highest
similarity, the automatic user selected one of them
randomly. The purpose was to observe whether the resulting
plans reflect the user�s bias despite the incomplete
information about the world state.

8.1 The Personal Travel Domain

The first domain was the personal travel domain. Its plans
concern traveling from locations in Washington, DC to
downtown New York City (NYC).  We encoded 7
transportation methods (3 inter- and 4 intra-city). Plans
consist of 3-5 planning segments.  States indicate different
locations, whether connections between locations exists and
by which means, weather conditions, etc.  The knowledge
base consists of 10 methods and 1 operator for SHOP and
40 cases for NaCoDAE.

Our personal travel plan evaluator can generate a
different time duration each time it is given a plan and world
state because of its non-deterministic execution.  For each
run, it outputs whether the plan succeeded and, if so, the
trip's duration.  A plan fails when segment delays cause a
late arrival for a segment requiring a fixed time departure
(e.g., an airplane flight).  For each segment, we applied a
delay function that is influenced by world state conditions.
For example, a flight segment will incur a longer delay for
higher chances of large snow accumulation, especially on
holidays (i.e., high travel days).  Segments are categorized
into short, medium, and long lengths, and delays can range
from 0 up to 4.5 times a segment's anticipated duration.
Smaller multiples are used for maximum delays for medium
(3.5) and long (2.5) duration segments.

We selected ten goals, corresponding to ten pairs of
departing and arrival locations in Washington, DC and
downtown NYC, respectively.  For each goal, we generated
10 random world states, thus yielding 100 total planning
problems. SiN was then used to generate a plan for each
problem, thus yielding 300 plans. Each was executed 10
times by the plan evaluator, for a total of 3000 runs.

Table 1: Results for the personal travel domain.

Preference Duration Price Success
Bus    676  85 92.2%
Train    466  176 94.3%
Plane    375  338 77.0%

Table 1 summarizes the results. When the user�s bias
was given towards taking the Bus for the intercity part of the
trip.  This preference yields maximal (676 minutes)
durations, but has the cheapest price. On the other extreme,
when the Plane is the preferred means of transportation, the
duration is the shortest but the price is the most expensive.
The lowest success rate occurs for plane trips; it reflects

missing connections due to external factors such as the
weather. Although a bias expresses a preference for a
certain transportation mode, it does not imply that it was
always selected; world state conditions may prevent the use
of some travel modes for particular situations.

8.2 The NEO Planning Domain

The second domain was the Noncombatant Evacuation
Operations Domain. Its plans involve performing a rescue
mission where troops are grouped and transported between
an initial location (the assembly point) and the NEO site
(where the evacuees are located). After the troops arrived at
the NEO site, evacuees are re-located to a safe haven.
Planning involves selecting possible pre-defined routes,
consisting of 4 segments each. The planner must also
choose a transportation mode for each segment.  In addition,
other conditions were determined during planning such as
whether communication exists with State Department
personnel and the type of evacuee registration process.
SiN�s knowledge base included 6 operators, 22 methods,
and 51 cases.

As with the personal travel domain evaluator, the NEO
planning evaluator can generate a different output each time
it is given a plan and a world state because of its non-
deterministic execution.  For each run, it outputs the plan
execution duration, the time it took to reach the evacuees,
and the evacuee casualties.  Similar to the personal travel
domain, we applied a delay function that is influenced by
world state conditions. The Neo Planning evaluator is more
complex than the personal travel evaluator because there are
more conditions that can affect the output variables and
these conditions may interact.  For example, a small-sized
force will incur fewer delays because embarking troops in
the transportation means will take less time than for large-
sized forces. However, smaller force increase the chances of
hostile attacks, which if they occur will delay the operation.

We had a single task, to perform a NEO, and generated
100 random world states, thus yielding 100 planning
problems. SiN was then used to generate a plan for each
problem, thus yielding 200 plans, and each was executed 10
times by the plan evaluator for a total of 2000 runs.

Table 2: Results for the NEO planning domain.

Preference Duration Time to Reach
Evacuees

Evacuee
Casualties

Helicopter    38.5     28.7   11%
Ground
Vehicle

   48.1     34.8   16%

Table 2 summarizes the results. The helicopter transport
preference yields plans that have shorter execution durations
(38.5 hours) and require less time to reach the evacuees
(28.7 hours). In addition, average casualties among
evacuees is less (11%), due mainly to the shorter time to
reach them, and land travel is generally riskier than air



travel. Still the number of casualties among evacuees is high
even with helicopters. This is due to the simple bias encoded
in the simulated user. Human users could yield better (and
worse) plans by dynamically providing more sophisticated
preferences depending on the world state conditions.

8.3 Discussion
The experiments show the capabilities of SiN in allowing
the user to guide the planning process towards their
preferences while dynamically capturing world-state
conditions. Despite our use of simplistic simulated users, the
quality of the plans reflect the user�s bias.

9 Related Work
Table 3 compares seven different features of SiN to those of
other planning systems.

Table 3: Comparisons between different systems.
Conventions: Gen=Generative; CBP=Case-Based; M-
I=Mixed-initiative; I=Interleaved control structure;
DK=Cases are used to supply domain knowledge; CK=Cases
are used to supply control knowledge.

System Gen CBP M-I I DK CK
SiN √ √ √ √ √ √
CHEF √ √
MI-CBP √ √ √ √
NaCoDAE √ √ √
Prodigy/
Analogy

√ √ √

SHOP √
SIPE II √ √

We first discuss the features shown in columns 2�5 of
Table 3.  SHOP [Nau et al., 1999], as is typical of
generative planners, requires a complete domain theory.
CHEF [Hammond, 1989] and DIAL [Leake et al., 1997] are
case-based, but do not have a generative component, and
thus need a large case base to perform well across a wide
variety of problems.  Prodigy/Analogy [Veloso, 1994],
DerSNLP [Ihrig & Kambhampati, 1994], and Paris
[Bergmann & Wilke, 1995] integrate generative and case-
based planning, but require a complete domain theory and
are not mixed-initiative. SIPE II [Wilkins, 1998] is a mixed-
initiative generative planner, but does not use cases.
NaCoDAE [Muñoz-Avila et al., 1999] is a mixed-initiative
case-based planner, but does not employ generative
planning.

At least three other integrated (case-based/generative),
mixed-initiative planners exist. MI-CBP [Veloso et al.,
1997], which extends Prodigy/Analogy, limits interaction to
providing it with user feedback on completed plans. Thus, it
must input, or learn thru feedback, a sufficiently complete
domain theory to solve problems.  In contrast, SiN gathers
information it requires from the user through NaCoDAE
conversations, but does not learn from user feedback.

CAPlan/CbC [Muñoz-Avila et al., 1997] and Mitchell�s
[1997] system use interaction for plan adaptation rather than
to acquire state information.

Among integrated case-based/generative planners,
SiN�s interleaved control structure is unique in that it allows
both subsystems to equally control the task decomposition
process. In contrast, other approaches either use heuristics
(Prodigy/Analogy; MI-CBP) or order case-based prior to
generative planning [DerSNLP; Mitchell, 1997], although
Paris does this iteratively through multiple abstraction
levels.  Distinguishing the relative advantages of these
control strategies is an open research issue.

The final two columns of Table 3 refer to the types of
contributions made by cases in CBP systems. CHEF and
NaCoDAE both use cases to provide domain knowledge,
while Prodigy/Analogy uses cases for control knowledge
(i.e., determining which planning constructs to apply).  In
contrast, SiN uses cases to both provide domain knowledge
(i.e., instances of methods) and control knowledge (i.e., it
allows the user selects which of these instance methods to
apply).

CaseAdvisor [Carrick et al., 1999], like SiN, integrates
conversational case retrieval with planning. While
CaseAdvisor applies pre-stored hierarchical plans to gather
information to solve diagnosis tasks, SiN instead uses its
case retriever to gather information and applies cases to
refine hierarchical plans.

Planning with incomplete information has been the
subject of frequent research in planning (e.g., [Golden et al.,
1996]). Typically, a distinction between sensing and
planning actions is made, where the former involve queries
to external information sources and the latter involves
inferencing steps. This is comparable to querying using
NaCoDAE and task refinement using SHOP.

10 Final Remarks
We presented the SiN algorithm for case-based HTN
planning. SiN was motivated by three requirements for
planning military operations: plans are hierarchical, there is
no complete domain theory explaining all possible courses
of action, and planners do not have complete information
about the current situation.

Our work includes the following contributions:

•  SIN is a provably correct algorithm for case-based
planning with incomplete domain theories.

•  SiN can tolerate incomplete world state information by
representing preferences in the cases. Our experimental
results show that a user can dynamically guide SiN by
giving preferences to it as part of the user�s normal
interaction with SiN during the planning process.

•  SiN provides a bridge between two classical approaches
for case-based planning, in which cases either provide



control knowledge or domain knowledge. In SiN, cases
provide both kinds of knowledge.

•  SiN�s ability to combine both experiential and
generative knowledge sources can be beneficial in real-
world domains where some processes are well known
and others are obscure but recorded memories exists on
how they were performed. Planning for NEOs is a
typical example of this type of domain. We have
integrated SiN into HICAP [Muñoz-Avila et al., 1999],
a system designed to support these kinds of operations.

Our creation of SiN was made possible because of the
similarity between NaCoDAE�s cases and SHOP�s methods.
For our future work, we want to further exploit this
similarity to ease knowledge acquisition for plan generation.
To this end, we have started working to create algorithms
for learning HTN methods automatically from cases.
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