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ABSTRACT

Tree search is important in a number of

areas, yet many of its properties are not well

understood. Tree search tends to Dbe time

consumning, * because the amount of time

necessary to search a tree generally increases

exponentially with the depth of the tree.

Thus, tree search 1is wusually used only in

cases where the tree 1s known to be small, or

where no betbter approach is known.

Cne important application of tree search

is in "looking ghead" to try to predict the

resulis of a decision. This 1is done, for

exampie, in the field of decision analyisis,
and "in the playing of gemes such as chess,
checkers, go-moku, othello, ete, for such

games, there 1s a consensus that lcoking ahead

improves play, but this agreement is based

purely on empirieal evidence.

Tae author has developéd a mathematical
theory modeling the effects of tree search on

quality of play for games such as those

mentioned sbove, This research yields the

surprising result that there is a large set of

such games for which looking farther ghead

consistently decreases the probability of

correct play rather than increasing it.

* This work, which was supported in part by
Science Foundation and James B, Duke

detail

Hational

. graduate fellowships, is discussed in

in the auther's Ph.D. dissertation [71.

Research aimed at  demonstrating the

predictions of this theory on commonly played

games is currently under way. In addition,
preliminary studies indicate that similar
types of results should hold for other kinds

of decision making situations in which looking

ahead is used,
INTRODUCTION
Tree searching is a

technigue

quite important -in 2 number of areas of

computer science. Searching a tree of . any
size is usuzlly a time-consuming task, because
the amount of time necessary to ‘search the
of the
exponentialiy with the depth of the tree. For

this

branches tree generally increases

reason, tree search 1s generally used

only in cases where the tree is known to be
very small, or where no better approach is

known. For example, one of the prime
applications

solve instances of NP-hard problems [1, 31.

One type of tree which is important in a

number of areas is the AND-OR tree, Its most
well known areas of use are problem reduction
search strategies - [61, computational

complexity {2, 8], and decision making 15, 61.

In decision-making situations where AND-OR

trees are used, it is generally agreed  that

increasing the amount of look-ahead improves

the quality of the decision. For example,
there have Dbeen some rather dramatie
. demonstrations of this with game playing

computer programs [9]. However, such results

are purely empiriecal. The auvthor knows of no

previous theoretical work ow the effecis of

which is

of  tree search techniques is to’



search depth.on the quality of a decision.

Tnis  paper is coneerned with a
mathematical theory modeling the effects of
searching deeper on the quality of a decision.
Since the methodology for such search has been
best 'deﬁeloped for the playing of games
suchh as chess, checkers, go-mcku, othello,
three-dimensional tie-tac-toe, and others, the
model is couched in terms of game playing.
However, as discussed near the end - of the
paper; the results should extend to other

areas as well, The major result of this study

is that there is a large class of games of the

type mentioned above for which looking farther
shead  will
probability of correet play rather than

consistently decrease the

increase it,

This idea may seem counter-intuitive,

One might suppose that since searching deeper

gives more information, it will always improve
play. However,. there are some games for which
searehing deeper causes the real information
to be  lost in the midst of misleading

information and noise.

In this paper, the word "game" shall mean-

only games having the Same  general
characteristics as the ones ﬁentioned above,
These games form a subset of the set of two
person, perfect information  games, Ezch of
them is played by two players, with a strict
alternation of the play between them, and each
player has complete knowledge of what both
.Players have done and can do in the game, In
none of the games is the cutcome determined
even partially by chance (as occurz in dice
games and most card games), However, the
results stated in this paper could be
generalizéd to remove one or mors of these
restrictions.

For the kind of game under consideration,
a -commen way for a player to choose a move is
to look ahead in an effort to gauge the
consequences of each possible move. An

analogous technique is used in

computer

programs which play such games. This
technique shall be informally described here:
for a more detailed description, the reader is
referred to [6]. '

The set of all possible courges a4 game
might take can be represented by a game tree
in which the root node is the current position
in the game, and the children of each node are
the positions which can be reached in one move
from that node, Looking ahead is done by
searching the branches of the tree to 'some
arbitrary depth, and applying a heuristie
evaluation function to each node at  thisg
depth. . This function returns & numerical

value for each node, based on thow good it

_estimates the game position to be., A high '

value indicates a position favorable to - one
pPlayer, and =a low value indicates a position
favorable to the other, The values returned
by the evaluation function are propagated back
ta the éhildren of the root using a technique
called minimaxing. Readers. should note that
this term- is used here in = considerably
different sense than in the "minimax" theocrem
of game theory. Those unfamiliar with this

usage are referred to [6],
A MATHEMATICAL MODEL

In this seetion, a mathematical.model is
developed  to investigate when deeper search
improves and degrades play._ A1l games
considered shall be games without draws, and
in which the play strietly alternates between
one player and the other, Unless otherwise
stated, the player who has the first move
shall always be callea Max, and his opponent
shall be called Min.
restrictions would not present any. particular
difficulty with respect to.  the

Removyal- of* these

results

discussed in this paper.

Let G.be a game, and suppose that at
every move after some position P in G, both
Max and Hin play perfectly. 3Since. draws are

not allowed, someone ({say, Max} must win.

Then we say that Max has a forced - win at




FIGURE 1.-—Examples of &, B, €, and D nodes.

The arcs on the B and C nodes indicate Min's move,

position P, for if Max plays perfectly from
that pdint on, then Max will win regardless of
how well Min plays. vaiodsly. every poéition
in every game we ‘shall consider will be a
forced win for somecone. Forced wins for Max
and Min “shall be 1labeled "+" and "7,
respectively. . Each game tree node now falls
into one of four equivalence clas$eé (see

Figure 1):

A, It is Max's move, and 2t least one of his.

possible moves leads to a “+" node., Then

Max has a foreced win.

B. It is Min's move, and all of his possible

moves lead to "+" nodes. Then Max again.

has a forced win.

C, It is Min's move, and at least one of his
possible moves leads to z "-" node. Then
Min has a forced win., This kind of node

is to Min what an A node is to Max,

D, It is Max's move, and all of his possible
moves lead to "-" nodes, Then Min has a
forced win, This kind of node is to Max

what an A ncde is te Min.

Given strict alternation between moves by Max

and moves by Min, it follows that

1. the successors of an A node are azlways B

and C nodes,

2. . the successors of a B node .are always A

nodes,

3. the successcrs of a C node are always A

and D nodes, and

L, the successors of a D node are alwéys c

nodes.
A and C ncdes shall be called critical nodes,
for it 1is only at such nodes that it makes a

difference which move is chosen.

Let f be an evaluation function (as

deseribed in  the introduction). If £ is

implémented on a real computer, then f returns
one of a finite {although perhaps very large)

number of values. For convenience, we shall

consider the range of f to be the set {0, 1, .

vssy 0}, for some nonnegative integer n,

If £ is a good evaluation function, then
f{t) will generally be high if t is a "+" ncde
and low if t is a "-~" node. However, § will
sometimes make mistakes; i.é., there will be

some "-" nodes to which f gives = high

evaluations and some "+Y nodes to whiech £

gives low evaluations. Otherwise, tree search
would not be necessary, for choosing as a next
move the one of highest wvalue would @ yield

paerfect play.

Fer almost any universal property one
might want to state about the behavior of
evaluation funetions in terﬁs of increasing
search depth, é function can be constructed
which fails to have that property, simply by
inereasing or decreasing the accuracy of the

function on nodes near the end of the tree., A

‘econvenient way to aveoid this difficulty is to

! set ‘up & model which makes probabilistic




rather than universal predictions about the

behavior of evaluation functions,

When setting up a probabilistic model of
a eclass. of deterministic objects, the usual
proeedure is to abstract the "important"
features of the objects being modeled, and to
element

consider each object X as a random

from the set of all objeets having the same

features as X, In the case of evaluation

functions, the main ~feature .which we shail
choosé to consider important is their average
performance.

Cne way to do this is to compute

frequency counts for the values returned by an

evaluation function. For an evaluation

funetion £, we can let g{i) be the number of
nodes t-sueh that £(¢) = i, and then consider
f to

of 211 evaluation functions yielding the same

be a randomly chosen element of the set

function gq.
that both geod and bad evaluation funétions
will be members of the same equivalence cléss.
A function that gives "+" nodes high values
and "-" nodes low values will generally yield
the same ¢q as many other_functions that give
values and "-"

"+ nodes low nodes high

values, A measure of the average performance
of f should in some sense be a measure of the
goodness of f: function

should be

each good evaluation
in an equivalence class containing
other good evaluation functions, and each had
should be in an
other - bad

evaluation function

equivalence class containing

evaluation functions.

_ If f is a good evaluation function, then
f{t) will wsually be high if t is a "+" node
and low if t is a "-" node, Let f' be defined
by ) '

£r{y)

f{t) if £t is a "+" node

n-f(t) if t is a "-" node.

o If T is good, then f'(t) will usually be high,

regardless of whether t is a "+" node or a "=t

- node. conversely, if f is bad, f'(ﬁ) will mot

- class

The ‘problem with this idea is

‘move is

1€ p(0) = p(1) = ... = plln/21) = 0),

ususlly be high, Therefore, let us put p(i) =
the number of nodes t such that £'(t} = i, If
f is good, then p{i) will ususlly be small if
1 is small and large if i is large, and vice
versa if f is bad.= Thus p-is a reasonable
measure of goodness for f,

Let us now put f into an equivalence
with 211 other functiens g yielding the
same function p, If we now consider f to. be

drawn at random from this  class, then p
determines the probability density function
{p.d.f.} for the

particular, it can be shown that

values returned by f. In

Pr [f(t) it is a "+" nodel

Pr [f(t)

n
=

pli)

"
>
i
-

i} t iz a "-" nodel.
Since p(i) is defined only for i = 0,1,,..,n,
represented by a vector P = (p{0),
shall eall

p can be
p{1), +e., p(n}). This vector we

the probability vector for f,

The only nodes for which it matters which
chosen ‘are the critiecal nodes; i.e.,
I P is
measure of goodness for f,
shovld  be
probability

the A and C nodes, useful
then from P it

. calculate the

indeed a

possible  to
of  making a correct decision at

any eritical node in the tree for a given
depth.

Although a discussion of how it 1is

search Indeed this eczn be done.
done 1is
beyond - the scope of thisz paper,* we note that
then f
will always evaluéte 2 "+" node higher than it
will and thus ° the

evaluate a "-" node,

probability of making a correct decision will

¥ Both this mathematical development and
the proofs of the theorems presented later are

omitted, This 1is for brevity--were they

included, thé paper would be several times its

current length! Readers interested in seeing

a mathematically rigorous presentation are

referred to the author's Phn,D, ‘dissertation

[71.




FIGURE 2.--The tree T(1,1).

be 1, regardless of the search depth. In this

case, we say that both f and P are perfect,
A PATHOLOGICAL TREE

& perfect probability vector P will ¥ield
perféct play regardless of the search depth.
However, the set of perfect probability
vectors has.measure {and hence probability) O,
introdﬁction,

that for

As discussed in the empirical

experience sSuggests imperfect P,
deeper search will increase the probability of
shall now c¢onstruct a

will

correct decision. We

game tree for which deeper search

decrease'the-probability of correct decision.

One way to- try to do this is te ¢&ry to

make every "+" node look bad and every V-
node look good. Intuitively, this should
occur ifs each node has many children as
possible of obposite sign. If, for

simplicity, the branching factor is restricted
to 2, this yields the tree T(1,1) of Figure 2,

THEOREM 1, Suppose P is a probability

vector which is not perfect. Then for T(1,1),

.at random.

" more onhe

" of moves,

lim  Prlecorrect decision | depth d searchl
d~poo
= 1/2.

One-half is what the correct choice would
be on T(1,1) if one were choosing moves purely
Thus,

evaluation function for T{i,1), no mafter how

_given any imperfect -
bad or good, the farther one looks ahead, Gthe

will play as if one were choosing

moves at random.

For example, one evaluation function for
T{1,1) gave the
probability of choice -at a
depth of 1 was 0.95. At search depth 2, it
was 0.985. At search depth 8,
than 0.9, At
than 0.6,

following berformance. The
correct search
it was less
search .depth 16, it was less
At search depth 24, it was 0,500,

correct to 3 decimal places.

Intuitively, what happens on T(1,1} iz a
"manic-depressive” kind of behavior, If a
player looks ahead an odd number of moves,

each of his choices tends to 1look like a

forced win. .If he looks ahead an even number

each of his choices tends to look

; like a forced loss, This tendency has been




FIGURE 3,--The tree T(r,s).

noted by writers of computer programs to piay
games such as chess and checkers {9]); the
difference for T(1,1} 3is that the tendency
becomes worse as the search depth increases.
As the seafch depth increases, more and more

of the choices receive the same minimax

values, and so the choice of what move to make:

becomes more and more random.
MORE GENERAL RESULTS

Suppose a player chooses 'a move by
searching a game tree T to depth d, using an
evaluation function f  having probability
véetor P. If, as d épproaches infiﬁity, his
probability of correct cheoice approaches what

it would be if he were choosing a move at

‘random, then we say that T is gfpathological.

Theorem -1 says that T(i,1) is P-

patholeogical for every imperfeet P, It is

reasonable to suspect that similar . results

hold for other trees as well, We would like

to have a theorem saying “given an arbitrary

game tree, it is pathological if and only if

a2

Unfortunately, such a theorem would be

" very difficult to prove. The proof of Theorem

1 involves proving that certain recursively
defined sequences of vectors converge fto
desired 1imits. The sequences can be defined
recursively only because T(1,1} is

"homogeneous" in the sense that all A nodes

~look . alike, all B nodes look alike, and so

fbrth; iin an arbitrary tree, the recursive
definition could not be set up., Thus we shall
not generalize Theorem 1 to all trges. bt
instead to & smaller set of trees which we
hope will be broad enough to suggest how the
spirit of these results might carry over to

game trees in general.

Let r and 5 be positive integers. Ve
shall geheralize T(1,1) by constructing a tree
T(r,s) of constant branching factor r+s, in
which every eriticsl node has r children of
the same sign and 8§ children of opposite sign.
In . particular, every A node shall haver B
children and s € children, every B node - shall

have r+s A children, every C node shall have r

.D children and s A children, and every D node

shall have r+s C children. As with T(1,j),
the root of T{r,s) shall be an A node. Using

these rules gives the tree of Figure 3.

THEOREM 2. - Suppose that P is not

semipérfect (this word shall . be discussed




~pathological

non-pathoiogical

3

pathological

pathological

v

FIGURE H.n—Pathological and hon-pathological behavior for a

non-semiperfect probability vector F, as a function of r and s.

The numbrered areas are for reference in the text.

later). Then there is an integer S such that
whenever s > 8, T(r,s) is P-pathological for
every r.

THEOREM 3. Suppose that P is ﬁot

semiperfect.,

Then for every integer s there-

is au integer R such that for every r > R,

T(r,s) is P-pathological,

A rigorous definition of "semiperfeci" is

beyond ‘the scope of this paper. Intuitively,
it denotes a class of "very good" evaluation
functions. What 1is important about this

concept is that considered as a subset of the

set of =all probability vectors P = (p(0},

p{1), ..., p(m)), the set of probapility
vectors which are semiperfect -Is an n-~1
dimensional subset of an n dimensicnal set,
which hence has measure O. Thus the

probability of randomly choosing a probability
vector to which Theorems 2 and 3 do not apply

is O,

. author's belief that

Taken together, Theorems 2 and 3 state
that for each non-semiperfect P there are only
T{r,s).
However, the bounds they _prédict are not
tight.

that

finitely many non-pathological trees
Experimental computer simulation shows

pathology ogccurs uider ather
circumstances as well,
Figure 8.

Areas 1 and 2 of Figure 4 are ' the areas
of pathology predicted by Theorems 2 and 3,
respectively., Areaz 3 is an additional region
where experimentation has shown that pathology
oceurs. Trees with non-pathological - behavior

are found only in area 3,

DISCUSSION

The significance of the results discussed

is tLhat for most classes of evaluation
of the
the

above

functions, all but a finite number

T(r,s} will be pathological. It is

this indicates an

This is illustrated in .




i1

underlying pathological tendency present in

almost all game trees. However, in most games

this tendency is overridden by other factors.

In games such as chess, for example, there are

"good" positions and Thad® ones. Goed

positions are often characterized in terms of’

such things as the number their
mobility,

ete,, but a good position is

of pieces,
how well the king is ﬁrotected;
generally one
from which a

player has a variety of good

moves, and a bad one is generally one from
has few (if any) good moves,

and _bad

which' a player

This elustering of geood positions

positions should * almost always override any

pathological tendency which may be present.
Despite such considerations, it might be
possible to get pathological behavior for
limited periods of time even in games such as
chess or checkers,

given the appropriate

conditions, In a part of the game where mest
moves look fairly similar and the players are
fairly equally matched, the game tree might
look "homogeneous" enough that pathology.eould

be observed for a few moves.

'"Experimental results indicate that given

a game with a2 small branching factor,
patholegical behavior is more likely to -occur
if the

"vocabulary"; i.e., if its

evaluation function has a small

range 1is =msll,
This suggests the possibility of observing
pathological behavior in limited portions of a
commenly played game by compressing the output
of the evaluation function into a small set
{(for example, by mapping negative valuves into
~1 and positive values into +1). Research is
currently underway t¢ see if pathology can be

observed in this manner in such games.

“Although the results discussed in this

paper are couched in terms of game playing,

there is no pérticular reason why they need be
limited

only to that area. Indeed, any sort

of decision making situation which involves
tree search using an evaluation function which
' sometimes makes mistakes is a logical area in

" which to try ‘to develop patholegy theorems,

For example, preliminary investigations

indicate that theorems similar to thosé of

this paper should be cobtainable for decision

trees 1in decision analysis, certain decision

problems arising in program ‘synthesis, and

possibly in other areas. This provides a

tople for future research.
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