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ABSTRACT 

Game trees are widely used as models of 
various decision-making situations. Empirical 
results with game-playing computer programs have 
led to the general belief that searching deeper on 
a game tree improves the quality of a decision. 
The surprising result of the research summarized 
in this paper is that there is an infinite class 
of game trees for which increasing the search 
depth does not improve the decision quality, but 
instead makes the decision more and more random. 

I INTRODUCTION - 

Many decision-making processes are naturally 
modeled as perfect information games between two 
players [3, 71. Such games are generally 
represented as trees whose paths represent various 
courses the game might take. In artificial 
intelligence, the well-known minimax procedure [2, 
71 is generally used to choose moves on such 
trees. 

If a correct decision is to be guaranteed 
using minimaxing, substantial portions of the game 
tree must be searched, even when using tree- 
pruning techniques such as alpha-beta [2, 71. 
This is physically impossible for large game 
trees. However, good results have been obtained 
by searching the tree to some limited depth, 
estimating the minimax values of the nodes at that 
depth using a heuristic evaluation function, and 
computing the minimax values for shallower nodes 
as if the estimated values were correct [2, 71. 
There is almost universal agreement that when this 
is done, increasing the search depth increases the 
quality of the decision. This has been 
dramatically illustrated with game-playing 
computer programs [l, 8, 91, but such results are 
purely empirical. 

the 
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probability of making a correct decision. This 
research has produced the surprising result that 
there is an infinite class of game trees for which 
as long as the search does not reach the end of 
the tree (in which case the best possible decision 
could be guaranteed), deeper search does not 
improve the decision quality, but instead makes 
the decision more and more random. For example, 

probability of 

search 
depth 

0 2 4 6 8 10 12 14 16 

FIGURE l.--Probability of correct decision as 
a function of search depth on the game tree 
G(l,l), for five different evaluation functions. 
On G(l,l), the probability of correct decision is 
0.5 if the choice is made at random. For each of 
the five functions, this value is approached as 
the search depth increases. 
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Figure 1 illustrates how the probability of 
correct decision varies. 

Section 2 of this paper summarizes the 
mathematical model used in this research, Section 
3 presents the main result, and Section 4 contains 
concluding remarks. 

II THE MATHEMATICAL MODEL -- 

Let G be a game tree for a game between two 
players named Max and Min. Nodes where it is 
Max's or Min's move are called max and min nodes, 
respectively. Assume that G has no draws (this 
restriction can easily be removed, but it 
simplifies the mathematics). Then if G is finite, 
every node of G is a forced win for either Max or 
Min. Such nodes are called "+I' nodes and 1(-11 
nodes, respectively. If G is infinite, not every 
node need be a "+,. or II- II node, but the "+" and 
M-n labeling can easily be extended to all nodes 
of G in a way which is consistent with all finite 
truncations of G. 

Correct decisions for Max and Min are moves 
leading to "+" and u-11 nodes, respectively. "+" 
max nodes (which we call S nodes) may have both 
"+" and 1(-(1 children; "+" min nodes (T nodes) have 
only "+" children; *-II min nodes (U nodes) may 
have both "+" and 11-(1 children; and --II max nodes 
(V nodes) have only 11-11 children. Thus it is only 
at the S and U nodes that it makes a difference 
what decision is made. These nodes are called 
critical nodes. 

An evaluation function on G may be any 
mapping e from the nodes of G into a set of 
numbers indicating how good the positions are 
estimated to be. For computer implementation, the 

range of e must be finite. We take this finite 
set to be fO,l,...,r}, where r is an integer. 

Ideally, e(g) would equal r if g were a "+" 
node and 0 if g were a 11-u node, but evaluation 
functions are usually somewhat (and sometimes 
drastically) in error. Increasing the error means 
decreasing e(g) if g is a "+" node and increasing 
e(g) if g is a 11-11 node. Thus if we assume that 
the errors made by e are independent and 
identically distributed, the p.d.f. f for the 
values e returns on "+" nodes is a mirror image of 
the p.d.f. h for the values e returns on 1)-11 
nodes; i.e., f(x) = h(r-x), x = O,l,...,r. f may 
be represented by the vector P= 
(f(O),f(l),...,f(r>>, which is called the 
probability vector for e. --- 

111 RESULTS -- 

The probability vector for e induces 
probability vectors on the minimax values of the 
nodes of G, and the probability of making a 
correct decision at any critical node g of G is a 
function of the probability vectors for the 
minimax values of the children of g. This 
probability is thus determined by the structure of 
the subtree rooted at g, and little can be said 
about it in general. However, if G has a 
sufficiently regular structure, the properties of 
this probability can be analyzed. 

Let m and n be positive integers, and let 
G(m,n) be the unique game tree for which 
1. the root is an S node (this choice is 

arbitrary and the results to follow are 
independent of it); 

2. each critical node has m children of the same 
sign and n children of opposite sign; 

T . . . T U . . . U U . . . U 

m+n A-A . . . . . . 

FIGURE 2.--The game tree G(m,n). Min nodes are indi- 
cated by the horizontal line segments drawn beneath them. 
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3. every node has m+n children. 
G(m,n) is illustrated in Figure 2. 

If moves are chosen at random on G(m,n), the 
probability that a correct choice is made at a 
critical node is obviously m/(m+n). If the choice 
is made using a depth d minimax search and an 
evaluation function with probability vector P, it 
is proved [4, 51 that the probability that the 
decision is correct depends only on m, n, P, and 
d. We denote this probability by &,n(P,d). The 
trees G(m,n) have the following surprising 
property. 

Theorem 1. For almost every* probability ~- 
vector P and for all but finitely many values of m 
and n, 

lim &,n(P,d) = m/(m+n). 
d-3 co 

Thus, as the search depth increases, the 
probability of correct decision converges to what 
it would be if moves were being chosen at random. 
This pathological behavior occurs because as the 
search depth increases it becomes increasingly 
likely that all children of a critical node 
receive the same minimax value, whence a choice 
must be made at random among them. 

Figure 1 illustrates Theorem 1 on the game 
tree G(l,l), using five different values of P. 
The significance of Theorem 1 for finite games is 
that infinitely many finite games can be generated 
by truncating G(m,n) in whatever way desired. 
Deeper search on these trees will yield 
increasingly random decisions as long as the 
search does not reach the end of the tree. 

Additional theoretical and experimental 
results reported elsewhere [4, 5, 61 provide 
additional information about which of the G(m,n) 
are pathological and why. Theorem 1 almost 
certainly extends to a much larger class of game 
trees, but the irregular structure of most game 
trees would require a much more complicated proof. 

IV CONCLUSIONS - 

The author believes that the pathology of the 
trees G(m,n) indicates an underlying pathological 
tendency present in most game trees. However, in 
most games this tendency appears to be overridden 
by other factors. Pathology does not appear to 
occur in games such as chess or checkers [l, 8, 
91, but it is no longer possible blithely to 
assume (as has been done in the past) that 
searching deeper will always result in a better 
decision. 
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* A property holds for almost every member of a 
set if it holds everywhere but on a subset of 
measure zero. Thus for any continuous p.d.f. on 
the set, the probability of choosing a member of 
the set to which the property does not apply is 0. 
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