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Abstract. One unportant apphcatlon of tree searchmg is “looking ahead” on a a decision tree or game tree
to try to predict the results of a decision. To guarantee correet results, substantial portlons of the tree must
be completely searched, which is physically impossible for very large trees.

Artificial intelligence researchers have obtained good results by searching the tree to some arbitrary
depth and using a static evaluation function to estimate the values of the nodes at that depth. It is generally
believed that when this is done, the quality of the decision improves as the search depth increases. This
belief is based purely on empirical evidence.

The author has developed a mathematicat thcory modeling the effects of search depth on the probabxhty‘
of making a cotrect decision. In this theory, the efrors made by the evaluation function are modeled as
independent, identically distributed random errors superimposed on the true values of the nodes evaluated.
This research has produced the surprising result that there is an infinite class of game trees for which .
searching deeper does not increase the probability of making a correct decision, but instead canses the,
decision to become more and more random. The paper contains a mathematical proof of this statement,
cxpenmeutal venﬁcatlon of it,and a dxscussmn of i 1ts sxgmﬁcance
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1. I ntroduction

Trees are used in nearly every area of computer science. I-Iowever many of their
properties ‘are not well understood, and this paper is concerned with some of them.
Spec1ﬁcally, the relationships between depth of tree search and quahty of behavior -
in decision making are studied. B
Problem reduction is widely used in artificial mte]hgence andin several other areas
of computer science: Problem reduction trees and game trees are basically the same,
and using the problem reduction approach may be viewed as formulating the problem-
to'be solved as a decision problem on a game tree. Decisions are made by searchmg ‘
to the end of the tree to predlct the results of each possxble decision.- S
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Since the number of nodes in a tree generslly increases ¢xponentially with the

depth of the tree, it is usually infeasible to do a complete search of a large game tree. .

Techniques such as the alpha-beta search procedure {2, 5, 9, 11, 17, 18, 26], which
guarantee correct results without looking at every node in the tree, have been
developed. However, such procedures still require a complete search of some portions
of the tree. Game trees are often so large that this is physically impossible. '

In game-playing computer programs, good results have been obtained by searching
the tree only to some severely limited depth, using a static evaluation function to
estimate the utlhty values of the nodes at that depth, and then proceeding, in the
usual manner,’ to compute utlhty values for the shallower nodes in the tree as if the
estimated utility values were in fact correct [3, 6, 7, 9, 18, 22, 23, 25, 28]. This
technique; which we call heuristic game tree searching, is used implicitly in “real life”
decision situations, although it does not seem to have. been studled by decision
analysts. -

There is almost universal agreement that when a heunstic game tree search is used,
increasing the depth of the search improves the quality of the decision. This has been
dramatically demonstrated with recent game-playing computer. programs 3, 22, 28,
29]; but such results are purely empirical. The author knows of no prevaous theoret1ca1
investigation of the effects of search depth on the quality of a decision. *

Thi§ paper is concerned with a mathematical theory modeling the effects of
searching deeper on the probability that a decision is correct. In this theory, the errors
made by the evaluation function are modeled as independent, identically: distributed
random values superimposed on the true values of the nodes evaluated. The major
result of this study is that contrary to the conventional belief, there is'a large class of
game trees and evaluation functions such that as long as the search does not reach
the end of the tree (in which case a correct decision could be guaranteed), deeper
search will not increase the probability that a decision is correct; but will instead cause
the decision to become increasingly random.

As an example, Figure 1 illustrates how the probability of correct decision varies
on a game tree G(1, 1) which is discussed later. On G(1, 1), the probability of making
a correct choice of move is § if the moves are chosen at random. The behavior of
evaluation functions with . five different error. distributions is shown. At shallow
search depths, some of them give very good results; and some give very poor results.
But as the search depth increases, the probability of correct decision. converges to 4.
in each case, This figure is discussed further in Section 6.1. o,

This idea may- seem counterintuitive:- One might- suppose that since . searchmg
deeper gives more information, it cannot possibly make the decision worse. But the
reader should keep in mind that the evaluation function merely estimates the quality
of game tree positions, and these estimates may often be in error. There are some-
game trees for which searchmg deeper causes the real mfonnauon to be lost in errors
and noise.

Section 2 is a presentatxon of the mathematical model on ‘which these results are
based. Section 3 is a description of an infinite class of game-trees having a regular
enough structure that nontrivial theorems can be proved about them, Section 4
contains a number of preliminary theorems which are used in-Section 5 to prove the

central mathematical results of this paper. Relevant experimental results are sum-

marized in Section 6, and concluding remarks appear in Section 7. A glossary of
terms and symbols appears at the end of the paper.

! In computer game playing, “minimaxing” is normally used. This corresponds to the maximin decision
criterion of decision analysis [10, 31].
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Fic. 1. Probability of correct decision as a function of search depth on the game iree

G(1, 1), for five different evaluation functions. On G(1, 1), the probability of correct

decision is 0.5 if the choice is made at random For each of the five functions, tlns vﬂlue )
is approached as the search depth increases.

2 A Mathematzcal Model

This section is 2 discussion of the ma,themaucal model used in th.lS paper. 1t covers
games and game trees, minimaxing, a stochastic model of evaluation function errors,
and how the probability that a decmon is correct depends on these EITOTS,

2.1 GAMES AND GAME TREES. By.the word “game” we mean a Zero-sum, perfect-
information game in which the play strictly alternates between two players,.and in
which the outcome is not determined even partially by chance (as would occur, for
example, in dice games). On his move, each player is allowed only a finite number

of moves among which to choose, but we do not require that every game end ina.

finite number of moves.

We also stipulate that no game can have draws‘, Although this restriction s_impliﬁes
the mathematics in this paper, it can easily be removed. Any game G containing
draws ‘can easily be transformed into two games G’ 'and G” without draws, by
mapping draws into wins and losses, respectively. The properties of G are easily
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Fie. 2. Examples of §, T, U, and ¥ nodes. Nodes where it is Min’s move are
indicated by the arcs drawn beneath them.

determined from the properties of G’ and G”, However, the mathematical model is
now simpler, for if a finite game has no draws, then it is a simple inductive proof that
every position is a forced win for either one player or the other.

Given these restrictions, every game can be represented by a game free in which
the root node represents the current position in the game and the children of each
node represent the game positions which can be reached in one move from that node.
Let us call the two players Max and Min, and assign the signs “+” and “~" to nodes
which are forced wins for Max and Min, respectively. If the game tree is finite, then
it can be proved by induction that every node has a sign, whence there are four
possible types of nodes: '

(1) S nodes (“+” nodes where it is Max’s move);
(2) T nodes (“+” nodes where it is Min’s move);
(3) U nodes (“—” nodes where it is Min’s move);
(4) V nodes (“~” nodes where it is Max’s move).

Examples of the nodes are given in Figure 2.

As illustrated in Figure 2, § and U nodes are the only nodes at which it makes a
difference which move is chosen. Thus these nodes are called critical nodes, and T
and ¥ nodes are called noncritical nodes,

Since the play strictly alternates between Max and Min,

(I) the children of an S node are always T"and U nodes;
(2) the children of a T node are always S nodes; o
(3) the children of a U hode are always V and S nodes; -
(4) the children of a ¥ hode are always U nodes. L

These and other properties of the four types of nodes are summarized in Table I.
On an infinite game tree, not every node need be a forced win or forced loss.

- However, the “+” and “—» labeling (and thus the four types S, 7, U, and ¥') may be

extended to every node in the tree by assigning “+” and “~” labels in any way such

- that the following four conditions‘hold:

(1) For “4” nodes where it is Max’s move, at least one child is a “+ node. i
(2) For “+» nodes where it 'is Min’s move, all children are “+” nodes;

(3) For*“~"nodes where it is Min’s move, at least one child is a “~ node.
(4) For “~” nodes where it is Max’s move; all children are “~” nodes. -

22 CHOOSING A MOVE. The use of static evaluation functions and minimaxing
to choose moves in a game was first proposed by Shannon [24] and is now well

" known, An evaluation function associates with each .game position a number indi-

cating how good the position is estimated to be. High numbers mean good positions
for Max (and therefore bad ones for Min); low numbers mean the reverse. If the
function is to be implemented on a computer, then its range of possible values must
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TABLE . CHARACTERISTICS OF GaME TREE NoDEs

Type 8 r v 14

Sign g2 “+” T ée__s 7 e__33
Player to move . Max Min Min Max
Critical node Yes No - Yes No

Types of successor nodes ru s V.S o

be finite. We take this range to be the finite set of integers {0, 1, ..., r} for some
integer r. .

If e is an evajuation function for a game tree G and g is a node of G, then the depih
d minimax value for g using ¢ is defined as - o

€(g) if d=0 or gisa terminal node,
' max{ez-1(g")|g’ is a child of g}
eq(g) = if d>0 and itis Max’s move at g, 2.1
‘minfes .(g’)|g’ is a child of g '
- ¥ d>0 and it is Min’s move at g.

For each integer 4 0, choosing a move using a depth d minimax search consists
of compirting the depth d — I minimax values for each child of the current node and
moving to the child having the best value, that is, the largest value if it is Max’s
move, or the smallest value if it is Min’s maove, If several nodes share this same value,
the choice is made at random among them. If d = 0, then the choice is made at
random among all possible moves, -

node g means increasing e(g) from the ideal value of 0 if g is a “~. node, or
_decreasing e(g) from the ideal value of  if £1s a “+” node. Thus we define the error
;made by e atgtobe : s o

Jer-0 i g18 2 “~” node,
- orr(g) {i‘ —e(g) if ‘g£isa “+” node.

We assume that the errors {err(g)|g is a node} are independent, identically distrib- ’

uted random varjablés with probability function (p.f) _
' o o Jen (i) = Prferr(g) = 4| gisanode], (2.3)

This assumption has the advantage of making the problem mathematically tractable,

How well it corresponds to reality is discussed in Section 7. '
Because of the definition of erre(g), eq. (2.3).is equivalent to assuming that the p.f.

FE@) for the values returned by e on “+* nodes is mirror image of the pf
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f<(i) for the values returned by e on “~> nodes. In partieular,

fe(@) = Pr[e(g) = i|gis a “+” node]
= Prierrg)=r—ilgisa “+” node] (from eq. (2.2))

= Prierr(g) = r — { (since {err.(g)}
' are identically distributed)
- =feufr—1) (from eq. (2.3))
and | ' . o '
.- fe@) = Prie(g) = i|gis a2 “—” node] S
= Prlerr.(g) = i| g is “—" node] (from eq. (2.2))
= Prlerr.(g) = i] ‘ (smce {err.(g)}
- : are identically distributed)
= foreli) S (from eq. (2.3)),
whence the p.f. for the values e returns on an arbitrary node-g is
_ s if g isa“+” node,
ﬂ(g)(t) {f c@y=fc(r—0. if g isa“—"node. =~ . Q4

Thus the values that ¢ returns are completely ‘characterized by £+ andr.”

 Lethand A’ be the smallest and latgest aumbers e returns with nonzero probablhty

on nonterminal “+” nodes ‘of a game tree If h =r= h then we say that e is
symmetrically bounded by h.

** From eq. (2.4) we get

Pr[e(g) = 1| g is a “=" " node] = Pr[e( g) =r- t[ g isa “+” node], (2 5

wh1ch means that 1f eis symmetncally bounded by h then hand W= r— h are also

the smallest.and largest numbers e returns with nonzero probability on nonterminal
+ “=" nodes. This means that the hlghest possible value for e(g) may occur.not only
_on “+” nodes but also on “—* nodes, and the lowest possible value for.e(g) may

occur not .only.en. “—” nodes but .also-on “+” nodes. This is not an entirely

unreasonable occurrence, since the evaluation functions used in chess-playing com-

puter programs; can, typically be made to. return, very, high values: for, very..dire
- positions if the amount of material-on the board is made hxgh enough [SD]

“Homo geneous’ Games

3.1. TrE Basic Derinrrion. If Gis a game tree, then the only nodes of G for
which it matters which move is chosen are the critical nodes, that is, the S and U
nodes. For such nodes we call the choice correct if the child chosen is a forced win
node for the player making the choice. At a critical node g, the probability that a
correct decision is made at g is determined by the evaluation function e, the depth d
of the minimax search, and the subtree of G rooted at g.

Since the structure of the subtree rooted at G may vary markedly. dependmg on G
and g, it is very difficult to make any general statements about how the probability
of correct decision varies with 4. We now consider a class of game trees whrch have
a regular enough structure that such statements can be made.

Defi nition 3.1. Letmz 1 andn = 1 be mtegers ‘and let x be one of the letters S,
T, U, and V. Then G.(m, n) is the unique infinite game tree such that

(1) the root of Gx(m, n) is an x node;
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- F16..3, The tree Gs(2, 1.

(2) every eritical node in G,(m, n) has m children of the same sign, followed by #
children of opposite sign; - - - S T

(3) every node of Gu(m, n) has m + n children. .

Gs(2, 1) is illustrated in Figure 3.

We let G{m, n) denote any one.of Gs(m, n), Gr(m, n), Gu(m, n), and Gy(m, n). The
relevance of the properties of G(m, n) to finite games is that infinitely many finite
games may be formed fiom ' G(m, n) simply by turning selected nodes into terminal
nodes. If G” is such a truncation of G(m, n), and if the subtree of G’ having g as its
root is complete to at least depth d, then a depth ¢ minimax search from gin G’ and
a depth'd minimax search from g in G(m, ny will yield exactly the same results. This
allows us to prove resylts about G(m, n) with the assurance that they also apply to
truncations of G(m, n). ' '

~ 3.2. INDEPENDENCE RESULTS. Let-e be a: symmetrically ‘bounded evaluation
function for G(m, n), Then several independence conditions hold, as discussed below.

3.2.1. Evaluation Function Values on Distings Nodes. Let g be any node of
G(m, n), and let X = {x5, %, ..., Xz} be the set of all depth d descendants of g in
order from left to right. Let g’ be distinct from g and from the members of X. If
type(g) is known, then type(x;) is determined for every x € X (for example, if x is an
S node and d = 1, then x,, . ~+» Xm a1 T'nodes and xpey, . .., 3 are U nodes). But
e(x), given type(x,), is ihdependé;it of e(g");’ that is, for all j, 7 L

R Prle(x:) = j Itype(xs)] = Pr[g(x,-) =j |t’yp¢(x,-), (g (3.1).

But e&( g) is é. function of {e(x:)] % € X}. Thus es(g), given type( g)is a,.func'tion of
random variables which are independent of e(g’), and thus €(g), given type(g), is
independent of e(g’); that is, - o

o Prlea®) = /] type(g)] = Prlea(g) = jltype(g), ea(s?)], (3.2)
3.2.2. Nodes of Known Type, Suppose that type(g) = type (g’). Then the subtrees

* Note however, that if type(s.) is not known, then e(x;) is not necessaril independent of efg’); le. itis
1ot necessarily true that Prie(x;) = J 1= Prle(x;) = JFle(ghl. ‘ o

e
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rooted at g and g’ have exactly the same structure, whence (by means of a simple
inductive proof’),

foao®) = foier@)  forall i 33)

where fe, s and fe,(z) are the p.fs for es(g) and ea(g”), respectively. Thus fe () is the
same for all § nodes g of G(m, n), and similarly for the 7, U, and ¥ nodes. This
allows us to define

(1) 5¢=feun and Sq¢= Fed(g), where g is any S node;®
(2) ta=fein and Ty = F,;, where g is any T node;
(3) 4a = feyp and ' Uys = Fep, where g is any U node; and
4 va=foyw and Vy = F, (), where g is any Vnode

Suppose that either gis an § node and g'isa Unode,orgisa Tnode and g’ is
a ¥ node. Then it is easy to see that the ‘subtrees rooted at- g and g'"are isomorphic
under the mapping which maps S, T, U, and ¥ nodes into U, V, &, and T nodes,
respectively. Thusif {x1,..., xz} and {x1,..., x%} are the depth d children of g and
g', respectively, and if x; € Xisan S, T, U, or ¥V node, then x{isa U, ¥, §,or T
node, respectively. But since .S and T nodes are “+” nodes and U and ¥ nodes are
“_» nodes, this means that one of {x;, x} is a “+” node and the other is a “~” node.
Thus from eq. (2.4) the p.f. for e(x;) is.a mirror image of the p.f. for e(x;) It follows
by induction that the p.f. f; g is a mmor image of the p f fe[,( )5 that is,

Sd(l) = ud(r —1) 'a_ nd td(l) = vd(r - z) ‘ (3 4)

3. 2 3. “The Probabzhty of Correct Deczszon The only nodes at Whlch 1t makes a
dlffercnce what move, is made are the cntlcal nodes, that is, the S and V nodes If g
isan § node, then it is. Max’s. move at g, and g has m.“+” and n “-7 ch11drex1 If
d = 0, then Max is not searching at all, so.each choice. of move is equally hkely
The move is correct only if a “+” node is chosen, s0 then the probabzlzty of correct
decision is :

m .
m+ ;n,: ;

D(G(m, n), g, e, d) ifd=0.00 i (35)
The same equatlon holds ifgisa Vnode
Supposed>1 andlet P o
: o H : max{ed_1(g )Ig is a.child. ofg} ~ ¢ if gisaMaxnode, - -

- | min{es—1(g") | g’ is a child of g} . - . if :g is a Min node.

If Max (or Min) usés a depth d mmlma:x search, then he will choose any chlld g’ of
g such that e;1(g’) = H. Suppose I “+” nodes and J “=" nodes get this value. Since
it is equally likely that any one of them will be chosen, the probability of correct
decision is I/(I + J). But H, I, and J vary randomly from 0 to r, 0 to m, and 0to n,
respectwely Thus the probablhty of correct decxslon is- ‘

D(G(m, n), g, e, dy = S S Y RI=iJ=j = k] if d>0.(3.6)
im0y fuu) £ +Jk-o_ . _

If g is an § node, then all “+” children of g arc Tnodes and all “~” children of

g are U nodes. The event {7 = i, J = j, H = k} occurs if e;_; réturns the value k on

®If X is a random variable with p.f. f(x), then F(x) = E;s, (i) is the cumulatwe distribution function
(c.d.f) for X. Thus f; fgtfandonlylng Fy
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TABLE II, APPROXIMATE VALUES oF w(n), FOR n = |, 2, s 30

n win) n w(n) no wn n W) n win)
1 "~ 0.50000 11 0.15560 21 6.10271 31 0.07872 41 0.06463
2 0.38197 12 0.14745 22 0.09955 32 0.07700 42 0.06352 .
3 0.31767 3 0.14024 23 0.09662 33 0.07536 43 0.062496
4 0.27551 14 0.13382 . 24 009387 | 34 0.07380 44 0.06144
5 0.24512 15 0.12805 25 0.09130 35 0.07231 45 0.06045
6 022191 . 16 012283 - 26 - 0.08889 36 0.07088 46 0.05950
7 - 0.20346 17 0.11809 27 0.08662 37 0.06952 47 0.05858 .
8 0.18835 18 0.11375 28 0.08448 38 0.06822 48 0.05770
9 0.17576 19 0.10977 29 0.08245 39 0.06697 49 0.05684

10

0.16492 20 0.10610 30 0.08054 40 006577 50 005601 )

i of the T children and Jof the U children, and values less thankonm — i of the T
children and # — j of the U children, Since the types of the nodes are known, eq. 3.2
states that the returned values are independent. Thus S

Pl =i, J=j, H =k

= (T) (Prlea(g) = kig s a T nodel)(Prless(g’) < k|gis a T nodely™
(; ) (ilec-(&) = klgs 8 U nodel) (e sg) < kg0 0 node])

= (7) Gty oy () witrwea-nr gy

Note that this (and hence D(G(m, n), g, e, d)) is a continuous function of
{tar(k)[k =0, 1, ..., 7} and {usr(l) |k = 0, 1, y+~» I} which is independent of
which § node g is. _ o -

Similarly, if g is a ¥ node, then Prff = j J = /i H = k] (and hence
D(G(m, n), g, e, d)) is a continuous function of v}k =0, 1, ..., r} and
{saa(k)|k=0,1, .., , 7} which is independent of which T node g is,!

4. Preliminary Theorems
Section 5 contains the' céntral theorems of this paper. These results require several
preliminary resuits which are presented here,

THEOREM 4.1. For every n > 0, the equation (1 — (1 — xy"Y* = x has exactly one
root w(n) in the interval ©, 1). win) converges monatanically to 0 as n incregses,

THEOREM 4.2, Let z, [0, 1}, and let n > 1. For every integer i > 0, lot 24, =

(1= (1 - z)YY". Then

1) ¥ 20 < w(n), then limy ,2; = 0;
) if 20 > w(n), then limi,cz; = 1;
(3 i zo = w(n), then 2; = w(i) for all i

The function w(n) and several of its properties were independently discovered by
Baudet [2], Pearl [19], and the author [13, 14]. Proofs of Theorems 4.1and 4.2 appear

in the appendix to [14], Approximate values of w(x) appear in Table Ij,

* It can further be shown [13] that the value of D(G(m,n), g, e, d) is independent of whether g is axi § node’
ora ¥ node, However, this zesult is not needed in the present paper.. - : o
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We define . .
' xiw1 = (L= (1= xy"(L— y)yy= L. @D
| o= (1= (1= "™ = (L= )(L =y 42)
wherem=landn=1arereal,i=0isan intcger, and xo, yo € [0, 1].
THEOREM 4.3. The following propert:es hold: ‘. '

() xi = {0, 11 for all i.

(2) Ifyo =0, then y; = 0 for all i.

(3) If xo=yo =0, then x; = y; = 0 for all i.
@ Ify=1then x;=y, =1 foralli=1.

ProoF. Immediate, by induction on i, [1° _
THEOREM 4.4. If xo > w(m + n) and yo > w(m + n) then

lim x; = lzmy,, =1

L b—bm !n-)on : =

PRdOF For mtegerz =0, let Zimn=(1— (1 - Z )”"*")”"*", where 2y = min(xq, o).
Then wim + 1) < 2 < 1, so from Theorem 4.2, limiez; = 1. -

We'now prove by induction that for évery integer i = 0,

o z‘<x,<1 “and zl<y,<1 .

This statement holds for i=0, because Zy = mm(xo, yg) Suppose it holds for i= k
Then. ... . - T : _ : o

'f'x;+i = (1 - (1 —~ xk)"*(l - y;z)")"""“
. =(1-(1-2"d —_z;e)“)’"_+n = Zr+1,
alfldl ) N

Pesa' = (1 - (1 —y;,)"‘*”)'"(l = - xk)”‘(l )
=1~ (1= 2" (1 = (1= 2)7(1 = 20)")" = Zows.

and from Theorem 4 3 Xue1 = 1 and Y = 1. Thus the statement. holds for i —~..
E+1
From the above, 1t follows that

-COROLLARY 4.4.1. Let xo > 0 and yo > 0. Then there is an L such that if
m+n>L, : - : g
limx;=limy: = 1. e (43)
Proor. From Theorem 4.1, there is an L such that if m + n > L, theh w(m + n)'
< min(xo, yo), whence eq. (4.3) follows immediately from Theorem 4.4. [J. '

5. The Central Results

Letgbea critical node of G(m, n), and suppose a depth d minimax search is done :
from g using a symetrically bounded evaluation function. For all but finitely many:
values of m and n, the deeper the search is, the more likely it is that every child of g
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will receive exactly the same mijnimax value, Biit if this ocecurs, then all possible
moves will be equally likely, regardless of whether the moves are good ones or bad
ones. These statements are proved in this section. C

If gisan S or T node, then £1s a “+” node. Tis

$00) = 0o} = fald) = f1(5),

whence

o) = Toi) = 3 () € 0,11, .1y

However, if g is a Uor ¥ node, then g£1s a “~* node. Thuys
“ol)) = voll) = fuwli) = f2(0),
whence s : : , .
Uy =¥ =310 = 3 stgrem, 1 (5.2)
J= J=r—i
- Ifgisan § node, then it is Max’s move at g; so from eq. (2.1),
€a+1(g) = max{esg’) [g"is a child of F43

Thus for each i, €2+1(g) = ¢ if and only if for every child g’ of g, e £) <7 But mof
the children of g are T nodes, and n of them are ¥/ nodes. Thys

Sasi(l) = Pries(g) < il = (Td(i))'f‘.(Ud(f))”-,. e (83)
If g is a T node, then it is Min’s move at & so from eq. (2.1),
ea+1(g) = min{es(g’)|g’ is a child of g

Thus for each ;, €a+1(g) > i if and only if for every child 8’ of g, es(g’) > i But all

m + £ of the children of g are § nodes, Thus
1~ Tan(i) = Prles(g) > 1] = (@ = Su@i)y™*=. (4
Similarly, we have ' I

P=Veal) = (0 - GOy = sy (5.5)

and .
L Vi) = (Ua)y™t.. e (5.6)

Simple algebraic manipulation of eqs. (5.3)~(5.6) yiel_(_ls o ' o ,
Saeal) = (1= (1~ VY™ (1 ~ (vyrsayys Y

1= TGy = T ATDY (Ua(iyyry=+ :
o= (=A== Ty - L1 = Ug(i)]rymn, (5.8
U= Vana) = (1~ (Ug)y~» (1 = (T (Uai)yry
= (L= (1= [1 = Ga(eylymsny» 5
(I~ -11- To(Hh™(1 =1 - Ua@d)Ipy (.9
Vo) = (1 -1 - VaY"(1 ~ Sa()yy=+n. (3.10)
Thus the pair of sequences ({1 — Thu(i))%y, {1 = Uau()50) ang the pair of se-
quences  ({Vaq(i)} =0, {82(1))3-0) are instances of the pair of sequences
({xa(i)Ya-0, {ya(i)Fimo) described in Section 4. '




698 S DANA 5. NAU

" Tuporem 5.1. Let" ¢ be an evaluation function on G(m,n) with range
{0, 1,..., 'Y, and let e be symmetrically bounded by h If mm( fh), f;(r ) >‘
wim +n), thenfori=90,1,...,r,

Hmmdﬂ=ﬁm&dﬂ={l i i=h
00 d—>00

0 otherwise,
and
, , , , | if i=r—h,
l:m taa(i) = lzm upa(i) = {0 Zth;rwi:e &

ProoF. Suppose w(m + n) < min( £o(4), f{r — F)). Then from eq: (5.1) and (5.2),
if i = h, then

Vifi) = J_=§:_ EYRfH =B > wom )
.and: |
&ﬂr*2f1ﬁ>fﬂm>wﬁn+m

‘Thus from Theorem 4 4 and £gs-. (5. 7) and (5. 10)
hm Vzd(l) = 11m Szd(l) = 1

But since k is a symmetnc bound for e, 1f i< h then )
v Py = 2 fe 0= 0 and so(f) = 2 f*'m
‘so from Theorem 4.3-and eq:(5.7) and (5:10), _
mm@=M$@;m*
. d—b?o:: . d—..ao R Lo

Thusfori=0,1,...,r

1 ik
qu.l_mim v2d(l) = d_hﬂ V2d(l)« i ‘]1-';'1-’11;- . V2d(1 o 1) - {0 otherwise’
and
— _ _ 1 if i=h
l.un Szd(l) 11m Szd(l) hm Szd(l 1) = { otherwise.
The proof for 2y and uzg is similar. O S
- COROLLARY 5.1.1." Underthe assumptzans of Theorem 5.1,
n N T ! if i=r—
o g_.n: vzdﬂ_(l)_ ; il-.n:&d*_l_@j - {0 orhenwse,
“and . _ ' R
| e U i i=h
Izm faa1lf) = hm uaasa(f) = {0 .t{;herwise.

" PROOF. Immedmte from Theorem 5.1 and egs. . 3)—(5 6). lZI

" THEOREM 5.2. Under the assumpt!qns of Theorem 5.1,

im D (e, = .
Dt 0=
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PROOF. Let g be an § node, and let H, I, and J be the same as in €q. (3.6). If for
some 4 and h we had '
Nl i j=h
fa-i(J) = {0 otherwise,

and
o1 i gen
“a-1(f) = {0 otherwise,

then all of the children of & would receive the same minimax value %, whence we
would have

1 if i=m, J=n andk=p,

Pili=iJ=jH=k]= {0 otherwise,

whence Dp,.(e, d) = m/(m + n). But from Section 3.24, D(G(m, n), g, e, d)isa
continuous function of {fa(D]i=0,1,..., ¢} and {uaa(@Y|i=0,1,..., ). Thus
from Theorem 5.1 and Coroltary 5.1.1, . . : ‘

m
m+n'

d.h_?; Dmple, d) =

The same result is obtained in a similar manner if gisaUnode. IO

To summarize the' results of Section 5, suppose a player is choosing a move
at a critical node of G(m, n); using an evaluation function’ ¢ which is sym-
metrically bounded by #. For all but finitely many of the Gm, n), wim + n <
min(f.(h), fo(r — 4)), whence Theorems 5.1 and 5.2 apply. Theorem 5.1 states that as
the search depth increases, it becomes increasingly likely that the moves among
which the player is choosing will all have the same minimax value. But if this occurs,
4 move must be chosen’ at random, and each possible choice will be equally likely,
‘Thus, as stated in Theorem: 5.2, as the Search depth increases the -probability of
correct decision converges.to m/(m + n). When these events occur, -we_say. that
G{(m, n) is e-pathological. Thus we have e e T

COROLLARY 5.2.1. “For every symmetrically bounded evaluation Junction'e, all but
finitely many ‘of the G(m, #) are epathological, oo i

An example of pathological behavior on the game tree G(1, 1) is given in Figure
1. This example is further discussed in Section 6.1, .

Figure 4 summarizes the theorems presented in this section. In this figure, every
tree G(m, n} is represented by the pair of integers (m, n), The diagonal liné consists
of the smallest values of »'and # such that min( £(h), fu(r ~ #) 2 wim + n), where e
is an evaluation function symmetrically bounded by 4. Area | is the area jn which
pathelogy is predicted by the theorems, and area 2—the finite area—is an area in
which gamie treés may be either pathological or nonpathological, The occurrence of
pathology in area 2 has been investigated experimentally. A few of the results of this
experimentation are discussed in Section 6. )

6. Experimental Results

Theorems 5.2 and 5.3 have been verified in numerous experimental tests, Indeed,
such experiments were responsible for the mathematical insights which led to the
proofs of the theorems. A few of the experiments are now. discussed.

6.1. EXAMPLES OF PATHOLOGICAL BEHAVIOR. Suppose Max is choosing a move
at a critical node of G(m, n), using a symetrically bounded evaluation function e,
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1

pathological

..|'__

(1,1 |
FiG. 4. Pathological and nonpathological behavior of GOn; %) for a symmetrically
bounded evaluation function ¢, asa function of m and n. The numbered areas arc for

reference in the text.

\hat Max is at an § node and is choosing among T and U nodes. For

Then it must be
£s. for the minimax values of these nodes are T

a depth d minimas search, the P
and Uy Pathology occurs when there is an { such that

i tou(j) = 1im () = o0 Foina7 b))
'bm g . g ) R
o -____.1-_if-_.j_=i,_r_‘_ e
o R o uz_‘.i—_l(r n= {0 Cotherwise. _
Table 111 illustrates this on the game Uree G(1, 1). This table gives the p-£s for the
‘minjmax values and ‘the probability of correct decision at various search depths,
using the evaluation function €2 of TableIV. e
_In Figure 1, the probability of correct decision on G(1, Dis graphed as 2 function
of d for five different evalnation functions, From t0p to bottom, the curves are for ey,

€g, €3, B4 and g, s defined in Table IV. When pathology occurs on other game trees
G(m, n), the pehavior is much the same, except that the limiting value is m /(m + 1)

rather than . _ o

6.2, WicH TREES ARE PATHOLOGICAL? The results in Section 5 predict pathol-
ogy on all games trees G(m, n) such that m + nis greater than SOme value L which
depends on the exror distribution of the evaluation function being used, but they say
nothing about whether pathology 0CCUTS form+n=kL. Pathology. occurs on many
of these trees as well. For example, Table v indicates for each m and n whether

G{m, n) i8 agepathological, where ¢ is as defined in Table IV. In this table, the entry
“4" indicates that IR

o Nt g i=3
dh-lg tulf) = gzlfl T {0 otherwise,

and _
: . .o i =2
lim wzaf) = !.f_,nl faa-slr H= {0 otherwise;

g

. =
.
|
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TABLE III. MiNiMaX VALUES AND PROBABILITIES OF CORRECT DECISION ON G(1, 1} AT VARIOUS
SEARCH DEPTHS, USING THE EVALUATION FUNCTION ¢; 0F TABLE IV

ta-1(f) OT va-1(3 — i) Ug—3(f) of 54203 — i)

d i=0 i=1 i=2 i=3 i=0 i=1 i=2 i=3 Dies, d) -
1 0.10 0.20 0.30 .40 0.40 0.30 0.20 0.10 0.750
3 0.08 0.30 0.41 021 - 0.19 0.40 0,32 0.09 0.639
5 0.03 0.37 0.52 0.08 0.05 0.45 0.45 0.05-  0.560
7 0.00 0.36 0.63 6.01 0.00 0.40 0.59 6.01 0,522
9 0.00 0.27 0.73 0.00 0.00 0.28 0.72 0.00 . 0507

11 0.00 014 © 086" 0.00 - 0.00. 015 = 085 0.00 0.502

13 0.00 0.04 0.95 0.00 0.00 0.04 0.96 000 - 0.500

15 6.00 0.00 1.00 0.00 600 - 000 L.00 C6.00 0500
2 0.19 0.32 033 016 0.46 0.33 0.17 0.04 - 0.689
4 0.17 0.48 032 - o004 0.28 0.50 0.21 002 . 0.593
6 0.09 0.66 0.25 0.00 6.12 0.68 0.20 000 - 0535
8 0.02 0.82 0.16 6.00 0.03° . 083 0.14 0.00 0.510

10 0.00 0.52 0.08 0.00 0.00 0.92 0.08 0.00 0.502

12 0.00 0.98 0.02 0.00 6.00 0.98 6.02 0.00 0.500

4 0.00 100 0.00 0.00 0.00 1.00 0.00 0.00 - - 0500

" TABLE IV. P.r.s. FoR Six Evarvarion FuNcTiONs

im0 f=1 i=2 i=3 i=4 Elsewhere
oy - 5/181 25/781 125/781 625/781 0
fa® o oer 02 03 04 - .0 0
O 02 02 0.2 0.2 0.2 0
Jam 04 - 03 0.2 Coool S R 0
Fi 625/781 125/781 25/781 5/781 17781 0
fay - 6/18 . 15/78 24/78 33/78 0 0

the entry “B” indicates that
.d‘ﬁﬂ tzd(i-) = gl_,ﬂ: uzd_l(r - I) =_£;)I]§lo ugd(i)

el n J1 i i=2,
_gal_{?o foaa(r — 1) = {0 otherwise;

and the enfry “C” indicates that
‘]ii__l’«:lo taa(f) ““dﬁ_{E Usaa(r— i) = 3;1_,12 tpa(7)

if i=3,

e N
- ;;_)m; foaar = 1) = {0 otherwise.

Pathology occurs in the latter two cases.

The shape of the nonpathological region for e is fairly typical. Not only does
pathology occur when m + # is large, but also when the ratio m/n is small. This
corresponds well with our intuitions about what it is that evaluation functions
measure. )

An evaluation function is supposed to return a value indicating whether a game
position is good or bad. In the game of chess, for example, good positions are often
characterized in terms of such things as the number of pieces, their mobility, how
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well the king is protected, etc., but a good position is generally one from which a
player has a variety of good moves, and a bad one is generally one from which a
player has few (if any) good moves. ' : ' :
~If m/n is small, such a characterization of a good position cannot be made. This
is because every forced win node in G{(m, n) has many children which are forced loss
nodes and only a few children which are forced win nodes, and vice versa. Thus the
good positions look bad and the bad positions look good. Under such conditiors;
it is not so surprising that pathology would occur. This is discussed further in
Section 7.3.2. ‘ _
Additional experimental results [13] indicate that pathology may be more likely to
occur when the evaluation function has a restricted range (so that fine distinctions
among various nodes cannot be made), and provide information about the signifi-
cance of the limits and rates of convergence of the minimax values.

7. Discussion and Conclusions

7.1. SUMMARY OF RESULTS, Games trees are a widely used model of situations in
which a sequence of .deci_si('ms must be made. In this model, decisions are made by
searching the tree in an effort to predict the possible results of the decisions. On large
game trees which cannot be searched completely, it is typical to search to a limited
depth and use a static evaluation function to estimate the values of the nodes at that
depth. When this is done, the conventional belief is “the deeper the search, the better
the decision.” We have examined this statement mathematically, to.try to discover to
what extent it is true. ‘ _ o : 4

The mathematical model used for this investigation has. the following major
features: R P :

(I) Game tree nodes are classified as critical if it makes a difference what decision
is. made, and noncritical otherwise. .

(2} The evaluation function is assumed to make independent, identically distributed
random errors on all nodes, in such a way that the probability distribution for
.the values returned on forced win nodes is a. mirror image- of the probability
distribution for the values feturned on forced loss nodes. . C

(3) The highest and lowest values which the evaluation function returns with nonzero
probability are returned with nonzero probability on both forced win and forced
loss nodes.

(4) The use of the minimax propagation rule is assumed; - o

(3) The quality of a decision at a critical node is characterized as the probability that
it is “correct,” that is, the probability that the move is to-a forced win child rather
than a forced loss child. ‘

There is an infinite class of game trees {G(m, n)|m and » are positive integers}
which have a regular enough structure that the probability of correct decision on
these trees can be analyzed mathematically. As was shown in Section 5, all but
finitely many of these trees are pathological in the sense that as long as the search
does not reach the end of the game tree (in which case a correct decision could be
guaranteed), increasing the search depth does not improve the quality. of the decision,
but instead causes the choice to become more and more random. This occurs as
described below. o

Suppose a player is making a decision using a minimax search at a node for which
it makes a differénce what decision is made. If the search depth d is large and d is
odd, then all children of g will be likely to have high minimax values. If 4 is large
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and even, then all children of g will be likely to have low minimax values. Increasing

the value of d makes it increasingly likely that all nodes receive exactly the same high-

or low value, whence the choice of move must be made purely at random.
This “manic-depressive” behavior has also been observed in computer programs

which play chess, checkers, and other games [14, 28, 29], except that it does not get.

out of hand: even though all nodes tend to get high or low values, enough of a

_ numerical distinction remains between the values of good and bad moves that a good.

decision can be made.

72. Tue Horizon EFpect. If a minimax search extends ail the way to the end
of the game tree, pathology does not occur, since in this case perfect play can be
guaranteed. Some readers have pointed out that stopping just before a terminal node:
thus gives rise to an ultimate “horizon” effect, in which the search strategy is totally

insensitive to the proximity of a totally correct value. An example of this has recently:

been observed by the author [15, 16] in the investigation of a simple board-splitting
game invented by Pearl [20]. This game has a complete game tree of constant
branching factor, with independent random terminal node values. In [15] it is shown
that when an obvious evaluation function for this game is used and when the depth
of the game tree is larger than about 7 or 8, the probability of correct decision
decreases with increasing search depth up to a point one move before the end of the
game—at which point the probability of correct decision abruptly leaps to 1.

7.3, OVERCOMING PatHOLOGY. If a game is pathological, how should one go
about making a decision? One possibility would be to use a very shallow search and
a very accurate evaluation function for much of the game, not searching deeply until
late in the game when one might be able to search to some of the terminal nodes.
Another possibility would be to use a decision criterion other than minimaxing. One
such decision criterion is investigated further in [16],

7.4. THE CAUSES AND NATURE OF PATHOLOGY. "Although pathology occurs on
almost all of the G(m, n) (and also occurs in games such ‘as the board-splitting game’
investigated in [15, 16]), it does not usually seem to occur on games such as chess or
checkers, The most successful chess-playing computer programs have achieved their
success by searching the game tree as deeply as possible, even at the expense of using
a faster but less accurate evaluation function [3, 22, 28, 29]. We now discuss some
possible reasons for this notable lack of pathology.

7.4.1, Evaluation Function Accuracy. Some readers have speculated that perhaps
evaluation functions for games such as chess increase in accuracy toward the end of
a game sufficiently rapidly that any underlying pathological tendency is overcome.
However, experts consulted by this author [27, 30] expressed substantial disagreement
with such speculations. Indeed, it seems that evaluation functions for chess are
notoriously inaccurate in the endgame [30]. In this regard, it is interesting to note
that in a game recently investigated by the author, pathology occurs even though the
evaluation function increases markedly in accuracy toward the end of thie game
[15]. In another recent extension of the current paper, Pearl [21] has shown that for
a certain class of game trees, the evaluation function must be at least twice as accurate
at successive levels of the game tree if pathology is to be avoided. - -

742, Correlation of Evaluation Function Values. In games such as chess and
checkers, the evaluation function value of a node is usually correlated with the
evaluation function value of its parent. This also occurs on the G(m, n) when m > .
However, games such as chess and checkers exhibit another kind of correlation
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among evaluation function values which does not occur on the G(m, n). As an
example, consider the following game tree model, which was inspired by a similar
model proposed by Newborn [17, p. 157] and later used by Lindstroni [11, p. 41]."
Let G be a complete game tree of constant branching factor b and depth d. To the
arcs of G we assign independent, identically distributed random values from some
distribution which is symmetric around 0. We define the strength of a node in G to
be the sum of the arc values on the path from that node back to the root, and we
make a terminal node a win for Max if and only if it has positive strength. If a node
g in G'is a strong node, then the parent of g is likely to be strong, whence the siblings
of g are likely to be strong. Similarly, if g is a weak node, then its siblings are likely
to be weak. This is in marked contrast to. any of the G(m, 1), where under any
reasonable definition of strength, all nodes of the same type (S, T, U, or ¥) would
be equally strong, It seems reasonable to assume that games such as chess or checkers
are more similar to G than to any of the G(m, n). '
Recent experiments by the author [15, 16] show that when the obvious evaluation
function for G is used, pathology does not occur, whereas in a closely related game
where sibling nodes are independent of each other, pathology does occur. In [16],
these experimental results are corroborated by theoretical results which generalize
the results of the current paper. Thus pathology appears less likely if the game tree
contains certain interdependencies which are similar to those that exist among games
such as chess and checkers. . : :

7.4.3." Graphs versus Trees. Many games are more properly represented as di-
rected graphs than as trees, for'if a game position can result from several different
sequences of moves, then it is represented by more than one game tree node. Unless
an evaluation function incorporates a random number generator,® it should return
the same value for each of these nodes. But this violates the assumption of stochastic
independence among the errors made by the evaluation function.

A good example of this is a class of nim-like games known as Bachet’s game {1, 4,
8]. These games would be perfectly modeled as truncations of G(m, n), except that
the independence assumption is violated as explained above. It can be shown [12)
that if an evaluation function is used on Bachet’s game which makes random errors
(but which returns the same value for a node every time it is applied to that node),
the probability of correct decision is completely independent of the search depth. This
is another interesting contradiction to the commonly accepted beliefs about searching
deeper. S ‘ S ' '

1.5. Conclusion. Pathology occurs almost universally on the G(m, »). It also
occurs on other game trees, although it would be difficult to say how common it is.
The essential nature and causes of pathology are not yet thoroughly understood and
are currently being investigated [16]. However, it is no longer possible to assume (as
has been done in the past) that increasing the depth of search on a game tree will in
general improve the quality of a decision.

Glossary . . .
cdif: cumulative distribution function (Section 3.2.2),
~ correct move: ~~ move-to a “+” node if Max is making the move, or to a

“~ node if Min is making the move (Section 3.1).

® Actually, some writers of game-playing computer programs like to do this, on the grounds that if the
program always makes the same move in the same situation, a human opponent who notices this will have
an “unfair” advantage [28]!
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node which has both “+” and “—” children (Section 2.1).
depth of a minimax search (Section 2.2).

probability of correct decision at a critical nodc g of
G(m, n) (egs. (3.5) and (3.6)). '

“evaluation function (Section 2.2).

depth d minimax value of the node g, using the evaluation
function ¢ (eq. 2.1). -
error made by e at the node g (eq. 2. 2) _

function which returns an estimate of thc minimax value
of a node (Section 1).

. p-f. for the values returned by e on “+” nodes (Section 2.2).

p-f. for the values returned by e on “~”" nodes (Secnon 2. 2)
pL. for e(g) (eq. (24)).

p-.f. for the depth d minimax value of g (Secuon 3.2.2).
¢.d.f. for the depth d minimax value of g (Section 3.2.2).

. p.f. for the errors made by e (eq. 2.3).
. arbitrary game tree node (Section 2.2).
‘arbitrary game tree (Section 2. 2). '

tree whose nodes and arcs represent the positions

" and moves, respectively, in a perfect information game

(Section 2.1).

infinite game tree in which each critical node has  chil-
dren of the same sign (*“+” or “—") as itself, and n children
of opposite sign (Definition 3. 1) :

smallest and largest possible values e returns with nonzero

: probablhty on “+” nodes (Section 2.3).

maximum of the depth 4 — 1 minimax values of the
children of an § node g (Section 3.2.3).

making a decision by searchmg a game tree to some limited
depth and using an evaluation function (Section 1).
number of “+” children of g having the depth d .- 1
minimax value H (Section 3.2.3). |

number of “-~” children of g having the depth. d — 1
minimax value H (Section 3.2.3).

in G(m, n), the number of “+”* children of each critical “+”
node and the number of “~” chxldxcn of each cntlcal -
node (Definition 3.1}

two players of a zero-sum game (Sectlon 2.1}

defined in eq. (2.1). o
in G(m, n), the number of “~~** children of each critical “+”
node and the number of “+” children of each cnucal o=
node (Definition 3.1} :
node for which all children are “+” nodes or alt chﬂdren'
are “—” nodes (Section 2.1).

game tree on which deeper search consistently increases
the likelihood that decisions will be made totally at random

" (Section 5.3).

probability function (for a discrete random variable) (Sec-
tion 2.3).
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probability of
correct decision: -

r:

S node: -
Sq.

S d: . .
sign (of a'node):
symmetri_c bound for e:

T node:
fa.

Ty
{7 node:.
Ug.

Ud:
V node:
Vi

Vd:
w(n):

x; and y;:
Zi.

“+” node:
“—» node:

REFERENCES

L. BANERII, R.B., AND ERNST,

Intell. 3 (1972), 223-249,

707

. probability that a correct move is chosen at a c:itical node

of a game tree (eq. (3.5) and (3.6)). :
integer .used to indicate the range {0, 1, ...
evaluation function (Section 2.2). .

“+” node where it is Max’s move (Section 2.1).
probability function for e;(s), where s is any S node (Sec-
tion 3.22). . . . e ‘ :

; r} of an

- cdf for sy (Section 3.22). . . ..

“+” (forced win) or “” (forced loss) (Section 3.1).
number / such that the highest number e returns with
nonzero probability is 4, and the lowest number e returns
with nonzero probability is » — 4 (Section 2.3),

“+” node where it is Min’s move (Section 2.1). :
probability function for e;(¢), where ¢ is any T node (Sec-
tion 3.2.2). N o

c.df for sy (Section3.22). .

“—=” node where it is Min’s move (Section. 2.1,
probability function-for e;(u), where u is any U node
(Section 3.22), - o DT
c.d.f. for'uy (Section 3.2.2).

“=" node where it is Max’s move (Section 2.1).

 probability function for es(y) where v is any ¥ node

(Section 3.2.2).

c.d.f. for vg (Section 3.2.2).

unique root. in the interval (0,
(1 - (1 = x)*)" = x (Section 4).
two sequences jointly defined by eq. (4.1) and (4.2).
sequence defined in the statement of Theorem 4.1.
node where Max has a forced win (Section 2.1).
node where Min has a forced win (Section 2.1.

I) of the equation

G.W. Strategy construction using homomorphisms between games. Artif.

2. BAUDET, G.M. = On the branching factor of the alpha-beta pruning algorithm. Artif, Intell. 10 (1978),

173-199.

3. BIERMANN, AW, Theoretical issues related to computer game playing programs. Personal Comput,

(Sept. 1978), 86-88.

4. DoMORYAD, A.P. Mathematical Games and Pastimes. MacMillan, New York, 1964.
5. FULLER, 8.H., Gascuwie, J.G., AND GiiLooLy, J.J, Analysis of the alpha-beta pruning algorithm,
Tech. Rep., Dept, of Computer Science, Carnegie-Mellon Univ., July 1973,
6. GRrEENBLATT, R.D,, III, EastrLake, D.E., AND CROCKER, S.D. The Greenblat chess program. Proc.
AFIFPS Fall Joint Computer Conference 31, AFIPS Press, Arlington, Va., (1967), 801-210,
7. Harws, LR, The heuristic search nnder conditions of error, Artif. Intell. 5 (1974), 217-234.
8. Jackson, P.C. Introduction to Artificial Intelligence, Petrocelli, New York, 1974
9. KnuTh, D.E.,, AND MoORE, RW.  An analysis of alpha-beta pruning, Arif, Intell. 6 (1975), 293~326.
10. LaVALLE, LH. Fundamentals of Decision Analysis, Holt, Rinehart and Winston, New York, 1978,
11. LivpsTRoM; G. Alpha-beta pruning on evolving game trees. Tech. Rep. UUCS 79-101, Dept. of
Computer Science, Univ. of Utah, March 1979.
12. Nav, D.8. Unpublished notes, 1979.
13. Nav, D.S.  Quality of decision versus depth of search on game tress. Ph.D, Dissertation, Duke Univ.,

Aug, 1979,




14.
15.
18.

17,

18.
19.

20.
21

2.
23

" IBM J. Res. Devel. 2 (1967), 601-617.
24,
25.

26.
27.
28.
29,

30.
3L

708 ‘ L .. .. DANA 8, NAU

Nav, D.S.  The last player theorem, Artif. Intell. 18 (1982), 53-65.

Nau, 2.5.  An investigation of the causes of pathology in games, Artif. Intell 19 (1982), 257—278
Nau, D.S. Pathology on game trees revisited, and an altematwe to minimaxing. Arif Intell. 21,
1/2 (1983), 222-244, -

NewnoRN, MM. . The efficiency of the alpha-beta search on trees with branch-dependent terminal
node scores. Artif. Intell. 8 (1977), 137-153.

NiLsson, N.J.  Problem-Solving Methods in Artificial Intelhgence McGraw-Hdl New York, 1971
PEARL, J.  Asymptotic properties of minimax trees and game-tree searching procedures. Artif. Intell.
14 (1980), 113-138.

Pearr, 3. Colloquium talk, Univ. of Maryland, Aug. 1980, -

Pearr, J. On the natore of pathology in game searching. "Tech. Rep. UCLA-ENG- CSL~82-17
School of Engineering and Applied Science, Univ. of California, Los Angeles, Calif,, Jan. 1982,
Ropmson, AL. Toumament competition fuels computer chess. Science 204 (1979),1396~ 1398
SAMUEL, A.L. Some studies in machine learning usmg the game of checkers, II. Recent progress.

SHANNON, C.” Programming a computer for playing chess. Phil Mag. 7, 14 (1950), 256-275.
SLaGiE, JR.  Arificial Intelhgence The Heuristic Programmmg Approach McGraw-Hill, New York,
1971. .
SToCKMAN, G.C. A minimax algorithm bctter than alpha-beta,‘? Ariif. Intell. 12 (1979), 179-196.
TuompsoN, K.  Personal communication, Jan. 1981. )

TruscortT, T.R. Personal communication, 1979,

Truscorr, T.R. -Minimum variance tree searching. Proc. Ist Int. Symp. on Policy Analysis and
Information Systems, Durham, N.C., June 1979, pp. 203-209..

Truscott, T.R. Personal communication, Jan, 1981. .

TusmaLa, V.MR.  Decision Analysis with Business Apphcatmns Intext, New York, 1973.

RECEIVED FEBRUARY 1980; REVISED DECEMBER 1982; ACCEPi_'Ep_I_ANUARY 1983

Journal of the Association for Computing Machinery, Vol 30, No. 4, October 1983,

e

ST




