
ARTIFICIAL INTELLIGENCE 29

General Branch and Bound, and Its
Relation to A* and AO*

Dana S. Nau, Vipin Kumar and Laveen Kanal*
Laboratory for Pattern Analys i s , Computer Science
Department , University o f M a r y l a n d College Park, M D 20742,
U .S .A .

R e c o m m e n d e d by Erik Sandewall

ABSTRACT
Branch and Bound (B&B) is a problem-solving technique which is widely used for various problems
encountered in operations research and combinatorial mathematics. Various heuristic search pro-
cedures used in artificial intelligence (AI) are considered to be related to B&B procedures. However,
in the absence of any generally accepted terminology for B&B procedures, there have been widely
differing opinions regarding the relationships between these procedures and B &B. This paper presents
a formulation of B&B general enough to include previous formulations as special cases, and shows
how two well-known AI search procedures (A* and AO*) are special cases o,f this general
formulation.

1. Introduction

A wide class of problems arising in opera t ions research, decision making and
artificial intelligence can be (abstractly) stated in the following form:

Given a (possibly infinite) discrete set X and a real-valued objective
func t ion F whose domain is X, find an optimal e lement x* E X such
that F (x *) = min{F(x) I x ~ X })

Unless there is enough problem-specific knowledge available to obtain the
op t imum element of the set in some s t ra ightforward manner , the only course
available may be to enumera t e some or all of the e lements of X until an
opt imal e lement is found. However , the sets X and {F(x) [x E X} are usually

tThis work was supported by NSF Grant ENG-7822159 to the Laboratory for Pattern Analysis at
the University of Maryland.

1In some applications, the maximal element (i.e., x* such that F(x*)= max{F(x)[x U X}) is
desired rather than the minimal element.

Artificial Intelligence 23 (1984) 29-58
0004-3702/84/$3.00 © 1984, Elsevier Science Publishers B.V. (North-Holland)

30 D.S. NAU ET AL.

defined in such a way that their elements are not readily available, but instead
require some computation to be generated. Thus, for problems of practical
interest, exhaustive enumeration is often prohibitively time-consuming.

There are many examples of this kind of problem in AI. For example, the set
X may be the set of solutions to an And/Or graph, game tree, or state-space
search problem. While various comments have been made regarding the
relationships of B&B procedures to heuristic search procedures, the comments
have often been contradictory. Whereas Hall [2] and Ibaraki [4, 6] consider
B&B and heuristic search procedures to be very similar, Pohl [22] does not
agree. Similar differences in assessment may be found in Reingold et al. [23]
and Knuth [7] concerning alpha-beta and B&B, in Kumar and Kanai [13] and
Berliner [1] concerning B*, and in Ibaraki [6] and Marteili and Montanari [16]
concerning AO*. A plausible explanation for some of the confusion concerning
the relationships between B&B and AI search procedures is that B&B tech-
niques have continued to evolve since the early 1960s, whereas the early survey
by Lawler and Wood [14] is often the only reference used in the AI literature.
Additional confusion results, however, from other factors as described below.

One reason for the present confusion about B&B is the differing conceptions
of the basic entities operated on by B&B. For example, the characterization of
B&B presented by Kohler and Steiglitz [8] is developed in the context of
permutation problems and uses "partial combination vectors" as the basic
entities. The one presented by Ibaraki [6] attempts to serve as a model for
state-space search procedures, and formulates B&B as a procedure operating
on strings over an alphabet. In Reingold, Nievergelt, and Deo [23], the basic
entities are partial solution vectors.

In our opinion, much of the above confusion can be resolved by making a
distinction between the entities operated on by B&B and the structures used to
represent these entities. We argue that the fundamental entities operated upon
by a B&B procedure are not the partial vectors, alphabetic strings, or other
problem-specific entities. These are merely representations of subsets of the set
of solutions X mentioned at the beginning of this section, and confusion results
from the lack of distinction between the entity and its representation.

In this paper, we unify the various previous formulations of B&B by
considering B&B as a procedure which operates on members of an arbitrary
set of representations of subsets of X. These representations can be vectors,
strings, paths in a graph, solution trees, or any other convenient structures.

Another source of confusion about B&B is that different writers define B&B
to have different and non-equivalent pruning criteria. Until recently, the only
test used for pruning in B&B was based on upper and lower bounds on subsets
of X (e.g., Mitten [17]); hence the name Branch and Bound. The introduction
of more sophisticated pruning techniques seems to have been initiated by
Kohler and Steiglitz [9] with their concept of dominance, although similar ideas
have been used heuristically in many other branch and bound algorithms

GENERAL B&B, AND ITS RELATION TO A* AND AO* 31

(Ibaraki [5] gives a long list). The formal introduction of dominance in B&B
procedures was a major step towards formalizing the use of problem-specific
knowledge in optimization procedures. Kohler and Steiglitz [9] and Ibaraki [6]
have given a formal description of B&B with dominance. They have proved
several results using this formulation.

To unify the varying conceptions of B&B pruning techniques, we allow any
generated set to be pruned if it can be shown that at least one of the remaining
sets contains an optimal element. A look at the references cited above will
show that our approach to pruning is simpler than previous formulations while
including them as special cases of our approach.

Using our formulation of B&B, we show that A* and AO* are special cases
of B&B. A number of other search procedures (e.g., alpha-beta [20], SSS* [25],
and B* [1]) can also be considered special cases of our general formulation; this
is shown in another paper [12]. This general formulation can be used to shed
light on the similarities and differences among these various search procedures.
This topic is investigated further in [10].

Section 2 describes the general formulation, which we call General Branch
and Bound (GBB). This section discusses the basic concepts of B&B, the
necessity of distinguishing between a set and its representation, the use of
auxiliary data in B&B, and a fundamental property of B&B. Section 3
discusses an important special case of GBB. This special case is used in
subsequent sections to show that other procedures are special cases of GBB.
Section 5 discusses how ordinary B&B (in which all pruning is done by means
of upper and lower bounds) may be considered a special case of GBB, and
Section 6 does the same thing for B&B with dominance. Sections 7 and 8 show
that A* and AO*, respectively, are GBB procedures. Section 9 contains
concluding remarks. Appendices A, B, C, and D contain proofs of results
discussed in Sections 3, 4, 6, and 7, respectively.

2. A General Formulation of Branch and Bound

2.1. The basic concept of branch and bound

Consider the procedural scheme below (comments are indicated by double
slashes ('//')):

p m c ~ u m ~ :
1. ACT := {X} //ACT is the current active set//
2. loop //the main loop//
3. if ACT = {Z} for some Z and Z is a singleton {z} then
4. return z
5. endif
6. SEL := select (ACT)

//select some of the sets in ACT//
7. SPL := split(SEL) //split the sets in SPL//

32 D.S. NAU ET AL.

8. ACT := prune((ACT- SEL) u SPL)
//remove the selected sets from ACT, replace//
//them by the newly generated sets, and then//
//prune unneeded sets from ACT//

9. repeat
end P0

- A C T , the active set, is a collection of subsets of X.
- se lec t , the selection function, is any function which returns a collection
SEL C ACT. The domain of select is the set of all possible values which A C T
might have at line 6 of P0.
-split, the splitting function, has as its domain the set of all possible values
which the collection SEL might have at line 7 of P0. split(SEL) returns a
collection SPL of subsets of X such that:

(1) every set in SPL is a subset of some set in SEL;
(2) U { Y ' [Y ' E SPL}= U { Y I Y ~ S E L } ; i.e., the sets in SPL contain pre-

cisely those elements which are members of SEL.
- p r u n e , the pruning function, has as its domain the set of all possible values
which the collection of sets R = (A C T - SEL) U SPL might have at line 8 of P0.
prune returns a collection of sets R'C_ R such that

min{F(y)] y E Y for some Y ~ R'} =
= min{F(y)l y E Y for some Y E R} ;

i.e., at least one of the minimum elements of R is also present in R ' .
The procedure P0 describes our basic concept of B&B. We note that the

selection and splitting functions of P0 are essentially those of Mitten [17]. Most
of versions of B&B familiar to the reader (such as Ibaraki 's formulation [6])
will select and split only one member of A C T at a time (see Sections 4 and 5).
Our use of the capability of selecting and splitting several members of ACT at
once turns out to be essential for explaining procedures which operate on
And /Or graphs or game trees (which are special cases of And /Or graphs). Such
procedures include AO*, which is discussed in Section 7, and SSS* and B*,
which are discussed in [12].

The pruning function in P0 is more general than that of Mitten [17], which
allows pruning only by bounding. Our pruning function is conceptually simpler
than the formulation of pruning used by Ibaraki [6], and includes Ibaraki ' s
formulation as a special case (see Section 5).

2.2. Inadequacies of PO

Despite the generality of P0, it is not adequate to describe the behavior of all
B&B procedures. (This is also true of all other B&B formulations which use
abstract sets, e.g., [17, 24].) In practical implementat ions of B&B procedures, a
subset Y of X is usually not given a direct or explicit representation (such as a

GENERAL B&B, AND ITS RELATION TO A* AND AO* 33

list of its elements), but instead is usually represented by a data structure from
which the elements of Y can be obtained by computation. This representation
often incorporates problem-specific knowledge which is used in selection,
splitting, and pruning. Different choices of representation for a problem can
lead to different B&B procedures.

Even within a single B&B procedure, there may be several different ways to
represent the same set. Depending on which representations are used for some
collection of sets {Y1, I"2 Yk}, the values returned by
select({Y, I"2 Yk}), split({Yb Y2 Yk}), and prune({Yb Y2 Yk})
may vary. This means that if select, split, and prune are considered as functions
only of Y~, Y2 Yk, then they are not well-defined. Furthermore, it may not
be readily apparent whether a data structure representing a subset of X
represents a singleton set Z = {z} or not, and thus the result of the termination
test in line 3 of P0 may not be well-defined.

As an example, we consider the least-cost path problem. Let G be a directed
graph, and (m, n) be an arc in G. Then m is called a parent of n, and n is called
a child of m. If P is a path in G, then the last node in P is denoted by tip(P).
Suppose that P = (nl, n 2 n~) and Q = (nj, n/+l nk) are pqths in G, and
(nj, n) is an arc in G. Then Pn is the path (nl, n2 nj, n), and PQ is the path
(nb n2 nj, nj+l nk).

Suppose that each arc (m, n) in G has a cost c(m, n)>1 O, and that for every
path P in G, cost(P) is defined as the sum of the arc costs of P. Consider the
problem of finding a path from a source node s in G to any member of a set T
of terminal nodes. The set X of solutions to this problem is the set containing
each path from s to any member of T. The least-cost path problem is the
problem of finding a path P in X which minimizes the value of the objective
function cost(P).

In B&B procedures to solve the least-cost path problem, a path P from s to
some node n in G is typically used to represent the set of all extensions of P to
members of T (i.e., the set of all paths PQ such that Q is a path from tip(P) to
a member of T and the only member of T in Q is tip(Q)). The splitting
function split is typically defined in the following way as a function of
collections of representations of sets (rather than collections of sets):

split({P~, P2 Pk}) = {Pin [1 <- i <- k and n is a child of tip(Pi)}.
(2.1)

Let G be the directed graph having node set {a, b, c, d, e, f, g} and arc set
{(a, b), (b, c), (c, d), (d, e), (c,f), (f, g), (g, h)}, and let s = a and T = {e, g} (see
Fig. 1). If split is defined as in (2.1), then

split({(a, b)}) = {(a, b, c)} (2.2)

and
split({(a, b, c)}) = {(a, b, c, d), (a, b, c, f)}. (2.3)

34 D.S. N A U E T A L .

SOURCE

()
b

c

d f

GOAL GOAL

FIG. 1.

Suppose split were defined (as it is in P0) as a function of the sets represented
rather than a function of the representations. The paths (a) and (a, b) both
represent {(a, b, c, d, e), (a, b, c, f, g)}; (a, b, c, d) represents {(a, b, c, d, e)}; and
(a, b, c, f) represents {(a, b, c, f, g)}. Thus (2.2) would be replaced by

split({{(a, b, c, d, e), (a, b, c, f, g, h)}}) =
= {{(a, b, c, d, e), (a, b, c,f, g, h)}}, (2.2)'

and (2.3) would be replaced by

split({{(a, b, c, d, e), (a, b, c, f, g, h)}}) =
= {{(a, b, c, d, e)}, {(a, b, c, f, g, h)}}. (2.3)'

Since (2.2)' and (2.3)' assign two different values to split({{(a, b, c, d, e),
(a, b, c,f, g, h)}}), split is ill-defined when considered as a function of the sets
represented rather than their representations. This demonstrates that P0 is
inadequate to describe the behavior of the splitting functions used in some
B&B procedures. Similar examples can be found for the selection and pruning
functions.

This example also illustrates that the termination test used in P0 does not
adequately model the termination tests used in practical B&B procedures.

GENERAL B&B, AND ITS RELATION TO A* AND AO* 35

Suppose A C T were a collection conta ining the single pa th (a, b, c, d, f, g). This
pa th represen t s the singleton set {(a, b,c, d,f,g, h)}. Howeve r , a B & B pro-
cedure for the least-cost pa th p rob l em could not t e rmina te be fo re splitting
{(a, b, c, d, f, g)} to obta in {(a, b, c, d, f, g, h)}. This is because the tip node of the
pa th (a,b,c,d,e,f,g) is not in T, and so it is not known whe the r
(a, b, c, d, e, f, g) represen t s a single pa th (or m o r e than one path, or any pa th
at all) be tween s and some node in T. In o rder for the te rmina t ion test in P0 to
be well-defined, a goal funct ion is needed to tell whe the r or not a represen-
tat ion is known to represen t a s ingleton set {y} such that F (y) may be ob ta ined
directly.

2.3 . A n i m p r o v e d m o d e l o f b r a n c h a n d b o u n d

The previous section descr ibed the inadequacies of P0 as a general mode l of
B&B. T o e l iminate these inadequacies , P0 is modif ied in this section to contain
bo th a goal funct ion and an explicit distinction be tween represen ta t ions of sets
and the sets represen ted .

A represen ta t ion scheme is def ined as a pair (S, rf), where S is a set of
representations and rf : S -~ 2 x is a representation function. If r E S and if(r) = Y,
we say that r is an i f - represen ta t ion of Y (or, if the identi ty of rf is obvious,
that r is a represen ta t ion of Y).

T h r o u g h o u t this paper , r deno tes a represen ta t ion and R deno tes a collec-
tion of representa t ions . For convenience , we define

and

Fmi.(r) = min{F(x) I x E if(r)}

F. , i , (R) = min{F(x) I x E if(r) for some r G R } .

A goal function, goal, is any predica te such that wheneve r goal(r) holds, i f(r)
is a singleton set {x} such that F(x) can be c o m p u t e d directly f rom r. 2 Thus
when goal(r) holds, Fmin(r)= F(x). W h e n goal(r) does not hold, it does not
necessari ly mean that if(r) is not a s ingleton set.

When P0 is modif ied to include a goal funct ion and to m a k e explicit use of
r epresen ta t ions of sets, the result is the p rocedure P1 below.

procedure P I : //General Branch and Bound (GBB)//
1. ACT1 := {r0} //ACT1 is the current active set//

//~0 is the initial representation of X; i.e., rfl(r0) = X//
2. loop //the main loop//

2It is sometimes useful to have goal(r) hold even if r does not represent a singleton. However, it
is usually possible to define rf in such a way that all goals are singletons (as we have done for the
search problems discussed in this paper). The modification of our model to include non-singleton
goals is fairly straightforward but would require additional notation.

36 D.S. NAU ET AL.

3. if ACT1 = { r l } for some r l and g o a l l (r l) holds then
4. return r l
5. endif
6. SELl := select l (ACT1)
7. SPL1 := spl i t l (SEL1)
8. ACT1 := prunel((ACT1 - SELl) , SPL1)
9. repeai
end P1

In P1 above, rfl is a representation function and ACT1 is a set of represen-
tations. The other functions, which are defined below, are analogous to the
corresponding functions for P0 except that they refer to representations instead
of sets.
- s e l ec t l , the selection function, is any function which returns a subset of ACT1.
The domain of selectl is the set of all possible values which ACT1 might have
at line 6 of P1.
- sp l i t l , the splitting function, has as its domain the set of all possible values
which SELl might have at line 7 of P1. splitl(SEL1) returns a collection SPL1
of representations such that

if r' E SPL1, then there is an r E SELl

such that rll(r ') C_ rfl(r) (2.4)
and

U{r f l (r) l r E SPL1} = U{r f l (r) l r E SELl} . (2.5)

- p r u n e l , the pruning function, has as its domain the set of all possible values
which the pair of collections of representations (A C T 1 - S E L l , SPL1) might
have at line 8 of P1. prunel returns a collection ACTI ' of representations such
that

{rfl(r') I r' E ACTI'} C {rfl(r)] r E (ACT1 - SELl) tO SPL1} (2.6)
and

Fm,.(ACTI') = Fmi.((ACT1 - SELl) tO SPL). (2.7)

Most B&B procedures make use of auxiliary information not explicitly
represented in P1. The auxiliary information, for example, might be in-
formation about various relationships among the members of ACT2 for use in
pruning, or might take the form of maintaining ACT2 as an ordered list rather
than an unordered set. If such information is made an explicit part of P1, the
result is the procedure P2 given below.

procedure P2: //GBB with an auxiliary database (DB2)//
1. initialize DB2

//DB2 consists of all auxiliary information used by P2//
2. ACT2:= {r0}

//rO is the initial representation of X//

GENERAL B&B, AND ITS RELATION TO A* AND AO* 37

3. loop //the main loop//
4. if ACT2 = {r2} for some r2 and goal2(r2,DB2) holds then
5. return r2
6. endif
7. SEL.2 := select2(ACT2,DB2)
8. (SPL2,DB2) := split2(SEL2,DB2)
9. (ACT2,DB2) := prune2(ACT2- SEL2,SPL2,DB2)

10. repeat
end P2

In P2, rf2 is a representation function. Except for the use of the auxiliary
database DB2, the properties of select2, split2, and prune2 are identical to
those of selectl, splitl, and splitl.

In practice, nearly every B&B procedure makes use of auxiliary information,
and hence has more in common with P2 than P1. However, it would be quite
cumbersome to refer to this information explicitly every time such procedures
are discussed. Thus we write:

(1) goal2(r2) for goal2(r2,DB2);
(2) select2(ACT2) for select2(ACT2,DB2);
(3) SPL2 = split2(SEL2) for (SPL2,DB2')= split2(SEL2,DB2);
(4) ACT2' = p rune2 (ACT2-SEL2 ,SPL2) for (ACT2' ,DB2')=

p r u n e 2 (A C T 2 - SEL2,SPL2,DB2).
From now on, when we speak of representation, goal, selection, splitting,

and pruning functions, we mean functions having the properties of rf2, goal2,
select2, and prune2, respectively.

2.4. A fundamental property

Each of the procedures discussed in this paper has a loop labeled 'the main
loop' (e.g., lines 2-9 of P2). If V is a variable used by one of these procedures,
then the value of V at the end of the ith iteration of the main loop is denoted
by V i. For example, let P2 be called with some initial representation r0 and
instantiations of rf2, goal2, select2, split2, and prune2, and let t be the number
of times the main loop is fully executed before a return occurs. (Thus, if the
test at line 3 succeeds and P2 returns during the ith iteration of the loop, then
t = i - 1; and if P2 never returns, then t = oo.) We have ACT2 ° = {r0}, and for
O <~i<t ,

ACT2i÷I = prune2((ACT21 - SEL21÷I), SPL2i÷I). (2.8)

We now present a correctness proof for P2. This theorem and its corollary are
similar to results proved for previous formulations of B&B.

Theorem 2.1. For every integer i such that 0 <~ i < t, at least one o f the optimal

38 D.S. NAU ET AL.

elements of X represented in A C T 2 i is also represented in ACT2~+I; i.e.,

Fmin(ACT2 i+l) = Fmi . (ACTT) .

Proof .

Fmi,(ACT2 i+l) = min(prune2((ACT2 i
- SEL21+I), SPL2i+I))

= Fmi.((ACT2 ~ - SEL2 ~+1) U SPL2 ~+1)

= Frnin((ACT2 i - SEL2 '÷') U S E L T +')

= Fmi,(ACT2 i)

since SEL2 ~÷~ C A C T 2 ~ .

(from (2 .8))

(by (2.7))

(by (2.5))

Corol la ry 2.1.1. For every integer i such that 0 <<- i < t + 1,

Fmi.(ACT2 i) = min{F(x) lx ~ X } ,

whence if P2 terminates, it returns an optimal solution?

Pr oof . By induction on i using T he o re m 2.1.

There are several d;fferent condit ions under which P2 can be guaran teed to
terminate. In ~he case of B& B procedures in which all pruning is done using
bounding functions, some condit ions under which terminat ion can be guaran-
teed are discussed by Mitten [17].

Procedure P2 is our prototypical Genera l Branch and Bound procedure . In
this paper, for each p rocedure P claimed to be a special case of G B B , the claim
is justified ei ther by

(1) showing that P is an instantiation of P2 (or some other p rocedure known
to be a special case of GBB) ; or

(2) exhibiting an instantiation of P2 (or some o ther procedure known to be a
special case of G B B) such that on the ith i teration of the main loop of P, it
computes representa t ions of the same sets {rf2(r) I r ~ SEL2~},
{rf2(r) l r E SPL2i}, {rf2(r)l r ~ A C T 2 } compu ted on the ith iteration of the
main loop of P2.

3procedure P2 was formulated for the case in which a single optimal solution is desired. P2 may
be generalized slightly by replacing lines 3 and 4 by

3. if goal(r) holds for every r E ACT2 and
F(rf2(r)) = F(rf2(r')) for every r, r' E ACT2 then

4. return ACT2
In this case, depending on the properties of prune2, P2 will return an optimal solution, some of the
optimal solutions, or all of the optimal solutions.

GENERAL B&B, AND ITS RELATION TO A* AND AO* 39

3. A Special Case

For ease in pruning, many B&B procedures maintain a record of the 'best
solution seen so far' separately from the active list. Such procedures usually are
instances of the procedure P3 below. As discussed above, we assume the
existence of an auxiliary database which is used implicitly by the functions in
P3.

procedure P3: //a special case of GBB//
1. BEST3 := 'unknown'

//we define rf3('unknown') to be 1~,//
//whence Frn~('unknown') = oo//

2. ACT3 := { r0>}
//rO is the initial representation of X//

3. loop //the main loop//
4. if ACT3 = 0 then return BEST3 endif
5. SEL3 := select3(ACT3)
6. if SEL3 is a singleton {r3} and goal3(r3) then
7. if Fmin(r3) < Fmin(BEST3) then
8. BEST3 := r3
9. endif
10. else
11. SPL3 := split3(SEL3)
12. ACT3 := prune3(ACT3- SEL3,SPL3)
13. endif
14. repeat
end P3

In P3 above, the functions rf3, goal3, select3, and split3 are representation,
goal, selection, and splitting functions, respectively. Often, instantiations of
split3 are used which always select a single representation (i.e., they always
return sets SEL3 containing exactly one element), prune3 is similar to a
pruning function: prune3(ACT3- SEL3,SPL3) returns a collection of
representations ACT3' such that

and
{rf3(r') I r' E ACT3'} C {rf3(r) I r E (ACT3 - SEL3) U SPL3}

Fmi,(ACT3' U {BEST3}) = Fmi,((ACT3 - SEL3) U SPL3 U {BEST3}).

Any functions having the properties of rf3, goal3, select3, split3, and prune3
are called P3-representation, -goal, -selection, -splitting, and -pruning func-
tions, respectively.

To justify the claim that P3 is a special case of GBB, functions rf2, goal2,
select2, split2, and prune2 must be found such that P2 and P3 compute the
same sets {rf2(r) I r E SEL2i}, {rf2(r) I r E SPL2i}, {rf2(r) I r E ACT2 ~} on the ith
iterations of their main loops. This is done in Appendix A. The representation,
goal, selection, and splitting functions used in the appendix to instantiate P2

40 D.S. NAU ET AL.

are almost the same as those for P3. The pruning function is somewhat more
complicated: depending on whether a goal has been selected or not, it
simulates either lines 7-9 or line 12 of P3.

In some versions of P3, the selection function always selects the 'best '
member of ACT3 for splitting. Which member is best is always defined relative
to a P3-1ower bound function. This is any real-valued function L3 such that for
any rf3-representation r,

(1) L3(r) ~< Fmin(r);
(2) if goal3(r) holds (whence rf3(r) = {x} for some x E X), then L3(r) = F(x).
Suppose there is always at least one r* E SEL3 such that L3(r*) ~< L3(r) for

every r E ACT3. Then select3 is called an L3-best-first selection function, and
P3 is called an L3-best-first procedure.

If select3 is L3-best-first for some L3, then the first singleton set SEL3 = {r3}
selected at line 5 of P3 such that goal3(r3) holds represents an optimal member
of X. This is proven as Theorem A.2 in Appendix A. As a consequence of this
result, if select3 is L3-best-first for some L3 then P3 can be rewritten as
follows:

procedure P3B: //best-first P3//
1. ACT3 := {rO}

fir0 is the initial representat ion of X//
2. loop //the main loop//
3. if ACT3 = ~ then return 'unknown' endif
4. SEL3 := select3(ACT3)
5. if SEL3 is a singleton {r3} and goal(r3) then
6. return r3
7. else
8. SPL3 := spli t3(SEL3)
9. ACT3 := prune3(ACT3 - SEL3,SPL3)

10. endif
11. repeat
end P3B

4. Ordinary Branch and Bound

Most conventional B&B procedures look similar to P3, except for the following
properties.

(1) The selection function always selects a single representation.
(2) All pruning is done using a lower bound function similar to the one used

for selection in P3B. Lower bounds are computed on all generated subsets of
X, and a subset is pruned only if its lower bound is greater than the value of
the best solution seen so far.

Every B&B procedure which operates in this manner we call an Ordinary
Branch and Bound (OBB) procedure. As discussed later, there are many in-
stantiations of GBB which are not OBB procedures, because their pruning
functions are stronger than simple bounding functions. However , as shown in

GENERAL B&B, AND ITS RELATION TO A* AND AO* 41

Appendix B, every OBB procedure is an instantiation of P3 and hence is a
special case of GBB.

We take an OBB procedure to be any procedure which can be rewritten as
an instance of procedure P4 below.

procedure P4: //OBB//
1. BFST4 := 'unknown'

//we define rf4('unknown') to be g,//
//whence Fmin('unknown')= ~.//

2. ACT4 := list containing rO
//rO is the initial representmion of X//

3. while ACT4 # ~ do //the main loop//
//select the first member of ACT4//

4. {r4} := select4(ACT4)
5. if goal4(r4) then
6. if Fmin(r4) < Fmin(BEST4) then BEST4 := r4 endif

//BEST4 is the best node seen so far//
7. else
8. SPL4 := split4({r4})

//lines 9-14 compute ACT4i//
9. ACT4 := ACT4- {r4}

//go through the members of SPL4 in order//
10. for each r' ~_ SPL4 do
11. if L4(r') < Frown(BEST4) then

//insert r' into the list ACT4//
12. ACT4 := insert4(r',ACT4)
13. endif
14. endfor
15. endif
16. endwhile
17. return BEST4
end P4

Although ACT4 is an ordered list in procedure P4 above, it may be
considered as a set, with the ordering information stored in the auxiliary
database, rf4 is a P3-representation function, and goal4 is a P3-goal function.
select4 removes the first element of a list, and hence is a P3-selection function.
L4 is a P3-1ower bound function, insert4 inserts a representation into a list of
representations (thus, considering ACT4 as a set, inser t4(r ' ,ACT4)=
ACT4 U {r'}).

The function split4 has the characteristics of a P3-splitting function, except
that it returns a list of rf4-representations rather than an unordered set. By
considering the ordering information to be auxiliary information, split4 can be
considered a P3-splitting function. As shown in Appendix B, lines 9-14 of P4
constitute a P3-pruning function.

Theorem 4.1. P4 is an instantiation of P3.

42 D.S. NAU ET AL.

Proof. The preceding discussion shows that the functions used in P4 have the
properties of P3-goal, -selection, -splitting, and -pruning functions. It only
remains to show that each of the functions is defined for all arguments which
might be given to them during the operation of P4, and this is easily proved by
induction.

From Theorem 4.1, it is clear that P4 is a special case of GBB.
Suppose that for every rf4-representation r', insert4(r', AC~4) inserts r' into

ACT4 just after the last r E ACT4 for which L 4 (r) < L4(r'). Then the first
member of ACT4 will always be the member with the lowest value of L4,
whence select4 is an L4-best-first selection function. In this case (as with P3),
the first r4 selected such that goal(r4) holds will be an optimal solution, whence
P4 may be modified analogously to the way P3 was modified to P3B.

5. Dominance Relations

Some researchers [6, 9] have augmented OBB to use dominance relations for
pruning. The lower and upper bounding functions used for pruning in Horowitz
and Sahni's description of the 0-1 Knapsack Problem [3] are a special case of
dominance. As shown in Kohler and Steiglitz [9], the use of dominance
relations allows pruning to be done which may not be possible in OBB
procedures. Thus not every B&B procedure is an OBB procedure.

Several different ways [6, 9] have been proposed for the use of dominance in
B&B procedures. However, all branch-and-bound procedures with dominance
are similar to the procedure P5 given below.

procedure P5: //OBB augmented by dominance//
1. BEST5 := 'unknown'

//we define rfS('unknown') to be ~,//
//whence Fmin('unknown') = oc.//

2. ACT5 := list containing r0
//rO is the initial representation of X//

3. GEN5 := ACT5 or
/ /GEN5 will contain some or all representations generated//
//during the operation of P5, and will be updated by//
//adding or deleting representations at various points.//
//These points are not given explicitly below.//

4. while ACT5 # £t do //the main loop//
//select the first member of ACT5//

5. {r5} := select5(ACT5)
6. if goal5(r5) then
7. if Frnin(r5) < Frnin(BEST5) then BEST5 := r5 endif
8. else
9. SPL5 := split({r5})

//lines 10-16 compute ACT5i//
10. ACT5 := ACT5 - {r5}

//go through the members of SPL5 in order//
11. for each r' E~ SPL5 do

GENERAL B&B, AND ITS RELATION TO A* AND AO* 43

12. if L5(r') < Fm~(BEST5) then
//choose a dominated set R5, subject to//
//restrictions (see the text)//

13. R5 := choose(ACT5 U {r'},GEN5)
14. A C T 5 := (ACT5 U {r ' }) - R 5

15. endif
16. endfor
17. endif
18. endwhile
19. return BEST5
end P5

The functions rf5, goal5, select5, split5, L5, and insert5 have the same
properties as the corresponding functions in P4. Thus rf5, goal5, removetop5,
split5, and L5 are P3-representation, -goal, -selection, -splitting, and -lower
bound functions, respectively.

The function choose in line 13 makes use of a dominance relation. This is any
relation D such that if q and r are rf5-representations and qDr, then Fmi,(q)<<-
Fmi,(r). choose(ACT5U{r '}, GEN5) returns a dominated set; i.e., a set
R5 C ACT5 U {r'} such that for every q E R5 there is an p E GEN5 such that
pDq. There are additional restrictions on D and on the way R5 is selected.
These restrictions, which vary depending on the particular version of P5 [9], are
formulated to guarantee that

Fm~.({BEST5} O ((ACT5 U {r '})- R5)) = F~.({BEST5) U ACT5 U {r'}).

Because of this, it can be shown that lines 10-16 of P5 have the properties of a
P3-pruning function. The proof of this is similar to the corresponding proof for
P4.

Theorem 5.1. P5 is an instantiation of P3.

Proof. The proof is similar to the proof of Theorem 4.1.

Theorem 5.1 justifies calling P5 a special case of GBB.
Suppose that for every rf5-representation r', insert5(r' ,ACT5) inserts r' into

ACT5 just after the last r E ACT5 such that L5(r) < L5(r'). Then select5 is an
L5-best-first selection function. Thus, as with P3 and P4, the first r5 selected
such that goal5(r5) holds is the optimal solution, whence P5 may be modified
accordingly.

6. A*

The least-cost path problem was described in Section 2.1. One procedure for
solving this problem is the well-known A* procedure [20], which appears below
as procedure P6.

44 D.S. NAU ET AL.

In P6, c(n, n') is the cost of the arc (n, n ') ; g(m) is the cost of the leas t -cost
pa th P seen so far f rom the source node s to m; and P = p a t h (m) is the path

(s p a r en t (pa r en t (n)) , pa ren t (n) , n). h(m)>i 0 is a lower b o u n d on the cost
of any pa th f rom m to a m e m b e r of T, and f(n)= g(n)+ h(n) is a lower b o u n d
on the cost of ex t end ing P to a m e m b e r of T.

procedure P6: //A*//
2. OPEN := list containing the source node s
3. CLOSED := NIL
4. while OPEN ~ NIL do //the main loop//
5. n := removetop(OPEN) //remove first element//
6. insert n into CLOSED
7. if n E T then
8. return path(n)

l/path(n) is the path//
//(s parent(parent(n)), parent(n), n)//

9. else
10. for every child n' of n in G do

//compute g (n') and f(n')//
11. gg := g(n) + c(n,n')
12. i f := gg + h(n')
13. for all nodes m in OPEN or CLOSED do
14. if m = n' and f (m) ~<ff then
15. gore PRUNE //prune n'//
16. else if m = n' and i f < f(m) then
17. call remove6(m)
18. endif
19. endfor
20. parent(n') := n
21. g(n') := gg
22. f(n') := ff
23. OPEN := insert6(n',OPEN)

//insert n' into OPEN just after the last//
//node n such that f(n) < f(n')//

24. PRUNE: endfor
25. endif
26. endwhile
27. return 'unknown'
end P6

In P6,

procedure remove6(m)
1. if m E OPEN then remove m from OPEN endif
2. if m ~ CLOSED then remove m from CLOSED endif
3. for every n such that parent(n) = m do
4. call romove6(n)
5. endfor
end remove6

each node n in O P E N or C L O S E D rep re se n t s the pa th

p a t h (n) = (s p a r en t (pa r en t (n)) , pa ren t (n) , n) .

G E N E R A L B&B, A N D ITS R E L A T I O N T O A* A N D AO* 45

In order to make this representation explicit, P6 is rewritten as procedure P7
below. The active list for P7 is A C T 7 = {path(n)l n ~ OPEN}, and the set
GEN7 (similar to GEN5 in P5) is such that GEN7 = {path(n) I n ~ CLOSED}.

Let m be any node generated by P6, and let P = path(m). Note that
tip(P) = m. To write P7, the following definitions are used.

(1) rf7(P) is the set of all extensions of P to members of the set of terminal
nodes T (i.e., the set of all paths PQ such that Q is a path from tip(P) to a
member of T and the only member of T in Q is tip(Q)). Thus rf7 is a
representation function.

(2) goal7(P) holds if and only if t ip(P)E T.
(3) select7(L) returns a set whose only element is the first element of the list

L. Since the list ACT7 is always kept ordered according to the lower bounds of
its members, select7 corresponds to removetop in P6.

(4) split7(P)= {Pnln is a child of tip(P)}. Expanding a node m in P6
corresponds to computing split({path(m)}) in P7.

(5) L 7 (P)= cost(P)+ h(tip(P)). Thus from the definitions of /, g, and h,
L7(P) = f(tip(P)), whence L7(P) is a lower bound on Fmin(P).

(6) insert7(P, L) inserts P into the list L just after the last path Q in L such
that L 7 (Q) < L7(P). Thus select7 is an L7-best-first selection function.

Using these definitions, it is clear that P6 can be rewritten as procedure P7
below .4

procedure P7: //A*, rewritten//
2. ACT7 := list containing the null path from s to s
3. GEN7 := NIL
4. while ACT7 ~ NIL do //the main loop//
5. {P} := select7(ACT7) //select first member P of ACT7//
6. insert P into GEN7
7. if goal7(P) then
8. return P
9. else
10. SPL7 := split7({P})
11. ACT7 := ACT7 - {P}
12. for every path P' in SPL7 do
13. for every Q in ACT7 or GEN7 do
14. if tip(Q) = tip(P') and L7(Q) ~< L7(P') then
15. goto PRUNE //prune P'//
16. else if tip(Q) = tip(P') and L7(P') < L7(Q) then
17. call remove7(Q)
18. endif
19. endfor
20. predecessor(P') := P

41n some versions of A*, remove6(m) simply removes m from CLOSED. Thus any descendants
of m which have already been generated suddenly represent a new path from s, but their f and g
values represent the cost of the old path. Such versions of A* can also be described as GBB
procedures simply by defining such nodes not to represent any sets of solutions. However, it is
cleaner to use the version of A* presented above.

46 D.S. NAU ET AL.

21. ACT7 := insert7(P',ACT7)
//insert P' into ACT7 after all paths Q//
//such that f '(Q) < f'(P')//

22. PRUNE: endfor
23. endif
24. endwhile
25. return 'unknown'
end P7

procedure remove7(P)
1. if P E ACT7 then remove P from ACT7 endif
2. if P ~ GEN7 then remove P from GEN7 endif
3. for every Q such that predecessor(Q) = P do
4. call remove7(Q)
5. endfor
end remove7

W e show in A p p e n d i x C that P7 is an ins tan t ia t ion of P3B. 5

7. AO*

A O * is an a lgor i thm [21] for search ing hype rg raphs , which are concep tua l ly the
same as A n d / O r graphs . A hypergraph is a pa i r G = (N, H) , where N is a set of
nodes, and H C N × 2 N is a set of hyperarcs or connectors. M e m b e r s of N and
H are ca l led G - n o d e s and G - h y p e r a r c s , respect ive ly . Let m and n be G -
nodes . Then m is a G-parent of n (or n is a G-child of m) if the re is a
G - h y p e r a r c (re, K) such that n E K . m is a G-ancestor of n (or n is a
G-descendant of m) if

(1) m is a G - p a r e n t of n ; or
(2) there is a G - d e s c e n d a n t m ' of m which is a G - p a r e n t of n.
m is a G-leaf node if m has no G-ch i ld ren . G is acyclic if no node in G is a

G - a n c e s t o r of itself. If G = (N, H) and G' = (N', H') are hype rg raphs , then the
union of G and G ' is the h y p e r g r a p h

G U G ' = (N U N ' , H U H ') ,

and the intersection of G and G ' is the h y p e r g r a p h

G A G ' = (N A N ' , H N H ') .

W h e n the iden t i ty of G is obvious , the prefix ' G - ' will be d r o p p e d f rom
' G - n o d e ' , ' G - h y p e r a r c ' , ' G - p a r e n t ' , ' G - c h i l d ' , ' G - a n c e s t o r ' , ' G - d e s c e n d a n t ' ,
and ' G - l e a f ' .

5Alternatively, it would be possible to show that P7 is an L7-best-first instantiation of P5 by
noting that 'PDQ if tip(P) = tip(Q) and L7(P) ~< L7(Q)' is a dominance relation.

GENERAL B&B, AND ITS RELATION TO A* AND AO* 47

Let G = (N, H) be a hypergraph, and let m E N and T C N. Suppose that
each hyperarc (m, K) E H has a cost c(m, K) >I O. A hyperpath in G from m to
T, and the cost of that hyperpath, are defined recursively as follows.

(1) Suppose m is in T. Then the hyperpath is the hypergraph ({m}, 0), The
cost of this hyperpath is

cost(({m }, 0)) = O.

(2) Suppose m is not in T, and m is a leaf. Then there is no hyperpath from
m t o T .

(3) Suppose m is not in T, and m is not a leaf. Then there is at least one set
K - - { m l mk} such that (m, K) E H. Let Go be the hypergraph ({m}U K,
{(m, K)}). Suppose that for every mi E K there is a hyperpath Gi from mi to T
of cost Ci. Then the hypergraph

G' = Go U GI U " " U G.,

is a hyperpath from m to T of cost

cost(G') = c(m, K)+ Cl + C 2 + " " + Ck.

Note that there may be 0, 1, or many hypergraphs G' satisfying the above
properties.

Let G = (N, H) be a hypergraph, s E N be a source node, and T C N be a set
of terminal nodes. The least-cost hyperpath problem is the problem of finding a
hyperpath (N', H ') from s to T which minimizes the value of the objective
function cost((N', H')) .

One procedure for solving the least-cost hyperpath problem is the procedure
AO* discussed by Nilsson [19]. Other similar procedures are discussed by
Nilsson [21] and Martelli and Montanari [15]. AO* is given below as procedure
P8.

AO* makes use of a lower bound h(m) on the least cost of any hyperpath
from m to T. As discussed by Nilsson [21], h must be such that:

(1) h (m) ~ O for every G-node m (whence h (m) = 0 if m E T);
(2) for every G-hyperarc (m, K),

h(m)<~c(m,K)+ ~ h(n).
n E K

procedure PS: //AO*//
1. (N,H) := ({s}, 0) //the portion of G searched so far//
2. q(s) := h(s)

//q(n) is the best known lower bound for each node nil
3. if s E T then solved(s) := 1

48 D.S. NAU ET AL.

4. else solved(s) := 0 endif
5. loop //the main loop//
6. let BEST be the hyperpath in (N,H) formed by tracing

the 'best' pointers from s through (N,H) to the
leaves of (N,H)
//these pointers are set in line 20//

7. if solved(s) = 1 then return BEST endif
8. let m be a BEST-leaf not in T

//Nilsson discusses several possible ways//
//of choosing m, but the procedure will work//
//regardless of how m is chosen.//

//expand m//
9. for every K such that (m,K) is a G-hyperarc do
10. for every n ~ K - N do
11. if n ~E T then solved(n) := 1 else solved(n) := 0 endif
12. q(n) := h(n)
13. endfor
14. (N,H):=(NUK, HU{(m,K)})
15. endfor

//update the 'best' pointers and the q-values by//
//searching bottom-up//

16. V := {m}
17. while V # g d o
18. remove from V a node u such that no (N,H)-descendants

of u are in V

19. q(u) := min{c(u,K) + S',vEKq(v) I(u,K) e H}

20. K' := any K such that (u,K) ~E H and (u,K) produces the
minimum value q(u) found in line 19

//(u,K') is currently the best hyperarc from u//
21. best(u) := K'
22. if solved(v) = 1 for every v e. K' then solved(u) := 1 endif
23. if solved(u) = 1 or q(u) was changed in line 19 then
24. V := V U {v E N l u ~- best(v)}
25. endif
26. endwhile
27. repeat
end P8

W e now discuss how to rewr i t e P8 as an ins tan t ia t ion P9 of P3B.
Le t P be a h y p e r p a t h in G f rom some node m of G. A n extension of P in G

is any h y p e r p a t h P ' f rom m conta in ing P. W e def ine the r e p r e s e n t a t i o n
funct ion rf9 by

r f9 (P) = {P'IP' is an ex tens ion of P to T} .

N o t e that if P ' is an ex tens ion of P then r f9(P ') C rf9(P), and that

Fmin(P) = min{cos t (P*)] P* is an ex tens ion of P to T} .

GENERAL B&B, AND ITS RELATION TO A* AND AO* 49

We define

L9(P) = cost(P)+ ~ {h(n) I n is a P-leaf}.

To see that L9 is a P3-1ower bound function, we note that
(1) if P ' is any extension of P in G to T, then

cost(P') = cost(P) + cost(P1) + . . . + cost(Pk)

/> cost(P) + h (h i) + ' ' " + h (nk)

= L 9 (P) ,

whence L9(P) ~< Fmin(P);
(2) if P is a hyperpath to T, then L9(P)= cost(P)= Fmi,(P).
Let goal9(P) hold if and only if P is a hyperpath from s to T. Clearly, goal9

is a goal function.
Let ACT9 be the set of all hyperpaths in (N,H) from s to the leaves of

(N,H). Let SEL9 = select9(ACT9) be {BEST} if goaI9(BEST) holds, and
otherwise let it be the set of all hyperpaths in ACT9 containing the node m
chosen in line 8 of P8. Clearly, select9 is a selection function.

It may be proved by induction that for every u E N, lines 16-26 of P8
maintain q(u) such that

_ lh(u),
q(u) - [min{c(u, K) + ~ q(v) l (u, K) E H}

vEK

if u is an (N, H)-leaf

otherwise.

Thus, by induction on the distance from u to the leaves of (N, H) , it may be
proved that

q(u) = min{L9(P) I P is a hyperpath in (N, H)
from u to the leaves of (N, H)}.

The hyperpath found by tracing the 'best' pointers from u to the leaves of
(N , H) is the one which achieves this minimum. In particular, q (s)=
L9(BEST). Since it is always the case that BEST E SEL9, select9 is L9-best-
first.

Let SPL9 = split9(SEL9) be the set of all hyperpaths from s to the leaves of
(PC', H') which contain m, where (N', H ') is the expanded version of (N, H)
computed in lines 9-15 of P8. Let prune9(ACT9- SEL9, SPL9) be the set of all
hyperpaths in (N ' , H ') from s to the leaves of (PC',H'). It is proved in
Appendix D that split9 and prune9 have the properties of splitting and pruning
functions, respectively.

50 D.S. NAU ET AL.

Using the above definitions, P8 may be rewritten as procedure P9 below.

procedure Pg: ffAO*, rewritten//
1. ACT9 := {({s},~)}
2. loop

//the test below will never succeed, and is included//
//merely to illustrate that P9 is an instantiation//
//of P3B//

3. if ACT9 = ~ then return 'unknown' endif
4. SEL9 := select9(ACT9)
5. if SEL9 is a singleton {r9} and goal(r9) then
6. return r9
7. else
8. SPL9 := split9(SEL9)
9. ACT9 := prune9(ACT9 - SELg,SPL9)
10. endif
11. repeat
end P9

Theorem 7.1. P9 is an instantiation of P3B.

Proof. From the preceding discussion, we see that the functions used in P9
have the properties of P3-goal, -selection, -splitting, and -pruning functions,
respectively, and that select9 is L9-best-first. It only remains to show that each
of the functions is defined for all arguments which might be given to them
during the operation of P9, and this is easily proved by induction.

8. Summary and Conclusions

This paper contains a general formulation of B&B called General Branch and
Bound (GBB). The main features of GBB include

(1) a formal treatment of the way subsets of the domain of solutions are

represented;
(2) the formulation of a procedural scheme for GBB using abstract goal,

selection, splitting, and pruning functions;
(3) the discussion of how these functions may be generalized to make use of

problem-specific auxiliary data;
(4) a discussion of the conditions under which an arbitrary optimization

procedure may be considered a special case of GBB.
GBB is powerful enough to include as special cases the formulations of B&B

used by Mitten [17], Kohler and Steiglitz [9], and Ibaraki [6]. In addition, the
AI search procedures A* and AO* have been proven to be instances of GBB.

It can be shown that a number of other AI search procedures are also special
cases of GBB [13]. It is possible to visualize many variations of existing search
procedures being generated from this general branch-and-bound paradigm,
which provides a theoretical basis for a better understanding of the per-

GENERAL B&B, AND ITS RELATION TO A* AND AO* 51

formance of such algorithms and the relationships among them (for example,
see [11, 13, 18]). In particular, we conjecture that all procedures for top-down
search of problem-reduction representations can be examined and understood
as instantiations of this general branch-and-bound procedure.

Appendix A. Theorems about P3

To justify the claim that P3 is a special case of GBB, functions rf2, goal2,
select2, split2, and prune2 must be found such that P2 and P3 compute
representations of the same sets {rf2(r)lrESEL2i}, {rf2(r)lrESPL2i},
{rf2(r) I r E ACT2 i} on the ith iterations of their main loops. P3 is a version of
P2 in which the active list ACT2 is separated into two parts: ACT3 and
{BEST3}. Furthermore, the pruning operation which would be done by prune2
in P2 is split into the two different operations performed in lines 7-9 and 12 of
P3. To reproduce this behavior in P2, we define prune2 to flag every
representation in ACT2 to indicate whether it is in ACT3 or (BEST3}. Let

and

rf2(r) = rf3(r), goal2(r) = goal3(r),

select2(ACT2) = {select3(ACT2- {BEST3})}.

Let split2 and prune2 be the procedures given below.

procedure spl i t2(SEL2): //simulate l ines 6 and 10-11 of P3//
1. if SEL2 is a singleton {r} and goal2(r) then
2. goal found := 1
3. return SEL2
4. else
5. goal found := 0
6. return spli t3(SEL2)
7. endif
end split2

procedure prune2(ACT2,SPL2): //simulate lines 7-9, 12 of P3//
//for every representation r, f lag(r) is taken to be Off
//unless it is set to 1 in line 5 below//

1. if goal found = 1 then
//select2 has selected a goal r2 and SPL2 = {r2}//
//simulate lines 7-9 of P3//

2. if f lag(r*) = 1 for some r * (E ACT2
//at most one such r* exists; this r* is BEST3//
and Fmin(r*) ~< Fmin(r 2) then

3. return ACT2
4. else

//make r2 the new BEST3//
5. f lag(r2) := 1
6. return {r ~E ACT2 1 flag(r) = 0} U {r2}

52 D.S. N A U ET AL.

7. else
8. return {r ~E ACT21 flag(r) = 1} U prune3({r E ACT21 flag(r) = 0})
9. endif
end prune2

Theorem A.1. Suppose P2 is instantiated using the definitions of rf2, goal2,
select2, split2, and prune2 given above. Then rf2 and goal2 are representation
and goal functions, and for every initial representation rO, the computations of P2
and P3 are such that for every i,

(1)

(2)

(3)

{r E ACT2 ~ I flag(r) = 0} = ACT3 ~ ;

{r E ACT2 '] flag(r) = 1} = {BEST3 ~} ;

SEL2 ~ = SEL3 i ;

SEL3i,
(4) SPL2i = t SPL3 ~,

if SEL3 i is a singleton {r} and goal(r) holds,
otherwise;

Proof. By induction on i.

Corol lary A. I . I . Let t be the number of times the main loop of P3 is fully
executed for some initial representation rO and instantiations of rf3, goal3,
select3, split3, and prune3. For every integer i such that 0 <- i < t + 1,

Fmi.(ACT3 ~ U {BEST3~}) = min{F(x) I x E X } .

Proof. Immedia te f rom T h e o r e m A.1 and Corol lary 2.1.1.

T h e o r e m A.1 justifies the claim that P3 is a special case of GBB. T h e o r e m
A.2 below justifies rewriting P3 as P3B when the selection funct ion is best-first.

Theorem A.2. I f select3 is L3-best-first for some L3, then the first singleton set
SEL3 = {r} selected at line 5 of P3 such that goal3(r3) holds represents an
optimal member of X.

Proet . Consider the first singleton set SEL3 = {r3} selected at line 5 of P3 such
that goal3(r3) holds, and suppose r3 is selected during the ith i terat ion of the
main loop of P3. Then for every r ~ ACT3 ~-1,

(5) select2(ACT2i) , split2(SEL2i), and prune2 (ACT2 i - l - SEL2 i, SPL2 ~) are
defined for the arguments given to them, and hence are selection, splitting, and
pruning functions, respectively.

GENERAL B&B, AND ITS RELATION TO A* AND AO* 53

Fmi.(r3) = L3(r3) ~< L3(r)

Fmin(r) = min{F(x) [x E rf3(r)}.
Thus since

Fmi,(BEST3 i-1) = Fmi . (' unknown ')= ~ ,

it follows f rom Corol la ry A. I .1 that

Fmi.(r3) = F m i n (A f T 3 ' - l) = min{F(x) lx E X} .

Appendix B. Properties of P4

Theorem B.1. Lines 9-14 of P4 constitute a P3-pruning function.

Proof. When lines 9-14 of P4 are executed during the ith i terat ion of the main
loop, they c o m p u t e

A C T 4 ' = (A C T 4 '-1 - {r4i}) U {r @ SPL4' I L4(r) < L4(BEST4i)}

C (A C T 4 '-1 - {r4'}) U SPL4 ~ .
Thus

{rf4(r') [r ' E ACT4 '} _C {rf4(r) I r ~ (ACT4 i-1 - {r4i}) U SPLni}.

The above is the first p rope r ty of a P3-pruning function.
T o p rove that lines 9-14 of P4 have the second p rope r ty of a P3-pruning

function, there are two cases to be considered.
Case 1.

F,, i , (r4 ') /> Fm~.((ACT4 ~-~ - {r4'}) U {BEST4'})

In this case,

Frnin((mfT4 i - 1 - {r4'}) U {BEST4'})=

= Fmi,((ACT4 ~-1 - {r4~}) tO {r4'} U {BEST4'})

= Fmi.((ACT4 ' - 1 - {r4'}) U SPL4' U {BEST4'}) .

Thus since

(A C T 4 '-a - {r4'}) U {BEST4'} C_ A C T 4 ' U {BEST4'}

C (A C T 4 '-~ - {r4i}) tO SPL4' U {BEST4~},

F,n~.(ACT4 i U {BEST4;}) = F , . i . ((ACr4 '-~ - {r4'}) U SPL4 i U {BEST4'}) .

54 D.S. NAU ET AL.

Case 2.

Freq.(r4 i) < Fmi,((ACT4 i -1- {r4'}) U {BEST4~}).

According to the definition of split4, there is an r ~ SPL4 ~ such that Freq,(r)=
Fmi,(r4i). This means that

L4(r) ~< Fmi,(r) = Fmi.(r4 i)

< Fmi,(BEST4') = Fm~,(BEST4~),

whence r E ACT4 ~. Thus

F~,i,(ACT4') = Freq.(r)

= Fmi,((ACT4 ~-' - {r4'}) U SPL4 ~ U {BEST4;}).

In both cases, the second property of a P3-pruning function is satisfied.

Appendix C. Properties of A*

In this appendix, it is shown that P7 (and hence A*) is a special case of GBB.
Let G be a graph for a shortest path problem with start node s and goal set

T, and let P and Q be paths in G from s. Then P covers Q if Fmi.(P) ~< F.,i,(Q)
and there are paths P ' and P" such that P = P'P" and t ip(P') = tip(Q). If P covers
Q, this means that for every extension Q* of Q to a member of T, there is an
extension P* of P to a member of T such that

Freq,(P*) <~ Fmi,(O*),

whence Q can be pruned if Q ~ P and P E ACT7. Note that the covering
relation is transitive: if P covers Q and Q covers R, then P covers R.

Lemma C.1. If P prunes Q in lines 15 or 17 of P7, then P covers Q.

Proof. If P prunes Q, then t ip(P) = t ip(Q) and LT(P) ~< LT(Q). But

L7(P) = cost(P) + h(P)
and

L7(Q) = cos t (Q)+ h (Q) = cos t (Q)+ h (P) ,
SO

cost(P) ~< cos t (Q) .

Since t ip(P) = tip(Q), this means that F.,i.(P) ~< Fmi.(Q), whence P covers Q.

GENERAL B&B, AND ITS RELATION TO A* AND AO* 55

Let t be the number of t imes the main loop of P7 is fully executed for some
input graph G (thus t may be infinite). Le t k(i) be the number of t imes lines
12-22 of P7 are executed during the ith i terat ion of the main loop. Note that

k (i) = Isplit7(pi)l.

We define (i, j) to be a loop index of P7 if it corresponds to the j th i teration of
the inner loop of P7 during the ith i terat ion of the main loop; i.e., if
0 ~ < i < t + l and O<~j<~k(i). We say that (i',j ') is older than (i,j) if (i',j ')
corresponds to an i teration of the inner and main loops of P7 previous to the
i terat ion corresponding to (i , j) ; i.e., if i ' < i or if i ' = i and j ' < j .

Let ACT7 u and G E N 7 u, respectively, be the values of ACT7 and G E N 7
computed on the j th i teration of lines 12-22 of P7 during the ith i terat ion of
the main loop. Let Pu, P~,2 P~.k(~) be the members of SPL7 ~ computed at line
10 of P7, and let

frontier(i , j) = ACT7 ~J U {Pij+l Pi.k(i)}.

Note that for each i,

(1) ACT7i.0 = ACT7 H _ {pi} ;

(2) G E N 7 ~,°= G E N 7 ~-1 ;

(3) frontier(i , 0) = (ACT7 H - {Pi}) U SPLT ;

(4) G E N 7 i,k°) = G E N 7 i ,

(5) frontier(i , k(i))= ACT7 i,kti) = A C T T .

Theorem C.2. For every loop index (i, j) , every loop index (i', j') older than (i, j) ,
and every path V E frontier(i ' , j ') , there is a path W E frontier(i , j) such that W
covers V.

Proof (by induction on (i , j)) . The re is no (i ' , j ') o lder than (1,0), so the
theorem holds vacuously for (i , j)= (1,0). For the induction hypothesis , let
0 ~< i < t + 1 and 0 <~ i <~ k(i), and suppose that the theorem holds for every
(i", j") older than (i, j). To prove that the theorem holds for (i, j) , there are two
possible cases to consider: j = 0 and j > 0.

Case 1. j = O. Let (i ' , j ') be o lder than (i, 0). If i' < i - 1 or if i' = i - 1 and
j ' < k (i - 1) , then by the induction hypothesis every V E f r o n t i e r (/ ' , f) is
covered by a W E front ier(i - 1, k(i - 1)). Thus since covering is transitive, it
suffices to show that every V E f r o n t i e r (i - 1 , k (i - 1)) is covered by a W E

56 D.S. NAU ET AL.

frontier(i, 0). If V E frontier(i - 1, k (i - 1)), then either V E ACT7 i'° or V = Pi.
In the first case, V covers itself. In the second case, it follows from the
definition of split7 that

Fmi,({Pi., P,.k(i)}) = Fmi,(Pi),

whence one of Pi,, Pi,~(0 covers P~. In either case, the theorem holds for
(i, j).

Case 2. j >0 . Let (i',j ') be older than (i,j). If i ' < i or if i' = i and j ' < j - 1,
then by the induction hypothesis every V E frontier(i ' , j ') is covered by a
W E frontier(i, j - 1). Thus since covering is transitive, it suffices to show that
every V E frontier(i, j - 1) is covered by a W E frontier(i, j). There are three
possible cases to consider.

Case 2(a). V E {Pi,i+, Pi,k(i)}" Then V E frontier(i, j) and V covers V.
Case 2(b). V = Pu. If V E ACT7 u, then V E frontier(i, j) and V covers V.

Otherwise, V was pruned at line 15 of P7 by some a Q E
{ACT7U-IUGEN7 u-l. By Lemma C.1, Q covers V, and by the induction
hypothesis, there is a W ~ frontier(i, j - 1) covering Q, whence W covers V.
Since V could not have pruned W,

W E ACT u C_ frontier(i, j) .

Case 2(c). V E A C T 7 u-~. If V C A C T 7 u, then V covers V. Otherwise, V
was pruned at line 17 of P7 by Pu, whence from Lemma C.1, Pu covers V.
Thus, since covering is transitive, this case reduces to Case 2(b).

Corollary C.2.1. P7 is an instance of P3B.

Proof. It is clear that goal7 is a goal function, and that select7 and split7 have
the properties of P3-selection and -splitting functions, and that select7 is
L7-best-first. If we define prune7 to be lines 11-22 of P7, it follows from
Theorem C.2 it follows that prune7 has the properties of a P3-pruning function.
It only remains to show that select7 split7, and prune7 are defined for all
arguments which might be given to them during the operation of P7, and this is
easily proved by induction.

From Corollary C.2.1, it is clear that P7 (and hence A*) is a special case of
GBB.

Appendix D. Properties of AO*

Theorem D.1. split9 satisfies properties (2.4) and (2.5).

Proof. Let (N , H) and (N ' , H ') be as in Section 8. We first show that if
P ' @ SPL9, then there is a P ~ SEL9 such that rf9(P') C rf9(P). Let P ' E SPL9,
and let Q = P ' N (N, H) . Clearly, Q contains at least one hyperpath P from s

GENERAL B&B, AND ITS RELATION TO A* AND AO* 57

to the leaves of (N, H) containing m. Since P is a subgraph of P' , P ' is an
extention of P, whence r f (P ')C if(P).

It follows directly from the above that U{rf9(P) IPESPL9}C_
U {rf9(P)] P E SEL9}. To prove that U {rf9(P) I P ~ SEL9} _
U{rf9(P) I P E SPL9}, let P E SEL9 and let P* be an extension of P in G to T.
Let Q = (N', H ') n P*. Clearly, Q contains at least one hyperpath P ' from s to
the leaves of (N', H') , and by definition of SPL9, P ' E SPL9. Since P ' is a subgraph
of P*, P* is an extension of P ' to T, whence P* E rf(P').

Theorem D.2. prune9 satisfies properties (2.6) and (2.7).

Proof. Let (N, H) , m, and (N', H ') be as in Section 8. Since p rune9((ACT9-
SEL9) U SPL9) is the set ACT9' of all hyperpaths in (N', H ') from s to the
leaves of (N', H'), the theorem will follow trivially if we show that

ACT9' = (ACT9 - SEL9) tO SPL9.

Let P be a path in SPL9. Then P is a hyperpath in (N', H ') from s to the
leaves of (N', H') containing m, so P is clearly in ACT9'. Let P be a path in
A C T 9 - SEL9. Then P is a hyperpath in (N, H) from s to the leaves of (N, H)
which does not contain m. Since the only difference between (N, H) and
(N',H') is the addition of some hyperarcs at m, P is also a hyperpath in
(N', H') from s to the leaves of (N', H') . Thus P G ACT9'. Finally, let P be a
hyperpath in ACT9'. If P does not contain m, then P N (N, H) = P, whence
P E A C T 9 - S E L 9 . If P does contain m, then P is an extension of some
P ' E SEL9, whence P E SPL9.

REFERENCES

1. Berliner, H., The B* tree search algorithm: A best-first proof procedure, Artificial Intelligence
12 (1979) 23-40.

2. Hall, P.A.V., Branch-and-bound and beyond, Proceedings Second International Joint Con-
ference on Artificial Intelligence (1971) 641-658.

3. Horowitz, E. and Sahni, S., Fundamentals of Computer Algorithms (Computer Science Press,
Potomac, MD, 1978).

4. Ibaraki, T., On the optimality of algorithms for finite state sequential decision processes, J.
Math. Anal. Appl. 53 (1976) 618--643.

5. Ibaraki, T., The power of dominance relations in branch and bound algorithms, J. ACM 24
(1977) 264-279.

6. Ibaraki, T., Branch-and-bound procedure and state-space representation of combinatorial
optimization problems, Inform. Control 36 (1978) 1-27.

7. Knuth, D.E. and Moore, R.W., An analysis of alpha-beta pruning, Artificial Intelligence 6
(1975) 293-326.

8. Kohler, W.H. and Steiglitz, K., Characterization and theoretical comparison of branch and
bound algorithms for permutation problems, J. ACM 21 (1974) 140-156.

9. Kohler, W.H. and Steiglitz, K., Enumerative and iterative computational approaches, in: E.G.
Coffman, Jr. (Ed.), Computer and Job-Shop Scheduling Theory (Wiley, New York, 1976).

58 D.S. NAU ET AL.

10. Kumar, V., A unified approach to problem solving search procedures, Ph.D. Dissertation,
Dept. of Computer Science, University of Maryland, College Park, MD, 1982.

11. Kumar, V. and Kanal, L., Branch and bound formulations for and/or tree search with
applications in pattern recognition and game playing, 1982 International Conference on Pattern
Recognition and Image Processing, Munich, 1982.

12. Kumar, V. and Kanal, L., A general branch and bound formulation for understanding and
synthesizing and/or tree search procedures Artificial Intelligence 21 (1,2) (1983) 179-198.

13. Kumar, V., Nau, D.S. and Kanal, L.N., A general model for problem reduction and game
search (1984) in preparation.

14. Lawler, E.L. and Wood, D.E., Branch-and-bound methods: A survey, Oper. Res. 14 (1966)
699-719.

15. Martelli, A. and Montanari, U., Additive AND/OR graphs, Proceedings Third International
Joint Conference on Artificial Intelligence (1973) 1-11.

16. Martelli, A. and Montanari, U., Optimizing decision trees through heuristically guided search,
Comm. ACM 21 (1978) 1025-1039.

17. Mitten, L.G., Branch and bound methods: General formulations and properties, Oper. Res. 18
(1970) 23-34. Errata in Oper. Res. 19 (1971) 550.

18. Nau, D.S., Kumar, V. and Kanal, L.N., A general paradigm for A.I. search procedures,
National Conference on Artificial Intelligence, 1982.

19. Nilsson, N., Searching problem solving and game playing trees for minimum COST solutions,
in: A.J.H. Morrel (Ed.), Information Processing-68 (North-Holland, Amsterdam, 1968).

20. Nilsson, N.J., Problem-Solving Methods in Artificial Intelligence (McGraw-Hill, New York,
1971).

21. Nilsson, N.J., Principles of Artificial Intelligence (Tioga, Palo Alto, CA. 1980).
22. Pohl, I., Is heuristic search really branch and bound?, Proceedings Sixth Annual Princeton

Congress on Information Science and Systems (1972) 370-373.
23. Reingold, E., Nievergelt, J. and Deo, N., Combinatorial Optimization (Prentice-Hall, Engle-

wood Cliffs, N J, 1977).
24. Smith, D.R., On the computational complexity of branch and bound search strategies, Ph.D.

Dissertation, Duke Univ., Durham, NC, 1979; Tech. Rept. NPS 52-79-114, Naval Postgraduate
School, Monterey, CA, 1979.

25. Stockman, G.C., A minimax algorithm better than alpha-beta?, Artificial Intelligence 12 (1979)
179-196.

Rece ived M a y 1982; revised version received March 1983

