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Abstract : ‘

Most knowledge-based computer systems are based on a production rule format ||
which proves to be very difficult to apply to many diagnostic problems. In this paper, |I \
we argue that this is because diagnostic problem solving is a problem in abductive infer- |
ence rather than deductive inference. The usual rule format does not provide sufliciently I'|
rich knowledge representation capabilities to allow abductive problems to be translated ‘
into deductive ones. We also show how abductive problems can be translated into ‘
deductive problems by using a rather different rule format than is usually used in |
knowledge-based computer systems, and discuss an algorithm for diagnostic problem |
solving based on this rule formadt. This algorithm has been successfully used to create h
expert computer systems in several different problem domains. I

1. Introduction I

The vast majority of expert systems for diagnostic problem solving which have |
been developed by artificial intelligence researchers are based on the use of production |‘|
rules to do deductive inference (3]. Even systems such as Prospector {1] which use |
semantic networks or similar knowledge representation structures. still use production il
rules to do their reasoning. ||‘ I

Production rule systems for diagnostic problem solving are based on techniques for (il
deductive inference. Such systems typically use rules of the form |

IF conjunct of manifestations THEN disorder

|
to construct chains of deductive reasoning showing that the existence of some set of I| [
manifestations provides evidence for the presence of various causes or disorders. Such i l!
reasoning proceeds from the rule of modus ponens: if A implies B’" is true and if “A” is |
true, then *“B’’ is true. However, diagnostic problem solving is basically an abductive

process rather than a deductive one. Abductive inference proceeds from a rule which

goes in the reverse direction from modus ponens: if “A implies B” is true and “B” is

true, then possibly “A’ is true. :

In this paper, we argue that in diagnostic problems where more than one disorder I
occurs simultaneously, the usual deductive approach used in production rule systems can I
lead to severe problems. We briefly describe an abductive approach to diagnostic prob-
lem solving which overcomes some of these problems, and discuss some knowledge-
representation and control issues which arise in the abductive approach. |

1 This work was supported in part by Contract NB83SBCA2124 from the National |
Bureau of Standards, and in part by Contract N60921-83-C-0107 from the Naval Surface

Weapons Center.
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2. Diagnostic Problem Solving

In order to compare various approaches to diagnostic problem solving, we first need
to formalize what is meant by a diagnostic problem. In our formation every diagnostic
problem domain has the following characteristics:

1.  There are various disorders which can occur in that domain which may or may not
be present in specific diagnostic problems. The set of all possible such disorders we
call D. For the purposes of this paper, we assume that all members of D are
independent of each other.

2. If a disorder d are present, then it Inay cause one Or more symptoms, signs, or
manifestations of its presence. The set of all possible manifestations in a given
problem domain we cail M. We let C € D XM be the relation between disorders
and the manifestations they cause; i.e., (d,m)EC if and only if d is capable of
causing m. In this paper, we assume that a disorder does not necessarily always
cause all of the manifestations it is capable of causing, as is often the case in real-
world diagnostic problems. -

Thus, a problem domain may be specified as a three-tuple <D M,C >,

Within a problem domain, a diagnostic problem occurs when one or more manifes-
tations are present. Thus a diagnostic problem P may be specified as a four-tuple
P = <D ,M,C,M*>, where M*CM is the set of all manifestations which are actu-
ally present. Given P, the task is to ind the set of disorders D*CD which is responsi-
ble for the presence of the manifestations in M ™.

. » It may not be possible una.i_nbiguously to determine D ¥, as there may be more than
one set of disorders capable of causing. M+. Several possible criteria have been proposed
for how to determine D ¥, and some of them are listed below.

Criterion 1. D™ is the set of all disorders capable of causing any of the manifes-
tations in M.

Criterion 2. Every set of disorders capable of causing M‘i' is an alternate
hypothesis for the identity of D *.

Criterion 3. Not all of the alternate hypotheses produced by Criterion 2 need be
considered. If (as we are assuming) all disorders are independent of each other, then it
follows that the simplest possible explanation for a set of manifestations Mt is a
minimum? set of disorders capable of causing M*. From Ockham'’s razor, it follows that
such a set of disorders is likely to be the correct diagnosis. In general, there may be:
several smallest sets of disorders capable of causing M™*, and according to Criterion 3
these sets are alternate hypotheses for the identity of D *.

Criterion 4. Although not all of the alternate hypotheses produced by Criterion 2
need be considered, more than just the minimum sets should be considered. For exam-
ple, suppose that M* can be caused either by one very rare disorder d,, or by two very
common disorders d, and d;. Then even though {d,} is a simpler explanation, {dods}
may be more likely' and should also be considered as a hypothesis. However, a set such
as {d,,d,} need not be considered as a hypothesis, because if d, is present, then it alone
is capable of causing all occurring manifestations and so there is no evidence for the
additional presence of d,. As a generalization of this example, the set of possible

2 i.e., having the smallest possible cardinality
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alternatives for DT according to Criterion 4 is the set of all minimal® sets of disorders
capable of causing M*.

3. An Example
As an example, consider the following problem domain:

disorder d, can cause manifestation m;

disorder d, can cause manifestations m, and m;

disorder d, can cause manifestations m, mgs, and my;

disorder d, can cause manifestation m,;

there are no other disorders;

all of the disorders are independent of each other;

a disorder does not always cause all of the disorders it is capable of causing.

Three diagnostic problems in this problem ‘domain are discussed below.

Problem P1: suppose that m, is present. Then the ‘correct answers according to
each of the criteria are

Criterion 1: d; & d;

Criterion 2: d, | dy| (d, & d,);
Criterion 3: d, | dg;

Criterion 4: d, | d,.

Problem P2: suppose that both m, and m, are present.: Then the correct
answers according to each of the criteria are ’

Criterion 1: d, & dy & dg;

Criterion 2: (dl &dy) | dy|(dy & dy)| (d & dy) | (d & d2 & dj);
Criterion 3: dg;

Criterion 4: (d, & dg) | d,.

Problem P3: suppose m,; m, m, and m, are present. Then the correct
answers according to each of the criteria are

Criterion 1: d, & d, & dy & d

Criterion 2: (d, & dg) | (dy & d3) |(d, & dy & dy)|(d, & dy&d))
|(dz&da&d4)|(d1&d2&d3&d4)i

Criterion 3: (d, & d3) | (d & dy);

Criterion 4: (d, & d3) | (dy & d3).

Note that in this example, if the answers are considered as Boolean expressions,
then in each case the answer produced by Criterion 3 implies the answers produced by
Criteria 2 and 4, and the answers produced by Criteria 2 and 4 are equivalent.
Although the proof is beyond the scope of this paper, this property can be proved to be
true in general.

4. Problems with Production Rule Systems

Let us consider how a production rule system might perform in the above example.
If we were to write the problem domain knowledge naively in the form of production

3je., aset D¥ such that no proper subset of Dt has the same property.
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rules, we might write

R1. IF m, THEN d, (¢,)

R2. IF m, & m,; THEN d, (c,)

R3. IFm, & my & m, THEN d, (c,)
R4. IF m, THEN d, (c,)

where ¢,, ¢, ¢, and c, are the relative certainties with which we believe that the
disorders d,, d,, dj and d, are present. The results produced by these rules are

d, in Problem P1;
d, & d, in Problem P2;
d, & d, & d3 & d, in Problem P3.

Only in Problem P3 does the answer exactly it any of the four criteria. Part of the
problem is that not enough rules fire, since each rule requires the presence of all of its
preconditions in order to fire. This problem can be handled by adding additional rules
referring to all combinations of manifestations which can be caused by each disorder:

RS. IF m; THEN d, (cg)

RS8. If m, THEN d, (cg4)

R7. IF m, THEN dg (c4)

R8. IF m,; THEN d, (cg)

R9. IF m, THEN d; (¢g)

R10. IF m, & m,y THEN dg (¢ )

R11. IF m, & m, THEN d; (¢ ;)

R12. IF my & m, THEN d; (¢ o)

If these rules are added, then the system will produce (with varying certainties)

d, & d, in Problem P1;

d, & d, & d, in Problem P2;

d, & d, & dg & d in Problem P3.
These results all it Criterion 1.

It seems fairly clear that the Criterion 1 is not really an adequate characterization
of the solution to a diagnostic problem. However, if we are restricted to using rules of
the form :

IF mansfestations THEN disorder

then the production rule approach cannot be made to satisfy Criteria 2, 3, or 4 because
the only conclusions it will be able to produce are conjuncts of disorders.

5. Another Approach

Part of the reason why the usual rule-based approach cannot produce diagnoses
satisfying Criteria 2, 3, or 4 is that the information contained in the production rules is
simply incorrect. The underlying causal knowledge is not of the form

IF manifestations THEN disorder
typically found in rule-based expert systems but is instead of the form
IF disorder THEN manifestations.

Suppose, for example, that a manifestation m; can be caused by any of the disorders d,,
dg and dj If m, is present, then we cannot deduce the presence of d,, nor of d,, nor
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of ds. The correct action would instead be to postulate dy, dg, and d4 as alternate pos-
sible hypotheses for what is causing m,. However, if we further knew that d,, d,, and
d, were the only disorders capable of causing m,, then we could correctly deduce that at
least one of d,, d4, and d, must be present. This is a special case of a diagnostic princi-
ple which we will call the principle of abduction: !
Theorem 1. Suppose that M™ is a set of manifestations which can be caused by
any of the sets of disorders D,, D, ..., Dy, and that there are no other sets of disorders
capable of causing M +, Suppose also that the manifestations in M™ can never occur
* without being caused. Then if these manifestations are present, then one of the sets of
disorders D ,, D ,, ..., D, must be present.

Proof. Immediate from modus ponens.
The principle of abduction allows us to translate causal knowledge of the form
IF disorder THEN disjunct of manifestations
into equivalent diagnostic knowledge of the form
IF manifestation THEN disjunct of causes.
For example, the information about the problem domain used for Problems P1, P2, and
P3 can be directly written as a problem in abductive inference with the following set of

rules. Note that these rules go in the reverse direction from rules R1 through R4, and
that (in terms familiar to the logician) these rules are not Horn clauses.

Al. TF d, THEN m,

A2. TIF d, THEN-m, | m,

A3. IF d; THEN m, | m4 | m,
A4. IF d, THEN m,

The principle of abduction allows us to translate this abductive problem into a deductive
problem having the following set of rules.

D1. IF m, THEN d, | d,
D2. IF m, THEN d, | d,
D3. IF my THEN d,

D4. IF m,THEN d, | d,

These rules will produce the diagnoses

d, | d, for Problem P1;
(dy| dg) &(d, | d3) for Problem P2;
(d,| dg) &(dy| d3) & d3 & (dy | d,) for Problem P3.

If considered as Boolean expressions, the answers produced by the rules {D1, D2,
D3, and D-;} are logically equivalent to the answers produced by Criterion 2 and the
answers produced by Criterion 4. Furthermore, they contain all of the disorders appear-
ing in the answers produced by Criterion 1. From this it follows that each answer pro-
duced by the rules {D1, D2, D3, D4} can be transformed exactly into the answers pro-
duced by Criteria 1, 2, 3, and 4 by means of the following operations:

1. To transform the answer into the one produced by Criterion 1, take the conjunct qf
all the disorders appearing in the answer.

2. To transform the answer into the one produced by Criterion 2, treat it as a
Boolean expression and find all implicants.
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3. To transform the answer into the one produced by Criterion 3, treat it as a set cov-
ering problem and find all minimum set covers.

4. To transform the answer into the one produced by Criterion 4, treat it as a
Boolean expression and find all prime implicants.

6. Control Strategies

The previous section described a general approach to diagnostic problem solving.
The main steps in the approach are as follows:

Step 1. Formulate the diagnostic problem as an abductive problem using the
direct causal knowledge about the problem. This results in a set of rules similar to rules
A1l through AS.

Step 2. Use the Principle of Abduction to translate the abductive problem into an
equivalent deductive problem. This results in a set of rules similar to rules D1 through
Ds.

Step 3. Apply the deductive rules to the problem.

Step 4. Use one of the transformational techniques listed above to find an answer
satisfying Criteria 1, 2, 3, or 4 as desired.

In implementing this approach, a number of problems must be solved. Five major
ones are described below.

1. Diagnostic problem solving normally requires sequential hypothesize-and-test
approach. Typically, only a few of the members of M * will be known to be present
at the outset. The diagnostician will have a tentative hypothesis sufficient to
explain the members of M* that are known to be present, and based on this I
hypothesis he or she will perform tests or ask questions to discover additional
members of M*. As these new manifestations are discovered, the hypothesis is
revised to account for them. In order to be broadly useful, knowledge-based diag-
nostic problem solving systems must perform in a similar way.

2. Although our approach has been described in terms of four separate steps, it is
often more efficient--particularly in the case of Criteria 3 and 4--to write a pro-
cedure which solves the problem directly as a problem in abductive inference.

3. While solving large diagnostic problems, the alternate hypotheses for sets of disord-
ers capable of causing M+ can become quite large and unwieldy. A representation
is needed which is compact, efficient, and easily understandable.

4, Although this paper has so far ignored the issues raised by the use of certainty fac-
tors in diagnostic problem solving, a way is needed to handle them.

5. The rule format
IF conjunct of manifestations THEN disorder,

is the standard form for production rules in knowledge-based computer systems. If
(as this paper proposes) we instead use rule formats such

IF disorder THEN disjunct of manifestations.
or
IF manifestation THEN disjunct of disorders,

then it is no longer clear how to do rule chaining.
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We have developed an algorithm for diagnostic problem solving using Criterion 3
which handles the first four problems described above (7] (8], and which has been suc-
cessfully used as the control strategy for knowledge-based diagnostic problem solvers in
several different domains [9]. This algorithm is summarized below; for a more detailed
treatment, the reader is referred to [7] [8]. We are currently extending the algorithm to
handle the fifth problem (how to do inferential chaining) (6], and to work for Criterion 4
as well as Criterion 3 [11].

Three main data structures are used in the algorithm:

1. MANIFS C M7 is the set of manifestations known to be present so far, i.e., our
current hypothesis for the identity of M +,

2. SCOPE C D contains every disorder capable of causing at least one of the man-
ifestations in MANIF'S (note that this is the answer Criterion 1 would produce).

3. FOCUS is the family of all minimum sets of disorders capable of causing MANIFS.
This is the set of alternate hypotheses for D™ according to Criterion 3. FOCUS is
also our solution to the problem of how to represent the alternate hypotheses com-
pactly: it is expressed as a disjunct of conjuncts of disjuncts, and is manipulated
directly in that form.

At the top level, the algorithm is a hypothesize-and-test loop which looks roughly as fol-
lows:

procedure HT

1 MANIFS := SCOPE := FOCUS :=§

2 while not all of M. is known do

3 perform a test to discover a new manifestation m eMt
4. MANIFS := MANIFS U {m }

5. SCOPE := SCOPE U {d€D | (d,m)EC}

8 adjust FOCUS to accomodate m

7 endwhile

8 return FOCUS

end HT

The knowledge base for this procedure is a set of frames, one for each disorder deD.
These frames are generalizations of abductive rules such as the rules {Al, A2, A3, A4}
discussed earlier. The frame for a particular disorder d contains aJ! the information we
may have about d-what manifestations it is capable of causing, what conditions govern
whether it may occur, etc. These frames thus deflne the causal relation C'. In addition,
the frames contain information about how likely it is to cause each of its manifestations,
and this information is used to determine the relative likelihoods of the various alternate
hypotheses. This provides a straightforward solution to the problem of how to handle
certainty factors.

In adjusting FOCUS to accomodate a new manifestation m , there are two possible
cases which may occur:

1. Some of the sets of disorders in FOCUS may be capable of causing
MANIFS U {m } In this case, it can be proved that the family of minimum covers
capable of causing MANIFS U {m} is a subfamily of FOCUS. Thus FOCUS must
be adjusted to remove the sets of disorders that no longer work.

2. MANIFS U {m } cannot be caused by any set of disorders in FOCUS. In this case,
it can be proved that each minimum set of disorders capable of causing
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MANIFS U {m } has cardinality exactly one more than the cardinality of each
minimum set of disorders capable of causing MANIFS. In this case, FOCUS must
be completely recomputed, but the problem is not as difficult as it might be in gen-
eral since we know exactly how many disorders will appear in each set.

7. Another Example

We now illustrate the operation of the algorithm on Problem P3. Just how tests
are generated in line 3 is described in [8]. The fAnal result produced is independent of
the order in which these manifestations are discovered, so for now, let us assume the
members of M are discovered in the order m, m, ms m, Then the following events
occur.

1. Initially, MANIFS = SCOPE = FOCUS = 0.

2. m, is found to be present. Then MANIFS is set to {m,}. SCOPE is set to
{d,.d3}, the set of all disorders which can cause m,. MANIFS can be caused by d,
alone or d, alone, so FOCUS s the expression d,|d,.

If we were solving Problem P1, then at this point no more manifestations would be
found and the program would terminate, returning FOCUS. This would be the
correct answer to P1.according to Criterion 3.

3. m, is found to be present. The disorders capable of causing m, are d, and ds.
These are added into SCOPE, yielding SCOPE = {d,,d,,ds}. MANIFS can still
be caused by d,, but not by d,. Thus FOCUS is the expression d,.

4. m, is found to be present. The only disorder capable of causing m, is d,; thus
SCOPE does not change. No single disorder can now explain MANIFS. Thus

- FOCUS is recomputed, looking for sets of two disorders each. Both {d,d s} and
{d,,ds} work, and thus FOCUS is represented as the expression (d, | dg) & dg.

If we were solving Problem P2, then at this point no more manifestations would be
found and the program would terminate, returning FOCUS. This would be the
correct answer to P2 according to Criterion 3.

5 m, is found to be present. m, can be caused by either d4 or d,, and thus SCOPE
becomes {d,dsdsd,}. m, can be caused by both of the sets of disorders
represented in the previous FOCUS, so FOCUS does not change. :

8. No more manifestations are found. Thus the program terminates and returns
FOCUS, which is the correct answer to Problem 3 according to Criterion 3.

8. Conclusions

We have discussed four different criteria for what constitutes the solution to a diag-
nostic problem. The ordinary deductive production rule approach to diagnostic problem
solving uses rules of the form

IF conjunct of manifestations THEN disorder,
and this approach is sufficient to meet only the least sophisticated of these criteria.

Part of the reason for this problem is that diagnostic problem solving is more prop-
erly an abductive problem rather than a deductive one: the causal knowledge we have
about diagnostic problems is not of the form given above, but rather is of the form
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IF disorder THEN disjunct of manifestations.
The principle of abduction stated in this paper shows how to transiate this kind of
knowledge into knowledge that can be used in deductive problem solving. This results
in rules of the form '

IF manifestation THEN disjunct of disorders.
Implementing a rule-based problem solver using this kind of knowledge requires a much
different kind of control strategy than is normally used in production systems. We have
discussed the basics of a control strategy for this approach.

Production rules have been criticized in the past as a representation of diagnostic
knowledge [10], and our approach appears in at least some cases to be a more intuitively
plausible descriptive representational formalism and model of diagnostic reasoning. A
knowledge-based reasoning system based on this approach has been implemented and
successfully used for several diagnostic medical problems. [9].

The inference method used in INTERNIST (2] differs but is rather close to our

approach (8] and some similar techniques have also been used on an immunological prob-
lem [4] {12]. However, this approach has not to our knowledge been previously examined

in detail as a model of general diagnostic reasoning.

Our approach also appears to have application (perhaps in modified form) to other
types of problems. as well. It has been used for several non-medical ‘“‘toy’’ diagnostic
problems, and an effort is underway to use it for a non-diagnostic problem in automated

manufacturing {5].
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