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Abstract 

In the field of Artificial Intelligence, 
traditional approaches . to choosing moves In 
games involve the use of the minimax algo
rithm. However, recent research results indi
cate that minimaxing may not always be the 
best approach. In this paper we summarize 
the results of some measurements on several 
model games with several different evaluation 
functions. These measurements, which are 
presented in detail in [NPT], show that there 
are some new algorithms that can make 
significantly better use of evaluation function 
values than the minimax algorithm does. 

1. Introduction 

This paper is concerned with how to 
make the best use of evaluation function 
values to choose moves in games and game 
trees. The traditional approach used in 
Artificial Intelligence is to combine the values 
using the minimax algorithm. Previous work 
by Nau [Na83b, Na82], Pearl [Pe82], and 
Tzeng and Purdom [TP, Tz] has shown that 
this approach may not always be best. The 
current paper summarizes the results or a 
study involving measurements on several 
model games with several different evaluation 
functions and several different ways of com
bining the evaluation function values. These 
measurements show that there are some new 

1 This work was supported in part by an 
NSF Presidential Young Investigator award to 
Dana Nau, including matching funds from 
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algorithms that for some games can make 
significantly better use of evaluation function 
values than the minimax algorithm does. 
These results are discussed in detail in [NPT]. 

Three methods of propagating the esti
mates from evaluation function are compared 
in this paper: minimax propagation (which is 

well-known [Ni]),2 product propagation (which 
treats the evaluation function values as if they 
were independent probabilities [Na83a]), and a 
decision rule which is intermediate between 
these two, which for this paper we call average 
propagation. 

Minimax propagation is the best way to 
combine values if one's opinions or the values 
of previously analyzed positions will not 
change on later moves. However, real game 
playing programs reanalyze positions after 
each move is made, and usually come up with 
slightly different opinions on the later analyses 
(because, as the program gets closer to a posi
tion, it is able to search more levels past the 
position). (Minimax propagation is also 
known to be the best way to combine values 
at a node N if those values are the exact 
values. But if one can obtain exact values, 
then there is no need for searching at all, and 
thus no need for combining values.) 

Product propagation is the best way to 
combine values if they are estimates of 
(independent) probabilities of forced wins and 
if no one is going to make any mistakes after 
the first move. But using estimates (which 

2 Decision analysts refer t.o minimax pro
pagation as the maximin decision criterion. 
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contain errors) of position values on the first 
move and then making perfect moves for the 
rest of the game is equivalent to using an esti
mator with errors for the first move and a per
fect estimator for later moves. This implies a 
drastic reevalua&ion of the positions after the 
first move is made. 

The situation encountered in real game 
playing is generally somewhere between the 
two extremes described above. If a game 
playing program eventually moves to some 
node N, then the values computed at each 
move in the game are progressively more accu
rate estimates of the value of N . Although 
the errors in these estimates decrease after 
each move, they usually do not drop to zero. 
Therefore, it should be better to use an 
approach which is intermediate between the 
two extremes of minimax propagation and 
product propagation. There are many possible 
propagation methods satisfying this require

ment, and we chose to study one (namely 
average propagation) whose values are easy to 
calculate. 

We compared the three propagation 
rules on several related classes of two-person 
board-splitting games, using several evaluation 
functions: 

(1) P-games (as defined in [Na82a]) using an 
evaluation function e 1 described in 
[Na82a]; 

(2) P-games using an evaluation function e 2 
which computes the exact probability 
that a position in a P-game is a forced 
win, given various relevant features of 
the position; 

(3) N-games (as defined in [Na82a]) using 
e 1; 

( 4) G-games (as defined in [Na83c]) using 

e 1; 

(5) G-games using an evaluation function e 3 
particularly suited for G-games. 

2. Results and Data Analysis 

It is difficult to conclude much about 
any propagation methods by considering how 
it does on a single game. One cannot tell 
from a single trial whether a method was good 
or merely lucky. Therefore, each comparison 
was done on a large set of games. 

Comparisons (1), (2), and (3) were done 
using 1600 randomly generated pairs of games, 
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each chosen in such a way that the game 
would be ten moves long. Each pair of games 
was played on a single game board; one game 
was played with one player moving first and 
another was played with his opponent moving 
first. For each pair of games we had 10 con
tests, one for each depth of searching from 1 

to 10. Each contest included all 1600 pairs of 
games. Most game boards were such that the 
starting position (first player to move or 
second player to move) rather than the propa
gation method determined who won the game, 
but for some game boards one propagation 
method was able to win both games of the 
pair. We call these latter games critical 
games. 

The comparisons showed that for the set 
of games considered, average propagation was 
always as good as and often several percent 
better than either minimax propagation or 
product propagation. Product propagation 
was usually better than minimax propagation, 
but not at all search depths. 

An important question is how significant 
the results are. Even if two methods are 
equally good on the average, chance fluctua
tions would ·usually result in one of the 
methods winning over half the games in a 
1600 game contest. To test the significance of 
each result, we consider the null hypothesis 
that the number of pairs of wins (among the 
critical games) was a random event with pro
bability 1/2. If the significance level (the pro
bability that the observed deviation from 1/2 
could have arisen by chance) is below, say, 
5%, then we say that the method that won 
over 50% of the games in this sample per
formed significantly better than its opponent. 

The results or comparison (1) are shown 

in Tables 1 and 2.3 In this comparison, pro
duct propagation did significantly better than 
minimax propagation at most search depths. 
Minimax propagation was better for search 
depth 3. For depths 2 and 5, the results were 
too close to be sure which method was better. 
For depths 3, 4, 6, 7, and 8 product propag�r 

3 Space limitations do not permit the in
clusion of tables for any comparisons other 
than comparison (1). For tables showing the 
details of the other comparisons, the reader is 
referred to [NPT]. 



Table I.-Number of pairs of P-games won by (1) product propagation against minimax 

propagation, (2) average propagation against minimax propagation, and (3) average pro

pagation against product propagation, with both players searching to the same depth d 
using the evaluation function e 1. The results come from Monte Carlo simulations of 1600 
game boards each. For each game board and each value of d , a pair of games was 

played, so that each player had a chance to start first. All players were using the same 

evaluation function e 1• Out of the 1600 pairs, a pair was counted only if the same player 

won both games in the pair. 

Product vs. Minimax Average vs. Minimax Average vs. Product 

Search Number Number Number Number Number 

depth of pairs of wins of pairs of wins of pairs 

1 0 0 0 0 0 
2 472 231 320 181 240 
3 569 249 411 218 332 
4 597 334 520 331 352 
5 577 290 478 308 341 
6 567 348 525 385 266 
7 424 235 352 229 205 
8 324 223 305 236 95 
9 0 0 0 0 0 

10 0 0 0 0 0 

* For search depths 1, 9, and 10, both players play identically. 

** For search depths 9 and 10, both players play perfectly. 

Number Notes 

of wins 

0 * 
140 
199 
221 
227 
191 
140 

70 
0 *· ** 
0 *· ** 

Table 2.-Percentage of pairs of P-games won by (1) product propagation against 

minimax propagation, (2) average propagation against minimax propagation, and 

(3) average propagation against product propagation, with both players searching 

to the same depth d using the evaluation function e 1• The data is from the same 
games used for Table 1. The significance column gives the probability that the 

data is consistent with the null hypothesis that each method is equally good. Small 

numbers (below 5%, for example), indicate that the deviation in the number of 

wins from 50% is unlikely to be from a chance fluctuations, while large numbers 

indicate that from this data one cannot reliably conclude which method is best. 

Search Product vs. Minimax Average vs. Minimax Average vs. Product 

depth Wins Significance Wins Significance Wins Significance 

2 48.9% 65.% 56.6% 1.9% 58.3% 1.2% 

3 43.8% 0.28% 53.0% 23.% 59.9% 3X10-2% 

4 55.9% 0.38% 63.7% 1X10-7% 62.8% 2XW--t% 

5 50.3% 90.% 64.4% 2Xl0-8% 66.6% 9Xl0-8% 

6 61.4% 6X10-8% 73.3% lXl0-24% 71.8% 1Xl0-1o% 

7 55.4% 2.6% 65.1% 2Xl0-8% 68.3% 2XlO-o% 

8 68.8% lXlO-�% 77.4% 1Xl0_1g% 73.7% 4X 10_.% 
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tion clearly did better.i 
' 

Comparison (1) also showed average pro-
pagation to be a clear winner over minimax 
propagation in P-game_s when e 1 is used. 
Only at depth a were the results Close enough 
for there to be any doubt. In addition, aver
age propagation was it. clear winner over pro
duct l)ropagatlon at all search depths. 

There are theoretical reasons to believe 
th_at product propagation should do even 
better on P-games when e 2 is used rather than 
e 1 [TP] , and the results of comparison (2) cor
roborated this. In comparison (2), average 
propag ation and product propagation both did 
better - ln comparison to minimax propagation 
than they had done before: for search depths 
4, 5, 6, 7, and 8.' the significance levels were 
all at 10-a% or better.6 In comparison (2), 
average propagation appeared to do better 
than product propagation at most search 
depths, but the results were not statistically 
significant except at search depth 4, where 
they were marginally significant. These results 
show that product propagation becomes rela
tively better compared to both minimax pro
pagation and avera�:e propagation when better 
estimates are used for the probabillty that a 
node is a forced win. 

The results or comparison (3) suggest 
that for this set or games average propagation 
may again be the best, but the differences 
among the methods are much smaller. This 
tlme minimax propagation Is better than pro
duct propagation for search depths 3 and 4 
(and probably 2). Average propagation may be 
better than minimax propagation at larger 
search depths (all the results were above 
50%), but one cannot be sure based on this 
data, because the signtllcance levels were all 
above 20%. Average propa&ation is 
significantly better than product propagation 
for all search depths except 8, where the 
results are inconclusive. It is more dimcult to 
draw definite conclusions for N-games partly 

• Search depths 1, 9, and 10 are ir
relevant in this comparison, because at search 
depth 1, all three propagation rules choose ex
actly the same moves, and at depths 0 and 10 
the evaluation function yields perfect play. 

6 Search depths 1, o, and 10 are ir
relevant in this comparison for the same rea
sons as in comparison (1). 

235 

because there is a low percenta1e or critical 
1ames. 

There are only 2048 Initial playing 
boards for G-�tames of ten moves, so for com
parisons (4) and (5) it was possible to 
enumerate all the11e boards and obtain exact 
values rather than Monte Carlo estimates. In 
comparison (4), product propagation and aver
age propagation both did somewhat better 
than minimax propagation, and did about the 
same as each other. In comparison (5), aver
age propagation and product propagation still 
did about equally well, but this time both did 
somewhat worse than minimax propagation. 
One possible reason for this is discussed in 
[NPT]. 

3. Conclusion 

The main conclusions of this study are 
that the method used to back up estimates has 
a definite effect on the quality or play, and 
that the traditional minimax propagation 
method not always the best method to use. 
Which method of propagation works best 
depends on both the estimator and the game . 

Some of our students are extending these 
investigations to games that are more com
monly known. Teague [Te) has shown that 
minimax propagation does markedly better 
than product propagation and average propa
gation in the game of Othello, but Chl [Ch) 
has preliminary results which appear to indi
cate that both product propagation and aver
age propagation outperform minimax propaga

tion in a modified version of Kalab. 

One problem with methods other than 
minimax propagation is that the value or 
every node has some effect on the final result. 
Thus methods such as the alpharbeta pruning 
procedure cannot be used to speed up the 
search without affecting the final value com
puted. Programs for most �ame3 use deep 
searches, and these programs will not be able 
to make much use or these new methods 
unleBS suitable pruning procedures are round. 
A method is needed which wtll always expand 
the node that is expected to have the largest 

effect on the value. 

The games where the new results may 
have the most immediate application are pro
babilistic games such as backgammon, where 
it is not feasible to do deep searches of the 
game tree. Since alpha-beta pruning does not 



save significant amounts of work on shallow 

searches, it is conceivable that such games can 

profit immediately from improved methods of 

backing up values. 
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