AN OVERVIEW OF EXPERT COMPUTER SYSTEMS

Dana S. Nau
Associate Professor

Computer Science Dept.
University of Md.
College Park, MD 20742
(301) 454-7932

ABSTRACT

The current popular attention being paid to expert computer systems has
led to variety of misconceptions about their nature and capabilities. This paper
is intended to ‘“‘clear the air’’ by providing introductory tutorial information
about expert computer systems. The paper describes their basic features, and
points some of their advantages and disadvantages.

FEEENENENEEC

This work was supported by a Presidential Young Investigator award to
Dana S. Nau, with matching funds provided by General Motors, IBM, and Martin
Marietta.

157

: *x% (several hundred
‘ *** miles higher)
ok ok
{ ¥k %k
| *okk
ok ok
} * ok k
*okk
I ¥k %k
‘ *%k %k
| * %k
l *ok ok
[K koK
| ok ok
[%k
I K%k %k
{ *okk
| * %k %k
* %k
: ok ok
| *okk
I * % %k
I * %k ok
[* %k ok
*okk

Computers Humans

! Figure 1.--Current intelligence in humans and machines

.
:
’
"
i
)
i

1. INTRODUCTION

1.1. Artificial Intelligence

Artificial Intelligence (or AI) is that area of computer science whose goal is to develop computer sys-

tems which exhibit behavior which we would call intelligent. Al has been receiving a great deal of publi-
¢ity lately, and there are a number of misconceptions about its capabilities and limitations. These

misconceptions are manifested in reactions such as

1.
2.
3.

“I think computers are getting foo intelligent, and I'm afraid they might get out of control.”

«“Great! Where can I find an expert computer program to do & for me?”

“I don’t think that computers can ever be intelligent, because they can only do exactly what we tell
them to do.”

This paper is intended to clear up such misconceptions, by providing a tutorial on a subfield of Al known
as knowledge-based computing or expert computer systems.

5.

6.

Al includes several areas of research, some of which are listed below.
Research is being done on computer programs which can understand ‘“‘natural”’ languages (i.e.,
human languages, as opposed to computer languages).
Work is being done on computer programs for perceptual tasks such as speech understanding and
computer vision.
Robotics--which overlaps with research in the field of mechanical engineering--finds application in
automated manufacturing and assembly. Work is also being done on integrating vision and robotics.
There are a number of problem solving methods--some general, some specific--which find application
in many of the other areas of Al listed here. Work has been done on problem-solving techniques for
game playing, automated program construction, theorem proving, trial-and-error search, and
“common-sense’’ problem solving.
Computer learning is one of the most difficult tasks being explored. Various techniques are being
explored for getting computers to learn how to recognize something, how to play a game, or how to
synthesize concepts or techniques for use in problem solving.
Although much AI research is directed towards developing artificial intelligence using whatever tech-
niques seem feasible, some researchers are doing research specifically on emulating the thought
processes carried out by humans in solving various problems. This is called cognitive modeling.
An expert computer system is a computer system which uses a combination of domain-independent
and domain-specific problem solving knowledge to achieve a high level of performance in an area
which would normally require a human expert. Because of their potential applicability to a wide
variety of problems, expert computer systems are currently of interest to researchers in many

different areas of academia, industry, and government.

1.2. Two Myths About Al

Expert computer systems will be discussed in more detail in the following pages, but let us first dis-

cuss the three reactions mentioned at the beginning of the paper. These reactions arise from two common

myths about Al

The first myth is that we are already building highly intelligent computers and computer programs.

This is simply not true. Although artificial intelligence has made some significant advances lately, it will
be a long time before machine approach the thinking capabilities of human beings. The current state of

affairs is illustrated in Figure 1.

The second myth is that computers can never be very intelligent, because they can ‘‘only do what

we tell them to do.” This is not true, either. There are ways to program computers to do things we
don’t explicitly tell them to do, and expert computer system techniques are one such way.

159

1.3. Expert Computer Systems

As an illustration of the range of applicability of expert computer systems, Table I is a (very incom-
plete) list of expert computer systems for various problem domains.
and languages have been developed to provide tools for creating
domains. These systems include Age [27] [1], Ars [38],

(19], KMS [31] [35], OPS5 [15], RLL (16], and Rosie [14]

manipulating this knowledge, and interfaces for interaction with human users.

In addition, several computer systems
expert systems for various problem
Emycin [22], Expert [43], Hearsay-III [12], KAS
(19]. Such systems typically provide formats or
languages for representing both procedural knowledge and declarative knowledge, control structures for

Table I.--Some Existing Expert Systems.

System name

by Digital Equipment Corpora-
tion

Application Comments Ref.
Ace Prediction of problems in tele- | In use by AT&T (39]
phone lines
AQ11 Diagnosis of plant diseases Can synthesize its own rules; (7]
has sometimes produced rules
better than those proposed by
experts
Casnet Diagnosis and treatment of glau- [44]
coma
Centaur Interpretation of pulmonary | Successor to Puff (2]
(lung) function tests
Dendral Hypothesizing molecular struc- | Has discovered new molecules (4]
ture from mass spectrograms
Dipmeter Advisor Oil exploration In use by Schlumberger (8]
EL Analyzing electrical circuits [38]
no name) Diagnosis of abdominal pain Outperforms physicians [10]
E Diagnosis of strokes Implemented using KMS; out- (48]
performs physicians
Internist Diagnosis in internal medicine One of the largest knowledge [30]
bases of any expert computer
system
Macsyma Mathematical formula manipu- (24]
lation
MDX Diagnosis of liver disorders 6]
Molgen Planning experiments in molecu- [20]
lar genetics
Mycin Diagnosis and treatment of in- (9]
fectious diseases
Prospector Mineral exploration Has discovered new ore deposits [17]
Puff Interpretation of pulmonary | Implemented using Emycin (29]
(lung) function tests
TIA Treatment of transient ischemic | Implemented using KMS [36]
attacks
VM Monitoring a patient’s breathing [13]
after surgery
XCON Configuring computers Outperforms technicians; in use [21]

160

g—;

}lllf‘“ EEEENENE NG W u

Earlier we characterized an expert computer system as a computer system which achieves a high
level of performance in an area that normally requires a human expert. From this description it may not
be obvious why a computer system for medical diagnosis qualifies as an expert computer system and a
computer system for a task such as payroll accounting does not. After all, both tasks, if done manually,
require a highly trained human being. To understand the difference, one must examine the nature of
human problem solving.

The problems that human beings can solve can be divided roughly into two classes. The first class
consists of the problems that we can solve which we can also explain how to solve. Examples include
adding columns of numbers, sorting arrays of numbers, and payroll accounting. If we can explain exactly
how to solve a problem, an ordinary computer program can be written to solve the problem.

There are also problems which humans can solve but cannot explain how to solve. For example,
each of us can recognize the faces of our various colleagues and friends—and yet we cannot describe them
to others in such a way that others would be able to recognize them. As another example, physicians go
to medical school for many years to learn how to do medical diagnoses, and yet at no time are they
taught explicitly how to diagnose medical cases. Instead, they pick it up through experience--and they do
internships after completing medical school to gain additional experience.

Problems which humans can solve but cannot explain how to solve are possible candidates for solu-
tion using AI techniques. One set of AI techniques which is sometimes useful are the techniques used in
expert computer systems. These include ways to capture expert knowledge, put it into a “knowledge
base,”” and make use of it in problem-solving.

1.4. Capturing Expert Knowledge

If an expert is given a specific problem in his or her domain of expertise, he or she will reach a
specific conclusion. In some problem domains, the expert may be able to explain how that specific conclu-
sion was reached. For example, the expert may produce an argument of the form

If @ were true, then this would provide very strong evidence that & was true. Thus I checked to
see whether ¢ was true, and concluded that it probably was, since ¢ and d were present.

From this argument one may extract the following two rules of inference:

IF « THEN conclude b (certainty==0.9)
IF' ¢ and d THEN conclude a (certainty=0.7)

where ‘‘very strong evidence’” has been translated into “‘certainty=0.9"" and ‘“probably’ has been
translated into ‘‘certainty=0.7"'. The following is a similar kind of rule taken from an existing medical
expert system [35]:

I serum K4 = low
& myotonia — absent
& serum T4 = high
THEN paralysis type = thyrotoxic (0.8)
& paralysis type = hypokalemic (0.2)

Useful knowledge cannot always be extracted from experts in this way. For example, talented computer
programmers and chess players have worked for many years on computer programs to play chess--and yet
the most successful chess-playing computer programs operate in ways very different from the way human
chess players play chess [3] [37] [42]. Even when useful knowledge can be gotten from experts and
encoded as rules, it still does not tell exactly what to do in a given situation, for many of the rules may be
applicable at once. Thus some mechanism is necessary to decide which rules to apply and which paths of
inference to follow, and this mechanism usually involves a trial-and-error search.

In conventional computer programs, there are two levels of operation: data and program. The pro-
gram is an encoding of the knowledge necessary to solve problems in some domain, and the data is a
representation of the specific problem to be solved. Because of the rules and the necessity of searching
around for a solution, expert computer systems are organized in a rather different way.

In an expert computer system, there are three levels of operation: data, knowledge base, and control
structure. The data is a representation of the specific problem to be solved. The knowledge base, which

161

usually consists of rules such as those mentioned above, encodes problem-solving knowledge relevant to
the domain of expertise of the expert computer system. The control structure is a computer program
encoding some fairly general problem-solving knowledge: it decides which rules to apply if more than one
rule is applicable at once, when (or whether) to backtrack if the path being explored seems unproductive,
and so forth.

1.5. A Simple Example

The following example was developed by James Reggia at the University of Maryland. Suppose we
have a personal robot to do our household chores. In looking through our house one morning, we find
that it is infested with bugs. The task is to program the robot to get rid of the bugs.

The problem is that there are many different kinds of bugs, and the robot should take different
actions depending on what bugs it finds. Ticks and Japanese Beetles, for example, are harmful and should
be killed. Spiders, ladybugs, and crickets are benign, and should simply be moved outside. Praying man-
tises, are beneficial bugs to have in one’s garden, because they will eat other bugs which might hurt the
plants. Thus they should be moved to the solarium and encouraged to stay there. Table II gives a simple
taxonomy of the bugs mentioned above: The following rules can be used to tell what class a bug is in (ara-
chnid or insect):

C1. IF antennae=0 & legs=8 THEN class=arachnid
C2. IF wings=0 THEN class=arachnid
C3. IF antennae=2 & legs—6 THEN class=insect

C4. IF wings=0 THEN class=insect

If a bug turns out to be an insect, the following rules can be used to tell which type of insect it is (beetle
or orthoptera):

T1. IF class—insect & size=small & shape=round THEN type=nbeetle
T2. IF class—insect & sizes~small & shape—=elongated THEN type=orthoptera
The following rules can be used to determine the name of the bug:
Ni1. IF class—arachnid & leg-length=long THEN name==spider
N2. IF class=—arachnid & leg-length=short THEN name=tick
N3. IF type=Dbeetle & color=orange-and-black THEN name==ladybug
N4. IF type=beetle & color=green-and-black THEN name=japanese-beetle
Nb5. IF type=orthoptera & color=Dblack THEN name=cricket
N6. IF type=orthoptera & color=green & size=large THEN name=—praying-mantis

Once the identity of the bug has been established, the following rules tell what actions to take:

Table II.--A simple taxonomy.
Class Type Name Characteristics
Arachnid Spider benign
Tick harmful
Beetle Ladybug benign
Japanese Beetle harmful
Insect - -
Orthoptera Cricket benign
Praying Mantis beneficial

162

EEEEEOEEOEUE O

EEEEEN

Al. IF (name=spider | name=cricket | name=ladybug) & location=outside
THEN first-action—=grasp-bug
& second-action=move-to-outside
& third-action=release-bug

A2, IF name=—japanese-beetleg | name=tick
THEN first-action=swat-bug
& second-action=—=grasp-bug
& third-action=put-in-jar

A3. IF name=—praying-mantis & location=~solarium
THEN first-action=grasp-bug
& second-action=move-to-solarium
& third-action=release-bug

A4. IF name==praying-mantis & location=solarium
THEN Afirst-action=get-bug-from-jar
& second-action—release-bug
& third-action=none

The control strategy, which we call Handle-Bugs, is described below. Handle-Bugs uses what is
called a goal-driven (or top-down), depth-first (or backtracking) problem-reduction approach:

Step 1. Let G be the goal Handle-Bugs is trying to achieve, and let S be the set of all rules which
might be capable of satisfying G. Let R be the first rule in S.

Note: Each clause in the antecedent (the ‘“IF’’ part) of R determines a new problem to be solved.
For example, in order to determine whether ‘‘class—arachnid”’ is satisfled in rule N1, one must solve the
problem of finding out the bug’s class. Such a problem is called a subproblem or subgoal.

Step 2. Let A be the antecedent of R. For each clause C of A, invoke Handle-Bugs recursively
with the corresponding problem P as its goal; and if it is found that A cannot be satisfled, then go to Step
3, Otherwise, once A has been satisfied, return from Handle-Bugs, with the returned value being the con-
sequent (the “THEN" part) of R.

Step 3. If there are any rules left in G, then let R be the next one. Otherwise, return from
Handle-Bugs, with the returned value being ‘‘failure.”

Suppose the robot finds a bug. Then the following actions occur.

1. Handle-Bugs is invoked, with the goal of deciding what action to take. There are four rules that
might tell what action to take: Al, A2, A3, and A4.

28 First Al is tried. To satisfy its antecedent, it is necessary to solve two subproblems: finding out the
bug’s name and the robot’s location. The first subgoal is to find out the bug’s name. There are six
rules that might tell the name: N1 through N6.

3. First N1 is tried. Its antecedent requires finding out the bug’s class and its leg length. First the
bug’s class is checked. There are four rules which might tell the class: C1 through C4.

4. C1 is tried. Its antecedent requires finding out the number of antennae and the number of legs.
First subgoal the number of antennae is checked. Suppose it is 2. Then the antecedent of C1 can-
not be satisfied, since it requires that the number of antennae be 0. Thus C1 is inapplicable.

5. C2 is tried. Its antecedent requires finding out the number of wings the bug has. Suppose the bug
has 2 wings. Then the antecedent of C2 is not satisfied, since it requires that the number of wings
be 0. Thus C2 is inapplicable.

6. C3 is tried. Tts antecedent requires finding out the number of antennae and the number of legs.
The number of antennae is already known to be 2. The antecedent is satisfied so far, so the number
of legs is checked. Suppose the number is 6. Then the antecedent for C3 is totally satisfied.

7. C3 concludes that the bug is an i i
g insect. This solves the subgoal (see #3 above) of finding out the

h an CECedenb Ot N]. nn e since it re ires l}hat bhe bLl be an ar aChIlld. Ill us I‘]l 18
I € ca. ot be Satlsﬂ d

9. . . .
Rule N2 is tried. Its antecedent requires finding out the bug’s class and its leg length. The bug’s

class is already known to be ““insect.’’ Thi is i i
e O g Is means that N2 is inapplicable since it requires that the

10. Rule N3 is tried. Its antecedent requi i
. . quires knowing the bug’s type and its i i
is checked. Two rules are applicable: T1 and T2. P £ SRS DUES kg

11. . . . X
1 T1 is tried. Its antecedent requires knowing the bug’s class, size, and shape. The bug’s class is

\ n n . .
D m
al] ea(l 1\ own to l)e insect Sll pose ”Ie S1Ze 1s S all and t/he Sha,pe 1S I'Ollnd Illen t’lle

12, T1 concludes that the bug is a beetle i i
b e . This satisfies the subgoal (see #10 above) of finding out the

13. i i
The antecedent of N3 is satisfied so far, so work is begun on the second subgoal relevant to N3:

ﬁndlng out the bug S COIOI‘ Su - i .
. ppose that trhe CO]OI 5 ora € d b ac he the all(‘:ecedent’ Of IJ3
1 range-an 1 k T n

14. N3 concludes that the bug is a ladyb i i
Dpeonelud ybug. This satisfies the subgoal (see #2 above) of finding out the

15. S i i
o far, the antecedent of Al is satisfled, so the second subgoal relevant to Al is investigated:

ﬂn lIlg out t}he I()bot S l Il If P
d ocation. we su ose t t t is IIISlde t/llell bhe a«lltlecedellrl OI Al is
P ha l}he I‘ObO 1 »

16. Al concludes that the actions to be performed are to pick up the bug

‘ : 0 outside,
bug. The ultimate goal is solved, so Handle-Bugs terminates. ¢ and relesse the

o d;lt‘;uzo;xs:iisrrtlge }ll;lsttrates 1t;he interplay among the three levels of an expert system. In this example
of facts such as ‘‘color = orange-and-black” or ‘‘t , ’
: : = beetle’’. The knowled
consisted of the various rules. Often sev e ol seratan
i eral of them were applicable at once
i ' \ , and the contro
used a goal-directed backtracking search in order to choose which rules to apply | strateey

T
here are other types of knowledge bases and control strategies, but the reader should now have 3

ba,Slc ldea- hOW some expel‘t, comp te WO
uter Systrems I‘k. IOI more 11101 mation tlhe Ieadel 1S IeIeIIed to 11
re 1 ’ []

2. SUMMARY AND CONCLUSIONS

E
ng kn;(z;:;‘;gsgs:ems la‘re c011nm§nly deflned as computer systems which use problem-specific problem solv
O achieve high levels of performance in fields whi X
ich would normally r i
experts. It may not be clear from this definiti isti i T iy oo
‘ ition what distinguishes such a syst f i i
cations program. Certainly, a i i e el ing
. , applications programs make use of s iali i

ot - . pecialized problem-solving knowl
many of them reach high levels of performance. Probably the main differences are the foiglowing'edge‘
1. In expert systems, |

the domain-dependent proble i i i i
knowledge ol p m solving information appears explicitly in a

gl mer.thalm a,;);])aearing only implicitly as part of the coding of the program. This
anipulate Y a separate control structure, which in-i .

. s uses domain-independent t -

niques to search for and elaborate upon various possible solutions to the problem ’ e

Just as wi i i
a‘vaﬂabiliwtu;h I2‘1p1:>11cr:m10ns brograms, expert systems cannot be developed for a problem without the
y of human experts who know how to solve the problem. But expert systems can some-

timeS be d loped in pI‘Obl m d i
e € i ow t ey Solve (}he
eve . e omains W]le]e t;h huma-n expel‘ts cannot Xplaln h h

During the last ral years, expert sys i
e o agrtiﬁci:]TS:n:z;f;;:u:‘:‘;lb:..m\l;e:i: :\yzjt,um.l,ecllnun.les have begun to find a number of applications
chemists om 5 naBie]]-J-I.Ubimfhmg] iahm aLc.m‘es, [ﬂ)en‘dml has been used by university and industrial
year a5 an atd 1 Feme o 15.. : 1 "‘aﬂ'\'("ﬁ Digital Equipment Corporation several million dollars each
alling computer systems. AT&T's Ace is routinely used as an aid in telephone line

164

3
B
i
.
-
i
-
-
h
L
-
»
®
o
»
2
.
|

maintenance. And Prospector has discovered new ore deposits [5]. For the success of expert computer
systems in other applications, progress will be required in several areas.

One problem is the amount of effort it takes to build an expert system: some expert systems have
taken as many as ten to twenty-flve man-years to build, and have cost as much as one to two million dol-
lars. One reason for this is the lack of software tools for implementing expert computer systems. Pro-
gress is currently being made in this direction with tools for building expert systems (such as Age, Art,
Emycin, Expert, Hearsay-III, KEE, KMS, Loops, and OPS-5).

A second problem is the amount of time necessary to take the knowledge from an expert in some
problem domain and encode it in a knowledge base. This is partly because of a lack of adequate tools for
this task, and partly because of the large gaps that still remain in our understanding of human problem
solving. Some of the knowledge that an expert uses to solve a problem often cannot be made consciously
accessible to the expert or to others without a great deal of effort. This has been one of the motivations
for some of the recent research on machine learning [23].

A third issue is since expert systems have until recently been largely experimental, it has not been
necessary to design such systems for long-term maintenance or to construct them to be “friendly’’ to a
community of users who may not have a sophisticated knowledge of computers. For example, users are
less likely to believe the conclusions reached by an expert system unless it can justify or explain its con-
clusions in an understandable and convincing way [41]. Although a number of researchers are doing work
on justification and explanation facilities in expert computer systems [9] [40] [18] [34] [32] [33], more atten-
tion will have to be paid to such ‘‘real-world details’’ in order to develop useful expert systems for real-
world problems.

Fourth, expert systems are currently something of a fad, and expert computer system technology is
being oversold. As an example of this, a few years ago a well-known Al research laboratory sent its
managerial personnel to a short course being given by a company on the West Coast which gives short
courses on expert systems. The company also was marketing expert systems, and pointed out the features
of these systems so enthusiastically that when the managerial people came back from the course, the
researchers found it necessary to disabuse the managers of the notion that all the major problems of
expert systems had already been solved.

Such hyperbole about expert systems has led many potential users to have overly optimistic expecta-
tions about the potential applicability, ease of use, and level of performance of expert systems. Because of
the current glamorous image of expert computer systems, some people are using the term ‘‘expert system”’
indiscriminately to describe relatively conventional computer programs, and others are attempting to
build expert systems for tasks which could perhaps better be solved using conventional techniques.
Expert systems are potentially useful for a variety of problems--but unless potential users take a more
cautious view of the potential of expert systems, they run the risk of disappointment with the perfor-

mance of the systems they buy or build.

3. REFERENCES

(1) Aiello, N. and Nii, H., Building a Knowledge-Based System with AGE, Tech. Memo HPP-79-3,
Computer Science Dept., Stanford University, 1979.

(2] Aikins, J. S., Prototypes and Production Rules: A Knowledge Representation for Computer Con-
sultations, Ph.D. Dissertation, Tech. Report STAN-CS-80-814, Dept. of Computer Science,

Stanford University, August 1980.

(3] Biermann, A. W., Theoretical Issues Related to Computer Game Playing Programs, Personal
Computing, pp. 86-88, Sept. 1978.

[4] Buchanan, B. G. and Feigenbaum, E. A., Dendral and Meta-Dendral: Their Applications Dimen-
sion, Artifictal Intelligence 11, pp. 5-24, 1978.

(8]

[6]

(7]

10]

[11]

[12]

(13]

(14]

(15]

| [16]

(17]

(18]

(19]

(20]

*——¥

Campbell, A. N., Hollister, V. F., Duda, R. O., and Hart, P. E., Recognition of a Hidden Mineral
Deposit by an Artificial Intelligence Program, Science 217, 3, pp. 927-929, Sept. 1982,

Chandrasekaran, B., Gomez, F., Mittal, S., and Smith, J., An Approach to Medical Diagnosis

Based on Conceptual Structures, Proc. Sizth Internat. Joint Conf. Artif. Intelligence,, Tokyo,
bp. 134-142, Aug. 1979.

Chilausky, R., Jacobsen, B., and Michalski, R. S., An Application of Variable-Valued Logic to In-

ductive Learning of Plant Disease Diagnostic Rules, Proc. Sizth Annual Internat. Symp. Multi-
Valued Logie,, Utah, 1976.

Davis, R., Austin, H., Carlbom, I., Frawley, B., Pruchnik, P., Sneiderman, R., and Gilreath, J. A,

The Dipmeter Advisor: Interpretation of Geological Signals, Proc. Seventh Internat. Joint
Conf. Artdf. Intel., Aug. 1981.

Davis, R., Buchanan, B., and Shortliffe, E., Production Rules as a Representation for a
Knowledge-Based Consultation Program, Artificial Intelligence 8, 1, pp. 15-45, 1977.

deDombal, F., Computer Assisted Diagnosis of Abdominal Pain, Advances in Medical Computing,
ed. J. Mitchell, New York, pp. 10-19, Churchill-Livingston, 1975.

Duda, R. O. and Gaschnig, J. G., Knowledge-Based Systems Come of Age, Byte, pp. 238-281,
Sept. 1981.

Erman, L. D., London, P., and Fickas, S. F., The Design and an Example Use of HEARSAY-III,
Proc. Seventh Internat. Joint Conf. Artificial Intelligence, pp. 409-415, 1981.

Fagan, J. M., VM: Representing Time-Dependent Relations in a Medical Setting, Ph.D. Disserta-
tion, Computer Science Dept., Stanford University, Stanford, CA, June 1980.

Fain, J., Hayes-Roth, F., Sowizral, H., and Waterman, D., Programming in ROSIE: An introduc-

tion by means of examples, Tech. Report N-1646-ARPA, Rand Corp., Santa Monica, CA,
- 1982,

Forgy, C. L., The OPS5 User’s Manual, Tech.-Report CMU-CS-81-135, Computer Sci. Dept.,
Carnegie-Mellon University, 1980.

Greiner, R. and Lenat, D., A Representation Language Language, Proc. First Annual National
Conf. Artif. Intelligence, 1980,

Hart, P. E., Duda, R. O., and Einaudi, M. T., A Computer-Based Consultation System for
Mineral Exploration, SRI International, Menlo Park, CA, 1978.

Hasling, D. W., Clancey, W. J., and Rennels, G., Strategic Explanations for a Diagnostic Consul-
tation System, Internat. Jour. Man-Machine Studies 20, pp. 3-19, 1984.

Hayes-Roth, F., Waterman, D. A., and Lenat, D. B., Building Expert Systems, Addison-Wesley,
1983.

Martin, N., Friedland, P., King, J., and Stefik, M. J., Knowledge-Base Management for Experi-

ment Planning in Molecular Genetics, Proc. Fifth Internat. Joint Conf. Artif. Intell., pp. 882-
887, 1977.

166

ERREERNEENENEEEONOENOOOUEE

[21]

(22]

(23]

(24]
(25)

[26]

(27]

[33]

[34]

(85]

(36

McDermott, J. and Steele, B., Extending a Knowledge-Based System to Deal with Ad Hoc Con-
straints, Proc. Seventh Internat. Joint Conf. Artif. Intel., pp. 824-828, Aug. 1981.

Melle, W. van, A Domain-Independent Production Rule System for Consultation Programs, Proc.
Sizth Internat. Joint Conf. Artif. Intell., 1979.

Michalski, R. S., Carbonell, J. G., and Mitchell, T. M., Machine Learning: An Artificial Intelli-
gence Approach, Tioga Publishing Company, Palo Alto, CA, 1983.

Moses, J., Symbolic Integration: The Stormy Decade, CACM 14, 8, pp. 548-560, 1971.
Nau, D. S., Expert Computer Systems, Computer 18, 2, pp. 63-85, Feb. 1983.

Nau, D. S. and Reggia, J. A., Relationships between Abductive and Deductive Inference in
Knowledge-Based Diagnostic Problem Solving, Proc. First Internat. Workshop Expert Data-
base Systems, Kiawah, Island, SC, Oct. 1984.

Nii, H. P. and Aiello, N., AGE (Attempt to Generalize): a Knowledge-Based Program for Build-
ing Knowledge-Based Programs, Proc. Sizth Internat. Joint Conf. Artif. Intell., pp. 645-655,
1979.

Nilsson, N. J., Principles of Artificial Intelligence, Tioga, Palo Alto, 1980.

Osborn, J., Fagan, L., Fallat, R., McClung, D., and Mitchell, R., Managing the Data from
Respiratory Measurements, Medical instrumentation 13, 6, Nov. 1979.

Pople, H. E., The Formation of Composite Hypotheses in Diagnostic Problem Solving: an Exer-
cise in Synthetic Reasoning, Proc. Fifth Internat. Joint Conf. Artyf. Intell., pp. 1030-1037,
1977.

Reggia, J. A., Knowledge-Based Decision Support Systems: Development through KMS, Ph.D.
Dissertation, Tech. Report TR-1121, Computer Sci. Dept., Univ. of Maryland, Oct. 1981.

Reggia, J. A., Perricone, B., Nau, D. S., and Peng, Y., Answer Justification in Abductive Expert
Systems--Part II: Supporting Plausible Justifications, IEEE Trans. Biomedical Engineering
BME-32, 4, pp. 268-272, April 1985.

Reggia, J. A., Perricone, B., Nau, D. S., and Peng, Y., Answer Justification in Abductive Expert
Systems--Part I. Abductive Inference and Its Justification, IEEE Trans. Biomedical Engineer-
ing BME-32, 4, pp. 263-267, April 1985.

Reggia, J. A. and Perricone, B. T., Answer Justification in Medical Decision Support Systems
Based on Bayesian Classification, Submitted for publication, University of Maryland, College
Park, MD, 1983.

Reggia, J. A., Pula, T. P., Price, T. R., and Perricone, B. T., Towards an Intelligent Textbook of
Neurology, Proc. Fourth Annual Symp. Computer Applications in Medical Care, Washington,
DC, pp. 190-199, Nov. 1980.

Reggia, J. A., Tabb, D. R., Price, T. R., Banko, M., and Hebel, R., Computer-Aided Assessment

of Transient Ischemic Attacks: A Clinical Evaluation, Archives of Neurology, 1984. To ap-
pear.

167

(37]

(38]

(39]

40]

[41]

[42]

[43]

[44]

(45]

(46]

Robll;l:;n, A. L., Tournament Competition Fuels Computer Chess, Science 204, pp. 1396-1398

Sta}lman, R. M. and Sussman, .G. J., Forward Reasoning and Dependency-Directed Backtracking
in a System for Computer-Aided Circuit Analysis, Artificial Intelligence 9, pp. 135-196, 1977.

St;ogo, .S‘. J. and Yesonder, G. T., ACE: An Expert System Supporting Analysis and Management
ecision Making, Tech. Report, Dept. of Computer Science, Columbia University, 1983.

Swa.rt9ut, W. R., Exp}aining a.Jnd Justifying Expert Consulting Programs, Proc. Seventh Internat.
Joint Conf. Artificial Intelligence, pp. 815-822, August 1981.

Teach, R. and Sportliﬁ”e, E., An Analysis of Physician Attitudes Regarding Computer-Based Clini-
cal Consultation Systems, Computers and Biomedical Research 14, pp. 542-558, 1981.

Truscott, T R., Minimum Variance Tree Searching, Proc. First Internat. Symposium on Policy
Analysis and Information Systems, Durham, NC, pp. 203-209, June 1979.

Welss-, S. M and Kulikow§ki, C. A., EXPERT: a System for Developing Consultation Models,
Proc. Sizth Internat. Joint Conf. Artif. Intell., pp. 942-947, 1979.

Weigs, S. M., ‘Kulikow.sl.(i, C. A., Amarel, S., and Safir, A., A Model-Based Method for Computer-
Alded Medical Decision-Making, Artificial Intelligence 11, 2, pp. 145-172, 1978.

Winston, P. H., Artificial Intelligence., Reading, MA, Addison-Wesley, 1977.

Zagoria, R. J and Reggia, J. A., Transferabilit i isi
,] , J. AL, Yy of Medical Decision Support Systems Based
Bayesian Classification, Medical Decision Making 3, 1983. .

168

E
-

Artificial intelligence is no longer science theory. A variety of
“thinking’’ systems are out of the laboratory and successfully solving
problems using Al knowledge-representation techniques.

SPECIAL FEATURE

Expert Computer Systems

Dana S. Nau, University of Maryland

Only recently has artificial intelligence advanced to
the point that Al projects are accomplishing practical
results. Most of these results can be attributed to the
design and use of expert systems, problem-solving com-
puter programs that can reach a level of performance
comparable to that of a human expert in some specialized
problem domain.

What distinguishes such a system from an ordinary ap-
plications program is not readily apparent in this defini-
tion. Certainly, applications programs make use of spe-
cialized problem-solving knowledge, and many of them
reach high levels of performance. Probably the main dif-
ference is that in most expert systems, the model of
problem-solving in the application domain is explicitly in
view as a separate entity or knowledge base rather than
appearing only implicitly as part of the coding of the pro-
gram. This knowledge base is manipulated by a separate,
clearly identifiable control strategy. Such a system archi-
tecture provides a convenient way to construct sophisti-
cated problem-solving tools for many different domains.

Expert systems have been developed for a number of
different problem domains, and Table 1 lists only a few
of these systems. In addition, several computer systems
and languages are being developed to provide tools for
creating expert systems, including AGE!, ARS,2 Emy-
cin,? Expert,* KMS,’ and OPS.6 Such systems typically
provide formats or languages for representing both pro-
cedural knowledge and declarative knowledge, control
structures for manipulating this knowledge, and user in-
terfaces.

Ordinary computer programs organize knowledge on
two levels: data and program. Most expert computer
systems, however, organize knowledge on three levels:
data, knowledge base, and control. Computers orga-
nized in this way are often called knowledge-based
systems.

On the data level is declarative knowledge about the
particular problem being solved and the current state of

affairs in the attempt to solve the problem. On the
knowledge-base level is knowledge specific to the par-
ticular kind of problem that the system is set up to solve.
This knowledge is used by the system in reasoning about
the problem and is often given in the form of operators,
or ‘‘pattern-invoked programs.’’ One, many, or no oper-
ators may be applicable to the problem at any one time.
If applied, an operator produces changes in the data. In
the control structure is a computer program that makes
decisions about how to use the specific problem-solving
knowledge. Decisions are made, for example, about
which operators to apply and how to apply them.

This article discusses the techniques used in expert
systems on each of these levels. Since these systems use a
combination of Al problem-solving and knowledge-
representation techniques, information on these areas is
also included.

Table 1.
Some existing expert systems.
SYSTEM EXPERTISE
AQi17 Diagnosis of plant diseases
Casnetd Medical consulting
Dendra® Hypothesizing molecular structure from

mass spectrograms
Dipmeter Adwisor ‘0 0Oil exploration

EL? Analyzing electrical circuits
Intermist!! Medical consulting

KMS® Medical consuiting

Macsyma'? Mathematical formuia manipuiation
MDX '3 Medical consulting

Moigen 4 Planning DNA experiments
Mycin'® Medical consulting

F’rospecror16 Mineral exploration

putt!’ Medical consulting

R1'8 Computer configuration

169

The data level:
Representing declarative knowledge

One well-known way to represent declarative knowl-
edge is by means of formulas in first-order predicate
logic.“ Simple declarative facts can often be represented
as instantiated predicates. For example, John gave Mary
a book can for some purposes be adequately represented
by GIVE (John, Mary, book). More complicated
statements may require a more complicated representa-
tion as in the use of

() (») () (R(x,y) & R(»,2) — R(x,2))

for the statement that the relation R is transitive.

Another way of representing declarative knowledge is
in terms of frames.?0-22 Frames are data structures in
which all knowledge about a particular object or event is
stored together. Such a representation cannot represent
any more concepts than first-order predicate logic can,
but the organization of knowledge can be useful for
modularity and accessibility of the knowledge. In addi-
tion, frame systems often allow ways to specify default
values for pieces of information about an object when
that information is not explicitly given.

Many different variants have been proposed for
frame-based knowledge representation, but most of
them include the idea of having different types of frames
for different types of objects, with fields or slots in each
frame to contain the information relevant to that type of
frame. For example, a frame for a book might be a data
structure that has slots for the author, title, and publica-
tion date of the book, as well as for the number of pages
and color of the cover. To describe a particular book, a
copy of this book frame would be creared, and the slots
would be filled in with the information about the par-
ticular book being described.

Semantic networks (or semantic nets) are a third way
to represent declarative knowledge. They are like frames
in the sense that knowledge is organized around the ob-
jects being described, but here the objects are repre-
sented by nodes in a graph and the relations among them
are represented by labeled arcs.

Example: Representing a Set of Related Facts
Consider the following set of facts.

Bill took the book from Margaret.
Bill is a professor.

Margaret is a doctor.

Margaret lives in Akron, Ohio.

These facts, and some related facts, can be directly
represented in first-order predicate logic as

TAKE(BIll, Margaret, book)
OCCUPATION(BIll, professor)
OCCUPATION(Margaret, doctor)
ADDRESS(Margaret, Akron-Ohio)
PERSON(BIll)

“The techniques and discussion presented in this section are by no means
complete. For further details on knowledge representanion, see
Mvlopoulos.!?

170

PERSON(Margaret)
OBJECT(book)
PROFESSION(professor)
PROFESSION(doctor)

To put this information into frames, we first need to
decide what kinds of frames to use. Schank=3:** has de-
veloped a ‘‘theory of conceptual dependency'’’ that,
among other things, attempts to represent most events in
terms of a small number of primitive actions. Each primi-
tive action may be represented by a single kind of frame.

For example, Schank’'s theory casts ‘‘take’’ and
‘‘give’’ as two examples of the same phenomenon: a
transfer of possession. The frame for a transfer of
possession is

name of frame:
type of frame: transfer of possession
source:
destination:
agent:
object:

where the source is the person or thing from which the
object is taken, the destination is the person or thing to
which the object is given, and the agent is the one who
performs the transfer. Thus, for ‘‘give’’ the agent is the
same as the source, and for ‘‘take’’ the agent is the same
as the destination.

When the above frame is instantiated (a specific in-
stance of it is created) for the sentence ‘*Bill took the
book from Margaret,’’ the result is

name of frame: T!

type of frame: transfer of possession
source: Mary

destination: Bill

agent: Bill

object: book

For the other statements, we might create the following
frames:

name of frame: OCl1

type of frame: occupation
worker: Bill

job: professor

name of frame: OC2

type of frame: occupation
worker: Margaret

job: doctor

name of frame: Bill
type of frame: person
... {other information about Bill) . . .

name of frame: Margaret
type of frame: person
(other information about Margaret)

name of frame: ADRI
type of trame: address
person: Margaret
street address:
city: Akron
state: Ohio

name of frame: book
type of frame: physical object

EEREREREEERENEREERSEEE

}

As Nilsson?! pointed out, all this information can be
translated directly back into first-order predicate logic,
but the formulas will look somewhat different. This
time, every predicate is binary, and the first argument to
each predicate is the frame name.

ELEMENT-OF(TI, transfer-of-possession-events)
SOURCE(T!, Mary)

DESTINATION(TL, Bill)

AGENT(T]1, BilD)

OBIJECT(T1, book)

ELEMENT-OF(OCI, occupation-events)
WORKER(OC, BilD)
JOB(OC1, professor)

ELEMENT-OF(OC2, occupation-events)
WORKER(OC2, Margaret)
JOB(OC2, doctor)

ELEMENT-OF(BIll, persons)
. . . (other information about Bill) . . .

ELEMENT-OF(Margaret, persons)
... (other information about Margaret) . . .

ELEMENT-OF(ADRI, address-events)
PERSON(ADRI, Margaret)
CITY(ADRI, Akron)

STATE(ADRI1, Ohio)

ELEMENT-OF(book, physical-objects)

Putting this information into a semantic net would create
a structure similar to that shown in Figure 1.

Although collections of primitive facts can be repre-
sented quite nicely using frames and semantic nets, ade-
quately representing complex facts, such as the transitivi-
ty formula

(x) (¥) (2) (R(x,y) &R(y,2) ~— R(x2))

mentioned earlier, is more difficult. For more informa-
tion on how this can be done, see Nilsson?! or
Schubert. 25

The main advantage of frames or semantic nets over
logical representation is that for each object, event, or
concept, all the relevant information is collected to-
gether. Accessing and manipulating the information is
then easier, and default values can be created when infor-
mation about an object or event is not explicitly given.
For example, in the frame for a book, we might have a
slot to indicate whether the book is hardbound or paper-
back. If we are not given a value for this slot, we might
want to put in the value ‘‘hardbound,’” with a flag in-
dicating a guessed value. This value could later be
changed if new information is given.

Several computer languages have been or are being de-
veloped to provide ways to manipulate frames and
semantic nets. Examples are KRL,*® FRL,?” NETL,
and Klone.?®

SS

ADDRESS-EVENTS

EL

PERSON
WORKER

MARGARET

A 4 b

STATES CITIES

SOURCE

SS

TRANSFER-OF-
POSSESSION
EVENTS

OCCUPATION-
EVENTS

|
DY) <D
084
O] WORKER 108
DOCTOR BOOK
€L m M
e
ol
€L

PHYSICAL-
OBJECTS

Figure 1. A simple semantic net.

The knowledge-base level:
Domain-specific problem-solving knowledge

The domain-specific problem-solving level contains
knowledge that is usually procedural in the sense that it
tells how the data for a problem can be manipulated in
order to go about solving the problem.

Such knowledge could obviously be represented as a
conventional computer program, especially when the
procedure is well understood, and in fact some expert
computer systems have been developed using conven-
tional programming procedures.3% However, in artificial
intelligence problems the precise series of steps necessary
to solve the problem may not be known. Consequently,
we may have to search through a space containing many
alternative paths, not all of which lead to solutions.

INITIAL STATE GOAL STATE:

1 3 5 | 1 1 2 3 4,
2 4 (10| 9 5 6 7 8
>
HOLE| 6 7] 12 9 | 10| 11|12
13 (15| 14| 8 13 | 14 | 15 |HOLE

Figure 2. The 15-puzzie. This child's game, the goal of which is to put
the tiles In numerical order, is an example of a state-search problem.
We are searching for paths that will eventually lead to the goal state.

1] 3] 5 |11 1135 [11|%,.
»
2| 410 9 gp [HOLE[4 | 10 [9 |DowN
—
HOLE| 8 | 7 |12 | pown | 2 | & | 7 | 12 | RiguT
<+ ~
13 /15| 14 | 8 1311514 8 | W
LEFT
RIGHT
UPT ‘DOWN
LEFT
1135 |n 113 | 5|11
up
2| 4 (10| 9 2|4 0|9 |=> .
<+
136 |7 |12 6 [HOLE| 7 | 12 | DOWN
HOLE| 15 | 14 | 8 13 [15 | 14 | 8 | qiour
“~a
LEFTf.“hlGHT upf'._%owm e

Figure 3. A portion of the state space for the 15-puzzle, The directions
lo move the tiles constitute the operators that can transform states in-
to other states. More than one operator may be applicable to a state,
but not all four are always applicable.

172

Pattern-invoked programs. [n such situations, we may
want to encode domain-dependent knowledge in the
form of operators or pattern-invoked programs. These
programs are not called by other programs in the or-
dinary way but are instead activated by the control struc-
ture whenever certain conditions hold in the data. A
pattern-invoked program can range from a single state-
ment (as in Mycin!5) to several hundred lines of coding
(some of the ‘“*knowledge sources’’ used in Hearsay 3t
are this large).

Several programming languages, such as Planner,3?
Conniver,3? Prolog,?*3% and ARS,!? allow for pattern-
driven invocation of programs in some form. These
languages often include features such as automa::c back-
tracking if an attempted solution fails, and ways to
schedule the pattern-invoked programs if several are ap-
plicable at the same time.

An example of a problem suitable for the use of
pattern-invoked programs is a well-known children’s
game called the 15-puzzie. This puzzle consists of a
square frame containing 15 square tiles and a square
space, or hole, that can hold any of the tiles (Figure 2).
The tiles are numbered from one to 15, and may be mov-
ed around by moving a tile into the hole if the tile and
hole are adjacent (thus, in effect, moving the hole to
where the tile used to be). The objective is to get the
squares in numerical order with the hole at the end.

As Nilsson36 points out, the 15-puzzle is an example of
a stare-space search problem. In this kind of problem, we
need to find a path from some initial stare to any (one or
more) goal state by applying operators to transform
states into other states. In the 15-puzzle, the initial state is
the state of the puzzle before any work has been done,
and the goal state is the state in which all tiles are in
numerical order. The objective is to find any path to this
state. The following operators are available:

UP: if the hole is not at the top of the board then
move it up;

DOWN: if the hole is not at the bottom of the board
then move it down;

RIGHT: if the hole is not at the far right, then move it
right;

LEFT: if the hole is not at the far left, then move it
left.

More than one operator may be applicable to a state, but
not all four operators are always applicable. Which ap-
plicable operator is applied to a state is determined by the
control strategy, which is described later.

The state space corresponds to a directed graph in
which the states are the nodes of the graph, and in which
there is a directed arc from some node A4 to another node
B if an operator exists that can transform state A into
state B. Part of the state space for the 15-puzzie is il-
lustrated in Figure 3.

Figure 3 is only one of several possible state-space rep-
resentations for the 15-puzzle. For example, we may in-
stead choose the set of operators L; R;, U, D,
i=1,2,...,15, with the following meanings:

FEEEEEERENE

A

L;: iftileiis not at the far left, then move it left;
R;: iftileiis not at the far right, then move it right;
U;: if tile i is not at the top, then move it up;

D;: if tile i is not at the bottom, then move it down.

Here, we have 60 operators rather than four, but at most
four are applicabie at any one time.

Production rules. One type of pattern-invoked pro-
gram of particular interest is the production rule, a
degenerate program of the form

IF condition THEN primitive action.

The condition is usually a conjunction of predicates that
test properties about the current state, and the primitive
action is some simple action that changes the current
state. For example, the operators given in the 15-puzzle
example are production rules. A problem-solving system
in which the domain-dependent procedural knowledge is
represented using production rules is known as a produc-
tion system.

Logical representation. Procedural knowledge can
also be represented in first-order predicate logic, if the
logical formulas are suitably interpreted. The program-
ming language Prolog?*37 is an example of such an ap-
proach. In Prolog, the formula B & B, & . . . & B, — A
can be thought of either as the logical statement that A is
true whenever By, Ba, . . . , Byaretrue, or asa procedure
for producing a state satisfying condition 4. The three
basic statemnents in Prolog and their meanings are

= AL Aisagoal
A. A is an assertion
A:- Bl,...,Bn Bl &...&B, - A

A and all of the B’s must be predicates, and all variables
are considered to be universally quantified; that is, the
statement is taken to be true for all possible values of the
variables.

A Prolog program may contain several different ways
to establish a predicate 4; for example,

A:- BI,B2,...,Bi
A= [ClHC2 e Clly

These statements correspond to the AND/OR graph
shown in Figure 4. The solution of a problem presented
as a set of Prolog statements is found by doing a depth-
first search of the corresponding AND/OR graph until
an instantiation of a set of assertions is found that pro-
vides a solution graph.

As an example (from McDermott*®), a Prolog pro-
gram to append items to a list can be written as

append([|, L, L).
append([X i L1}, L2, [X] L3]): - append(Ll, L2, LY.

In the above statements, the square brackets denote lists:
{a.b.c] is the list containing a, b, and ¢; []is the null list;
and {a | [b,c}] = [a.b,c). L, L1,L2,and L3 are variables
representing lists, X is a variable representing a list ele-

ment, and ‘‘append(U,V,W)" is a predicate saying that
W is the concatenation of U and V. The meaning of the
statements is thus (1) the concatenation of [Jwith Lis L
and (2) if the concatenation of L1 with L2is L3, then the
concatenation of [X | L1] with L2 is [X | L3].

To use the above Prolog program to set the variable 4
to the concatenation of [a,b] with [c,d], we would write

: — append([a,b], [¢c,d], A).

Prolog would then try to instantiate A to whatever value
would make the predicate true. The first statement can-
not be invoked, since {a,b] is not equal to [], but by
making the instantiations X = a, L1 = [b], L2 = [c.,d],
and A = [a,L3], the second statement applies. Thus the
recursive call

: - append([b],[c,d],L3)

is evaluated. Again the second statement applies, with
the instantiations X = b, L1 = [}, L2 = [¢,d], and L3
= [b,L3] (a different X, L1, L2, and L3, of course), so
the recursive call

:— append([}[c.d],L3)

is evaluated. Clause | applies, giving L3 = [¢,d]. Return-
ing from the recursive calls, we have A = [a | (6] (c,d)l]
= (a,b,c,d], as desired.

Other techniques. Not all expert systems represent
their domain-dependent problem-solving knowledge as
pattern-invoked programs, aithough the majority do.
Sometimes, the problem-solving knowledge is repre-
sented in terms of conditional probabilities that various
events will occur if other events have occurred. This
representation is used, for example, to diagnose diseases
by repeatedly applying Bayes’ theorem38 to compute the
probabilities that certain diseases are present, given that
certain symptoms have been observed. This technique is
applied to valvular heart disease by Hockstra and
Miller39 and is also available in KMS,3 a computer system
that provides facilities for implementing expert systems
using several different ways to represent knowledge
bases.

Another way in which problem-solving knowledge is
sometimes organized is as static descriptions of phenom-
ena. This representation is used in Internist!! and is one

8 8, Cy ,

J

Figure 4. An AND/OR graph corresponding to the Prolog
statements A: — B1, B2,...,Bland A:-C1,C2,. .. Cj.

173

of the representation techniques available in KMS. When
using this technique in KMS, we can describe a disease
(or some other phenomenon) by listing all the conditions
under which it is likely or unlikely to occur and all the
symptoms (or effects) it is likely to cause or is capable of
causing.®® Making a medical diagnosis, for example, is
then a problem of finding the smallest set of diseases such
that all their restrictions are satisfied and the union of all
the symptoms they can cause inciudes the symptoms oc-
curring in the patient. For further discussion of these
techniques, see Karp*! and Reggia et al.4?

The control level:
Procedural knowledge control strategies

We have seen how domain-dependent procedural
knowledge can be represented in terms of various types
of pattern-invoked programs. Such programs must be in-
voked by some kind of control strategy, a number of
which are possible.

State-space search. State spaces can either be searched
in a forward direction by starting at the initial state and
applying the operators to find a path to a goal state (see
earlier discussion on 15-puzzle), or in a backward direc-
tion by starting with the goal state and applying the in-
verses of the operators to find a path to the initial state.
Which approach is more appropriate depends on the par-
ticular problem and the nature of the state space.

Whether an operator is applicable in a forward search
is determined by the data describing the current problem
state and by the antecedent (the *‘if”’ part) of the opera-
tor. Thus a forward search is often called a dara-driven
or antecedeni-driven search. In a backward search, ap-
plying an inverse operator to some state S corresponds to
finding all states that would allow the original (non-
inverse) operator to produce S, and to setting up these
states as subsidiary goals (or subgoals) to be reached
from the initial state. Thus a backward search is often
called a goal-driven search.

We can easily write a nondeterministic procedure to do
a forward state-space search:

PROCEDURE state-space:
s : = initial state
path : = NIL /* NIL is the empty list */
WHILE s is not a goal DO

ops . = ;operators applicable 1o s
nondeterministically select an operator r
from ops

path : = concatenate({path.r)
,* path contains all operators used so far */
s:=r(s) /" applyrtos "/
END
RETURN path
END state-space

The nondeterministic selection is done as in a nondeter-
ministic Turing machine: we can visualize the creation of
several copies of the program, one for each operator ap-
plicableto s. Whichever copy of the program finds a path
to a goal first returns the path it finds.

174

Obviously, writing a reasonable deterministic state-
space search program requires more thought, and several
different techniques have been proposed.

One type of technique is referred to as backtracking.
Backtracking procedures explore one path as far as
possible, ignoring all other paths. [f the path dead-ends,
orif it otherwise becomes obvious that no paths from the
current state will lead to a goal state, the procedure back-
tracks to a previous state and chooses a new operator to
extend the path in a different direction. A backtracking
program can thus be written recursively as

PROCEDURE backtrack (s, path):
[F s is a goal THEN RETURN NIL
/* NIL is the empty list */
IF decide-to-backtrack(s,path) THEN
RETURN ‘*fail”
ops : = .operators applicable to s;
FOR EVERY r [N ops DO
/* iterate thru list of applicable operators */
val = backtrack (r(s), concatenate(path,r))
IF val is not ‘*fail’* THEN RETURN
concatenate(r,val)
END
RETURN *‘fail”
END backtrack

Another type of technique is referred to by Nilsson-!
as graph-searching. Graph-searching procedures explore
several paths simultaneously, keeping track of several
“‘current states.’’ Some paths may be explored faster
than others, depending on the particular procedure and
the particular problem. Examples of such procedures are

® Breadth-first search, in which all paths are searched
at the same speed;

* Least-cost-first search (Dijkstra’s algorithm*), in
which at each iteration of the procedure the path
that has the least accumulated cost (according to
some criterion) is extended;

® Heuristic search, in which various heuristic criteria
are used to determine which path or paths to extend
next.

Propagation of constraints, In this problem-solving
technique, the set of possible solutions becomes further
and further constrained by rules or operators that pro-
duce ‘‘local constraints’’ on what small pieces of the
solution must look like. More and more rule applications
are made until no more rules are applicable and only one
(or some other small number) possible solution is left.
This process can be thought of as a type of state-space
search that avoids the necessity of backtracking, since
every existing solution must satisfy all the constraints
produced by the rule applications.

Example . Huffman-Clowes Labeling

As an example, [will consider a technique developed
independently by Huffman™ and Clowes** for analyzing
two-dimensional line drawings. This technique, which is
also discussed by Winston,* does not yield ‘‘expert”’

D ———

iitiiiii[{

performance compared with that of human beings, but it
is a classic example of propagation of constraints.

The Huffman-Clowes labeling technique applies spe-
cifically to 2-D line drawings of 3-D objects composed of
flat surfaces. The technique can determine (1) what part
of the drawing is the object and what part is the back-
ground, (2) which intersections of surfaces are convex
and which are concave, and (3) (in some cases) whether
the drawing can actually represent a real 3-D object. The
technique is explained below, along with an example of
how it can be implemented as a state-space search.

The restrictions on the applicability of the Huffmanl-
Clowes technique are

¢ The drawing must be a simple black-and-white line
drawing of a single object, without any indication of
coloration, illumination, shadows, cracks, or sur-
face texture.

e Every vertex in the object must be formed by the in-
tersection of exactly three flat surfaces, although
not all three of these surfaces need be visible in the

drawing.

e No ‘“‘pathological’’ points of view of the object are
permitted; that is, the point of view given in the
drawing must be such that if it is changed by a very
small amount, the perceived character of the ver-
tices will remain the same. For example, the point of
view shown in Figure 5a cannot be given because the
two surfaces that appear to meet in fact do not, as
Figure 5b shows.

¢ If the result of the analysis is a contradiction, then
the line drawing cannot possibly represent a real 3-D
object. However, if the analysis does not find a con-
tradiction, the drawing may not necessarily be
realizable as a 3-D object.

A Huffman-Clowes analysis of such a drawing con-
sists of putting a label on each line to indicate whether it
is a convex intersection of surfaces, a concave intersec-
tion of surfaces, or a border of the object (Figure 6).
Given the restrictions cited above, only four types of ver-
tices are physically possible in any line drawing (Figure 7),
and only 16 combinations of labels are physically possible
for the lines coming into these vertices (Figure 8).

~
~a

(a) Not allowed (b) Allowed

Figure 5. Vlewpoints for a line drawing must be chosen so
that the perceived character of the vertices is the same as
the real character. Viewpoint (a) is not allowed becau;e
the indicated line is falsely perceived as going into the in-
dicated vertex. In viewpoint (b), the perception has not
been distorted.

Figure 6. Hutfman-Clowes labels on the line dfaw_ing of
Figure 5. Convex intersections of surfaces are !nd!caled
by +'s; concave intersections of surjac_es are indicated
by —'s; and borders of the object are |ndI|cated by arrows
directed such that the abject is to the right of the arrow
and the background is to the lett.

<Y T o

Figure 7. Physically possible types of vertices include (a) an L vertex,
(b) a Y vertex, (c) a T vertex, and (d) an arrow vertex.

AV S U AV .Y O I Ve
YTy

T T
TP

Figure 8. Physically possible vertex labelings. (Used with permission of
Adaison-Wesley, copyright 1977.22)

175

The *‘propagation of constraints’” works as follows.
The lines around the perimeter of the object must be
labeled with clockwise arrows (Figure 9a). Given the 16
possible label combinations, the number of possible
labels for some of the other lines is restricted. For exam-
ple, the vertex shown in Figure 10a must be labeled as
shown in Figure 10b because no other way of labeling
yields a legal combination of labels.

Assigning labels to some of the other lines (see Figure
9b) determines the labels on yet more lines, until the en-
tire drawing is labeled (Figure 6). If not all vertices can be
assigned legal combinations of labels, then the object
cannot be a real 3-D object satisfying the restrictions
given above. Figure 11 is an example of this kind of ob-
ject.

We can construct a state space for the Huffman-
Clowes labeling problem as follows. Each state in the
space consists of a drawing of the object to be anlayzed,
with one or more lines labeled. In the initial state the
drawing is unlabeled except for arrows going clockwise
around the perimeter of the object. Each of the 16 legal
label combinations determines an operator taking un-
labeled vertices or partially labeled vertices to fully label-
ed vertices. For example, the legal label combination
shown in Figure 12a corresponds to an operator that ap-

plies to any one of the label combinations shown in
Figure 12b.
The search procedure may now be written as

PROCEDURE label:
put clockwise labels around the perimeter of the
object
WHILE not all lines are labeled DO
[F there is a vertex with only one applicable
labeling operator
THEN apply the operator
ELSE DO
/* the object may have more than one
legal interpretation */
choose a vertex that is not completely
labeled
nondeterministically choose an applicable
labeling operator
apply the operator
END
END
END label

[f not all vertices have legal combinations of labels at
the end of the procedure’s operation, then the object
cannot be a real 3-D object. However, the existence of
legal labelings for all vertices of the object does not
guarantee that the object can be real.=2

(a)

(b)

Figure 9. Successive steps in labeling the line drawing ot
Figure 5.

(a) (b)

Figure 10. Before (a) and after (b) labeling a line on the
basis of the labels of other lines going into the same
vertex.

v

ny

8

Figure 11. An impossibie object. Line z cannot be labeled
such that the vertices on both its ends have legal com-
binations of labels. (Used with permission of Addison-
Wesley. copyngnt 1977 22

176

L.

Example 2: EL

One expert system, called EL,2 uses propagation of
constraints to analyze electrical circuits containing
elements such as resistors, transistors, and diodes. The
system is written in a language called ARS, for antece-
dent reasoning system, a language for writing knowl-
edge-based programs that do forward search.

EL’s knowledge base exploits many familiar electrical
laws to provide propagation of constraint rules. For ex-
ample, Ohm'’s law and Kirchhoff’s current law give rise
to the following rules:

¢ [F the voltages on both terminals of a resistor are
given, THEN compute the current using Ohm's law.

¢ [F the current and the voltage at one terminal are
given, THEN compute the voltage at the other ter-
minal using Ohm'’s law.

¢ [F all but one of the currents into a node are given,
THEN compute the remaining current using Kirch-
hoff’s current law.

The propagation-of-constraints algorithm for EL, which
is similar to the one for Huffman-Clowes labeling, is
roughly

PROCEDURE propagate:
Choose an arbitrary node and assign it a potential of
0.
WHILE there are nodes whose potentials are not
known DO
[F there is an applicable rule
THENDO
apply the rule
[F two different expressions have now
been set equal
THEN solve for a variable and
eliminate it
ELSE DO
choose a node which does not have a
potential assigned to it
assign it a potential which is a variable
END
END

END propagate

As an example, consider the circuit given in Figure 13,
If the voltage at the junction of R3 and R4 is e, then the
current going through R4 must be e/10. But from Kirch-
hoff’s current law, the same current must flow through
R3, which means that the voltage at the junction of R1,
R2, and R3 must be 3e. Thus, applying Ohm’s law again,
the current through R2 can be determined in terms of e,
and so forth. Once the voltage at the junction of R1 and
the voltage source is determined, the value of e can be
determined and the variable e eliminated.

To handle devices such as transistors and diodes, the
situation is more complicated. Here, EL uses the
“‘method of assumed states’’: the operating characteris-
tics of the device are modeled as a number of piecewise-
linear regions. and an assumption is made as to which
region the device is operating in. [f the assumption is
wrong, it will eventually lead to a contradiction, and
backtracking will be necessary.

One trouble with backtracking is the ‘‘combinatorial
explosion’’ that may arise in large search spaces. For ex-
ample, suppose device 4 has operating regions A1, A2,

and A3, and device B has operating regions 81 and B2.
Six combinations of operating regions are then possible
for the two devices. Suppose that (1) a backtrack search
first assumes an operating region for device A and then
assumes an operating region for device 8, asillustrated in
Figure 14, and (2) independent of the operating region of
device A, device B cannot be operating in region 81.

s

(b) <

P
R

Figure 12. A vertex labeling operator, and the vertices to
which it applies. To get the legal label combination (a), we
need to evaluate all possible label combinations (b).

Ry
.\N‘v
35
203 Ay
+ 303
- RZ
10S Ry

Figure 13. Using Ohm’s law and Kirchhoft’s current law,
EL,anexpert system that anaiyzes electrical circuits, can
determine the voltages and currents for resistors Ry
through R4 such as those in the circuit above.

1
ASSUME
OPERATING
REGION FOR
DEVICE A

Z/JN’4

¥ N

8 9 10 " 12.

OPERATING OPERATING OPERATING
REGION A1 REGION A2 REGION A3
v v M
o)) 6 7
ASSUME ASSUME ASSUME
OPERATING OPERATING OPERATING
REGION FOR REGION FOR REGION FOR
DEVICE 8 DEVICE B DEVICE 8

13.

OPERATING OPERATING OPERATING OPERATING OPERATING OPERATING
REGION 81 REGION 82 REGION 81 REGION 52 REGION A1 REGION 82

Figure 14. A portion ot the state space expiored by a backiracking pro-
gram which first assumes an operating region for device A and then

assumes an operating region for device 8.

177

Then, if the search does not turn up a solution along the
way, it will eventually try each of the three combinations
(A1, B1) (node 8 of the figure), (42, B1) (node 10 of the
figure), and (43, B1) (node 12 of the figure), even though
the failure of (A1, Bl) should have indicated that no
other combination involving B1 would work. To avoid
such redundant searching, EL notes which assumptions
were responsible for an error whenever one occurs and
never makes that combination of assumptions again.
(For a further discussion of EL see Stallman and
Sussman.?)

Problem reduction. One alternative to state-space
search is a technique known as problem reduction. This
strategy is used in some of the early problem-solving
systems such as GPS*6 and Strips.*” Here, the problem to
be solved is partitioned or decomposed into subproblems
that can be solved separately, in such a way that combin-
ing the solutions to the subproblems will yield a solution
to the original problem. Each subproblem can be further
decomposed into sub-subproblems, which may be even
further decomposed, until primitive problems, which can
be solved directly, are generated.

As an example, consider the 15-puzzle again. As illus-
trated in Figure 15, the problem of getting from the ini-

tial state of the goal state can be decomposed into the fol-
lowing four subproblems:

* Getting the first row in order;

¢ Getting the first two rows in order, given that the
first row is in order;

¢ Getting the first three rows in order, given that the

first two rows are in order;

Getting all four rows in order, given that the first

three rows are in order.

The solutions to these subproblems provide a solution to
the original problem if they are simply concatenated
together.

Further decomposition is also possible here. The first
subprobiem, for example, could be decomposed into the
sub-subproblems of getting each of the four tiles in the
first row into its proper place.

Obviously, more than one way can be used to decom-
pose a problem. For exampie, the 15-puzzle could have
been decomposed into getting the four columns correct,
rather than the four rows. We can graphically represent
all possible decompositions of a problem in a problem-
reduction graph or AND/OR graph (Figure 16) in which
each OR branch represents a choice of several alternative
decompositions, and each AND branch represents a par-
ticular way of decomposing a problem.

{

/

Some decompositions of a problem may lead to solv-
able subproblems: others may not. To solve a problerp
using problem reduction. we must choose a decomposi-
tion yielding subproblems that can all be solved. To solv'e
each of these subprablems, we must choose decomposi-
tions that yield solvable sub-subproblems, and so forth.
Thus a problem solution is represented by a solution
graph, which may be defined recursively as follows.

Let n be a node in an AND/OR graph, and let N be a
set of terminal nodes in that graph. We can think of the
nodes in N as the set of solvable primitive problems. A
solution graph from n to N is defined as

e If nisin N, then the solution graph is simply n.
e If nis not in N and 7 is terminal, then a solution
graph from n to N does not exist.

e If nis not in &, n is not terminal, and the branch
from n to its children ny, ny, . .., n, is an OR
branch, then # is solvable if any one of its children is
solvable. If for every i a solution graph G; exists
from n, to N, then the union of G; with the node n
and the arc (n, n;) is a solution graph from »n to N.
Thus several solution graphs from 7 to N are possibie.
Finally, if # is not in &, n is not terminal, and the
branch from n to its children ny, n3, . . ., ngis an
AND branch, then n is solvable only if all its

solution graph of the least (or highest) cost according to
some cost criterion, or solution graphs satisfying other
criteria.

Suppose Q is a problem that can be solved using either
state-space search or problem reduction. Let S be the
state-space graph for Q, and R the problem reduction
graph. R is often considerably smaller than S (Figure 7.
However, since the solution Ris a subgraph ratherthana
path, a typical search procedure for R will usually be
much more complicated than a typical search procedure
for S. In fact, the number of consecutive problem states

_— ORIGINAL PROBLEM

ORBRANCH g

AN

AND BRANCH

PR
SUBPROBLEMS

children are solvable. If for i=1,2, ... ,k a solu-
tion graph G; exists from n; to NV, then the union qf
all G;, the node n, and the arcs (n,npyi=1, ... ,kis o
a solution graph from nto V. :
il p
AR ; s " 112 I . Obviously, a problem solved using problem reduction Figure 16. An ANDIOR graph. The AND branch is the
| | | can have many solution graphs. Depending on the par- decomposition chosen in the OR branch, where a choice
& I il LN B84 8 ticular problem, we may want all solution graphs, the of several decompositions is made.
L ; : i —_p | | ;
hie 7 2l e 0 a2
; i | | I !
:13'15|14|e! 13 |14 {15 {n
) ’ (a)
I D INITIAL STATE
F, 3 (w r \\\\
. i | | [I ; i i : : !
1 315 (11 | 1 2 13 4 1 2 3 4 1 2 3 4 = UNSOLVABLE ~. .
4 . : ' te 2 17 Ve o | STATES
24 109 | 2 122 9 56 .7 8 5 .5 17 7o |
: ; ; . L= ‘ —> ' 1
!h;6!7!12! I_?|7l°!? 23?2 0% 1910 11 12 |
n | ' T ST e : . |
hajisliala T2 22 la ERERERE PRERERE { :
L
= ; | : :
1
|
i — — \ | :
123 4 ERTE TR 123 4 172 13 ig !
i : ‘ I | @ |
| ! | _>!_ : g | ! ' OPERATORS
? o f 2 . 29 ‘ 5 ‘ 6 f 7 : 8 ! 5 i 6 7 | 8 | 5 6 7 g l !
| S-=- : 1 REPLACE ANY OCCURRENCE OF S 8Y A€
gl e s | : ‘ T 2 REPLACE ANY OCCURRENCE OF 4 8Y 8C
| l | | | l — i — 2) 9 QEPLACE ANY OCCURRENCE OF A BY J€
\ ' ; | i | | : 1 QEPLACE ANY OCCURRENCE OF 0 BY £
=S4 . e e : : I ? : 7I A 5 REPLACE ANY OCCURRENCE OF £ 8Y JF
= / GOAL STATE 5 REPLACE ANY OCCURRENCE OF C 8Y G

Figure 15. Problem reduction on the 15.puzzle. The 15-puzzie problem can be decomposed into four subproblems, the

i blem is as follows: states are strings
. . i _State-space (a) and problem-reduction (b) graphs for a problem The pro
solutions of which can be concatenated to arrive at the overail solution. Figure 17. State-space (a) P

of characters, with the initial state being the character S. The goal is to produce any string consisting entirely ot F's.

178 -

_>—*,

necessary to solve Q using R may be more than the
number necessary when using S.

Example 1: Mycin

Consider a search problem in which each operator re-
quires that several conditions hold simultaneously in
order for the operator to be applicable. If these condi-
tions can be established independently, problem reduc-
tion can be combined with a backward (goal-driven)
search in the following manner: Any time a rule is found
whose application can achieve a subgoal, the problem of
satisfying all of the preconditions of that rule is decom-
posed into the problems of satisfying each precondition
independently, and these problems are set up as
subgoals. Many expert systems use this approach; one of
the first was Mycin.!S

Mycin is a program, written in Lisp, that can diagnose
infectious diseases and recommend treatment. Mycin in-
teracts with the user, asking questions about the symp-
toms of the disease, to determine a diagnosis. The state
of a diagnosis problem in Mycin is a collection of all
known facts about the problem, which is augmented and
changed by various operators as the diagnosis proceeds.

Myecin uses production rules to represent causal relations
among the facts.

Since we cannot be complerely certain if some facts are
true or certain causal relations hold, each fact and each
production rule has associated with it a “‘certainty fac-
tor.”” The CF indicates the certainty with which each fact
or rule is believed to hold and is a number in the interval
[-1,1]. Positive and negative CFs indicate a predom-
inance of confirming or disconfirming evidence, respec-
tively. CFs of 1 or -1 indicate absolute knowledge.

A typical Mycin production rule is the following: !5

PREMISE (SAND (SAME CNTXT INFECT PRIMARY-
BACTEREMIA)
(MEMBF CNTXT SITE STERILESITES)
(SAME CNTXT PROTAL Gl))
ACTION CONCLUDE CNTXT IDENT BACTEROIDES
TALLY .7)

If (1) the infection is primary-bacteremia,
(2) the site of the culture is one of the sterilesites, and
(3) the suspected portal of entry of the organism is the
gastro-intestinal tract,
then there is suggestive evidence (.7)
that the identify of the organism is bacteroides.

Procedure FINDVALUEQF (item GOAL)

L —RULES__ABOUT(GOAL):
L—APPLY_METARULES(GOAL.L,0);
for R € L DO
untess PREVIEW(R) = (aise do
begin “‘evaiuate-ruie’’
tor P € PREMISES__OF(R} do

end ‘‘test-each-premise-clause "
CONCLUDE{CONCLUSION _iN(R)):;

end “‘evaluate-rule’’;
MARK__AS__TRACED(GOAL);

then return(ASKUSER(GOAL))
eise return({VALUEQF(GOAL)):
end.

oeqin list M; rule Q:

return(L);
end;

begin ruie T: list I

end;

begin item X: list L: rule R: premise__clauseP:
it (X—UNITYPATH(GOAL)) then return (X),
It LABDATA(GOAL) and DEFINITE__ANSWER(X —ASKUSER(GOAL)) then return(X),

Degin '‘test-each-premise-clause’”

if not TRACED(ATTRIBUTE__IN(P)) then FINDVALUEOF(ATTRIBUTE__IN(P)),
I EVALUATION__OF(P) < 2 then next (R);

it VALUE__KNOWN_WITH__CERTAINTY(GOAL) then
begin MARK__AS_TRACED(GOAL); return (VALUEOF(GOAL)); end;

if VALUEOF(GOAL) = unknown and NOT_ALREADY__ASKED(GOAL)

Procedure APPLY__METARULES(item GOAL: hist L: integer LEVEL);

it (M—METARULES__ABOUT(GOAL .LEVEL + 1))
then APPLY _METARULES(GOAL.M LEVEL +1)
for Q € M do USE__METARULE_TO__ORDER__LIST(Q.L);

Procedure CONCLUDE(action__clause CONCLUSION):

UPDATE_VALUE~_OF(ATTRIBUTE_IN(CONCLUSION).VALUE_!N(CONCLUSION))
| —ANTECEDENTRULES __ASSOCIATED _WITH(CONGLUSION);

I —APPLY__METARULESIATTRIBUTE__IN(CONCLUSION).1.0}:

for T € 1 do CONCLUDE(CONCLUSION __IN(T));

Figure 18. The control structure for Myci i inLi i i
ycin, a program written in Lisp that can diagnose infectious di .
mend treatment. (Used with permission of Nortn-Holland, copyrignt 19‘7,7 10 ¢ seases andrecom

180

_:‘—

S

g
|

$AND, a multivalue AND operation, is used to
manipulate CFs as described below.

In Mycin, facts are represented in the form of four
tuples such as the following:!3

(SITE CULTURE-1 BLOOD 1.0)
(IDENT ORGANISM-2 KLEBSIELLA .25)

(IDENT ORGANISM-2 E.COLI .73)
(SENSITIVS ORGANISM-1 PENICILLIN-1)

To evaluate Mycin's pro&ﬁcti‘op rules, we take the
following steps.

o The CF of a conjunction of several facts is taken to
be the minimum of the CFs of the individual facts.

e The CF for the conclusion produced by a rule is the
CF of its premise multiplied by the CF of the rule.

o The CF for a fact produced as the conclusion of one
or more rules is the maximum of the CFs produced
by the rules yielding that conclusion.

For example, suppose Mycin is trying to establish fact
D, and the only rules concluding anything about D are

IF A and B and C, THEN CONCLUDE D (CF = .8)
IFHand [and J, THEN CONCLUDE D (CF = .7)

Suppose further that facts 4, B, C, H, I, and J are
known with CFs of .7, .3, .5, .8, .7, 4nd .9, respectively.
Then the following computation produces a CF of .49
for D.

IF Aand Band C, |
THEN D(CG = .8) |
| ~.8x.3=.24
3]

CF(A) = .7!
CF(B) = .3 | —min=.
CF(C) = .5!

IF H and I and J, |
THEN D (CF = .7) |
| =.7%x.7=.49
|
|

CF(H) = .8
CF() = 7! —min=.7
CF() = 91

In this example, facts 4, B, C, H, I, and J would
typically be established by other production rules bearing
on them. The chaining of these rules together to establish
D corresponds to searching an AND/OR graph. Mycin
diagnoses diseases by setting up the diagnosis problem as
a goal and then doing a depth-first search of the resulting
AND/OR graph. The search strategy of Mycin is fairly
simple, as shown in Figure 18. For example, suppose
Mycin’s goal is to find the value of 4, and some of its
rules are

IF F={ THEN CONCLUDE C=c (CF=.3)

IFG=gand H=h THEN CONCLUDE C =c(CF =.6)
IFH=hand [=i THENCONCLUDEC=¢" (CF=.7)
IFB=band C=c THEN CONCLUDE A=a(CF=.8)

. other rules making conclusions about A . . .

ks

Suppose it also knows that the values of B, F, G, A, I,
and £ are laboratory data, determined by asking the user

for their values. The AND/OR graph corresponding to
these rules is shown in Figure 19. Mycin searches this
graph depth-first from left to right, determining the
values of B, F, G, H, I, C, and A in turn,

Note that when a rule such as

[FB=band C=c THEN CONCLUDE A =a (CF=.8)

is invoked, the subgoals Mycin creates are not to prove
that B=band C=c but rather to find the values of B and
C. The system can then focus on a particular topic when
interacting with the user, rather than jumping around
from topic to topic. Also, since the information accumu-
lated about the subgoals is saved, B and C need not be
reevaluated if another rule is ever encountered that re-
quires information about them.

Note also that every rule relevant to a particular goal
must be invoked unless the value of the goal can be estab-
lished with a CF of 1| or — 1. However, if one of the
premises of a rule is already known to havea CF of -1,
then that rule need not be invoked, since it cannot pos-
sibly conclude anything.

One major problem with medical diagnosis is that the
requisite knowledge is generally accumulated experien-
tially by a physician and cannot be regurgitated on de-
mand to be put into a computer system. Mycin handles
this problem by means of the following simple learning
mechanism.

A user who already knows the answer to some
diagnostic problem can give the problem to Mycin to
solve. If Mycin reaches an incorrect conclusion, the user
can invoke a question-answering system to find out
which rules were invoked and why. If the user decides
that one of the rules is incorrect or that a new rule needs
to be added, he can make the appropriate change or addi-
tion. Since the rules are invoked automatically whenever

FIND VALUE
OF A

OTHER RULES

Figure 19. An AND/OR graph for Mycin. Mycin searches this graph
depth-first trom left to right, determining the values o1 B, F, G, H, /, C,
and A in turn.

181

they have bearing on a goal, no other change need be
made to the system to ensure that a rule is used.

The advantages of the production system architecture
of Mycin are

® Each production rule is completely modular and in-
dependent of the other rules. Thus changing or add-
ing to Mycin’s knowledge base is easy.

TERMINAL

TERMINAL

TERMINAL

Figure 20. An AND/OR graph for a sample problem for Dendrai, a system
that proposes plausible chemical structures for molecules given their
mass spectrograms. (Used with permission of Tioga Publishing, copyright

1980.21)

H

[CoH7

|
f
o

IxT—6—x
|
X
ju =
1

=)
n
T
(2]
I
I—O—0O—0O—=x
|
x
x
[

H

H H

| |
IC2H5j = C —|CqHs| H-C-

' ;

H

H

. _ o

1

® The stylized nature of the production rules makes
the coding easy to examine. Thus the question.-
answering system can supply clear answers, in most
cases, to questions about how and why it made its
diagnosis. .

® Each rule represents a small, isolated chunk of
knowledge. Thus a physician familiar with the
system may be able to formulate new rujes if
necessary.

The disadvantages are

® Since the rules are not called explicitly by other
rules, we are not sure what side-effects may occur
from adding or changing a rule. Some impact may
arise from unexpected interactions with other rules.

mat than that given earlier. For example, we might want
a rule saying ‘‘for each organism such that ., con-
clude”” A few of these rules have been putinto the
system, but they cause other problems. For example, the
question-answering system cannot adequately explain
the invocation of these rules.

Asof the date of the reference material, 'S Mycin could
perform diagnoses with an agreement of about 72 per-
cent with medical experts. This figure has probably im-
proved since.

The knowledge base of Mycin can be removed and a
set of rules from another domain substituted. This ap-
proach has been used for the problem of diagnosing lung
diseases, yielding a program called Puff.!?

Example 2: Dendral

Problem reduction can also be used in conjunction
with a forward (data-driven) search. For example, sup-
pose that applying an operator yields a state that contains
several independent items. The state can then be decom-
posed into each of these items, which can be worked on
independently. This technique is used in Dendral,? a
computer system that proposes plausible chemical struc-
tures for molecules, given their mass spectrograms.

Dendral uses a ‘‘plan, generate, and test’’ technique.
First, in the planning phase, constraints on the problem
solution are inferred from mass spectrometry data. Sec-
ond, in the generation phase, the program generates all
molecular structures satisfying these constraints, as well
as general chemical constraints. Third, in the testing
phase, the proposed structures are tested in a more
sophisticated manner for compatibility with the mass
spectrometry data.

The generation phase of Dendral’s operation is a data-

.
.
-
-
-
-
-
N
N
-
-
-

atoms in a chemical formula and replaces them with one
or more pieces of molecular structure. Tt?e problem is
decomposed by considering each of these pieces of struc-
ture independently and applying other operators to it tp
fill in more details. Figures 20 and 21 are examples of this
approach. .

A difficulty that many problem-reducluon systems er}-
counter is that the subproblems into which a problem is
decomposed may not be independent of each o.ther. and
their solutions cannot be combined into a solution to the
original problem. Dendral has this.problem and gses a
{esting phase to eliminate the solutions proposed in the
generation phase that do not work. .

For a further discussion of the operation of Dendrai
see Feigenbaum et al.’

its performance is not as good as that of any reasonably
good speaker of English, but [include it here bcca}l_se it
represents the latest in automated speech recognition.
Also, the techniques used in its construction should be of
interest to designers of expert systems.

The performance of Hearsay-II is given in Table 2,’!
and its architecture is shown in Figure 22. The KSs, or
knowledge sources, indicated in the figure are pattern-
invoked computer programs. Each KS consists of a con-
dition program that evaluates whether the KS is ap-
plicable and an action program to accomplish whatever

Table 2.

The Performance of Hearsay-Il.*

Number of speakers:
Environment:

Microphone:

Computing resources:

Time required to
comprehend speech

One
Computer terminal room (> 65 d8)

Medium quality. close talking

System speaker-tuning: 20-30 training utterances
H H ¢ Sometimes we cannot easily represent a piece of
i i ; None required
| |C2Hs| (!3 ICoHs| knowledge about a disease as a production rule. Large-scale expert systems Speaker adaptation one req
ICoH :g': 275 | 215 * Since Mycin searches backwards from the goal of . . Task: Beenreniraienal
S H diagnosing and treating a disease to the known data Hearsay-II. The pattern-invoked programs we have | |
é about the patient, a sequence of desired actions or seen so far are relatively simple programs, sucf:h . prot; Language constraints: Context-free semantic grammar: other restrictions
I . i - r system for speec
I tFSts ruls alway? wocation will provide it s, e l‘ulfs- . s e C'ompu[e ; th:t are Test data: 23 utterances. brand new to the system. run bind:
: e T e understanding, uses pattern-invoked progrars - 7 words/utterance (average); 2 6 seconds/utterance
e much larger. In addition, its architecture allows both (AeeTagE]
data-driven and goal-driven invocation of these pro- ;. t
e s [ples catteWHiften I a fuotelgenrilifor. grams. Hearsay-II is not really an expert system because accuracy 9% sentences misunderstood: 10% sentences no

word-tor-word correct but meaning understood anyway
BOM instructions/second of speech on a PDP-10

On the order of 10 imes the length of the utterance

*Adapted with permission of the ACM copyrignt 1980 3!

BLACKBOARD

LEVEL,

.3..

LEVEL,

LEVEL,

LEVEL,

KEY: BLACKBOARD

MONITOR
@ PROGRAM MODULES

SCHEDULING
QUEUES

A

DATABASES

FOCUS-OF-
CONTROL
DATABASE

— DATAFLOW

3

————— -» CONTROL FLOW

SCHEDULER

O S| 1o

Figure 22. Schematic of the architecture of Hearsay-H, a system for speech understasr:dlng that allows both data- and goal-driven invoca-
tion of pattern-invoked programs. (Used with permission of the ACM, copynight 1980.°")

183

driven problem-reduction search. Dendral contains a
number of operators, each of which takes some of the

Figure 21. Partlal structures proposed by the ‘‘generate’’ part of Dendral
for CoHs. (Used with permission of Tioga Publishing, copyright 1980.21)

182

they have bearing on a goal, no other change need be
made to the system to ensure that a rule is used.

The advantages of the production system architecture
of Mycin are

® Each production rule is completely modular and in-
dependent of the other rules. Thus changing or add-
ing to Mycin’s knowledge base is easy.

M
RULE_—" W
H H
H-(I:—H Icszl-(‘l?—lcszl
lcszI-?-H |-|¢
H_?_H SPLIT
H
SPLIT I
' H
Hebon
“e-k
-Ch TERMINAL
.
TERMINAL

TERMINAL

Figure 20. An AND/OR graph for a sampie problem for Dendral, a system
that proposes plausible chemical structures for moiecules given their
mass spectrograms. (Used with permission of Tioga Pubiishing, copyright

1980.21)
[CaoH7| H H
K | i
I H-C-H H=C—~H
C=C] I
| [[CoHg| =C ICoHs| -C—H
H ! [
H-C-H n~C-H H-C—-H
| | |
H H H H
!
H=C~H
H H o' H
! | |
{CaHs} =C —|CoHs; H-C-C-C-H
| I]
H H | H
H-C—H
|
H

Figure 21. Partlal structures proposed by the ‘‘generate’’ part of Dendral
tor CoHg. (Used with permission of Tioga Publishing, copyright 1980.21)

182

/

® The stylized nature of the production rules makes
the coding easy to examine. Thus the question-
answering system can supply clear answers, in most
cases, to questions about how and why it made its
diagnosis. .

® Each rule represents a small, isolated chunk of
knowledge. Thus a physician familiar with the
system may be able to formulate new rules if
necessary.

The disadvantages are

® Since the rules are not called explicitly by other
rules, we are not sure what side-effects may occur
from adding or changing a rule. Some impact may
arise from unexpected interactions with other rules.

® Sometimes we cannot easily represent a piece of
knowledge about a disease as a production rule.

® Since Mycin searches backwards from the goal of
diagnosing and treating a disease to the known data
about the patient, a sequence of desired actions or
tests cannot always be mapped into a set of produc-
tion rules whose invocation will provide that se-
quence.

Sometimes rules can be written in a more general for-
mat than that given earlier. For example, we might want
a rule saying ‘‘for each organism such that ., con-
clude"" Afew of these rules have been put into the
system, but they cause other probiems. For example, the
question-answering system cannot adequately explain
the invocation of these rules.

Asofthe date of the reference material, 'S Mycin could
perform diagnoses with an agreement of about 72 per-
cent with medical experts. This figure has probably im-
proved since.

The knowledge base of Mycin can be removed and a
set of rules from another domain substituted. This ap-
proach has been used for the problem of diagnosing lung
diseases, yielding a program called Puff.!”

Example 2: Dendral

Problem reduction can also be used in conjunction
with a forward (data-driven) search. For example, sup-
pose that applying an operator yields a state that contains
several independent items, The state can then be decom-
posed into each of these items, which can be worked on
independently. This technique is used in Dendral,? a
computer system that proposes plausible chemical struc-
tures for molecules, given their mass spectrograms.

Dendral uses a ‘‘plan, generate, and test’’ technique.
First, in the planning phase, constraints on the problem
solution are inferred from mass spectrometry data. Sec-
ond, in the generation phase, the program generates all
molecular structures satisfying these constraints, as well
as general chemical constraints. Third, in the testing
phase, the proposed structures are tested in a more
sophisticated manner for compatibility with the mass
spectrometry data.

The generation phase of Dendral’s operation is a data-
driven problem-reduction search. Dendral contains a
number of operators, each of which takes some of the

D ——

EE NN N NN

atoms in a chemical formula and replaces them with one
or more pieces of molecular structure. The problem is
decomposed by considering each of these pieces of st'ruc-
ture independently and applying other operators to it tg
fill in more details. Figures 20 and 21 are examples of this
approach.

A difficulty that many problem-reduction systems en-
counter is that the subproblems into which a problem is
decomposed may not be independent of each other, and
their solutions cannot be combined into a solution to the
original problem. Dendral has this problem and gses a
testing phase to eliminate the solutions proposed in the
generation phase that do not work.

For a further discussion of the operation of Dendral
see Feigenbaum et al.®

Large-scale expert systems

Hearsay-I1. The pattern-invoked programs we have
seen so far are relatively simple programs, such as pro-
duction rules. Hearsay-II, a computer system for speech
understanding, uses pattern-invoked programs that are
much larger. In addition, its architecture allows both
data-driven and goal-driven invocation of these pro-
grams. Hearsay-11 is not really an expert system because
its performance is not as good as that of any reasonably
good speaker of English, but I include it here becap;e it
represents the latest in automated speech recognition.
Also, the techniques used in its construction should be of
interest to designers of expert systems.

The performance of Hearsay-II is given in Table 2,*!
and its architecture is shown in Figure 22. The KSs, or
knowledge sources, indicated in the figure are pattern-
invoked computer programs. Each KS consists of a con-
dition program that evaluates whether the KS is ap-
plicable and an action program to accomplish whatever

Table 2.
The Performance of Hearsay-il.*

Number of speakers: One
Environment: Computer terminal room (> 65 dB)
Microphane: Medium quality. close talking
System speaker-tuning: 20-30 training utterances

Speaker adaptation: None required

Task: Document retrieval

Language constraints:

Test data:
7 words/ utterance (average); 2.6 seconds/utterance
(average)

Accuracy 9% sentences misunderstood: 10% sentences not

word-for-worg correct but meaning uncerstood anyway

Computing resources:

Time required to
comprehend speech”

Context-free semantic grammar; other restrictions

23 utterances. brand new to the system. run bind:

50M instructions/second of speech on a POP-10

On the order of 10 times the length of the utterance

*Adaptea with permission of the ACM copyngnt 1980 3!

SCHEDULING
QUEUES

A

BLACKBOARD
LEVEL,
o Ko AN :
LEVEL; — |
l— |
LEVEL,
LEVEL,]
3
KEY: BLACKBOARD
MONITOR
@ PROGRAM MODULES
y
DATABASES
FOCUS-OF-
CONTROL
————— DATAFLOW SHTREISE
----- -» CONTROL FLOW

Y

SCHEDULER Jm========m=— == === ——

Figure 22. Schematic of the architecture of

; 1
tion of pattern-invoked programs. (Used with permission of the ACM. copyright 1980.°")

183

Hearsay-ll, a system for speech understanding that allows both data- and goal-driven invoca-

results the KSis to produce. The system contains approx-

imately 40 KSs, which are from five to 100 pages of

source code apiece. Thirty pages is a typical KS size. Each
KS has up to 50K bytes of its own local data storage.

The KSs communicate with each other by posting mes-
sages on a global data structure called the blackboard.
Messages posted on the blackboard are noted by the
blackboard monitor, which creates entries on the
Sf:heduling queues for any KS whose applicability condi-
tions plight be satisfied. For each KS condition program
or_acluon program on the queues, the scheduler creates a
priority. The highest priority activity is removed from the
queues and executed.

The blackboard is divided into several levels, which
can be thought of as the various levels in a problem-
reduglf‘on tree at which subproblems are located. The
tomliztmn program of each KS tests events occurring at a
Qarucular level or levels of the blackboard, and Lh—e ac-
tion program of the KS puts hypotheses at a particular
level or levels of the blackboard (Figures 23 and 24)

Examples of KSs are o

° SEQ divides the input signal up into segments and
a§sxgns 10 each segment several alternatjve possi-
bilities for the phoneme it might be.

® PARSE is a KS that takes sequences of words and
pars‘es them into phrases. PARSE consists of an en-
coding of.the grammar for the task language as a
network, and procedures for searching the network
to parse a sequence of words.

‘ Considered as a tool for designing speech understand-
ing systems, Hearsay-II provides ways to define black-
board levels, configure KS groups, access and modify
blackboard hypotheses, activate and schedule KSs, and
debug and analyze KS performance. It also provides
wayvs o spemf_v which KSs should have their condition
programs invoked when new hypotheses appear on the
blackboard, to read hypotheses from the blackboard

and to put new hypotheses onro the blackboard. .

The main features that distinguish the Hearsay-I1 ar-
ch.ner:ture from that of systems such as Mycin are the use
of arbitrary patiern-invoked programs as units of
knowledge rather than production rules and the tTexibiIi-

ty of lh.e scheduler (as opposed to the strict goal-driven
invocation used in Myein).

For_ a large, complex problem such as speech under-
standing, these features offer several advantages. Since
the KSs can be arbitrarily complex—and arbitrarily dif-
ferent in their internal operation—the most appropriate
problem-solving approach can be implemented at each
level of processing. Each KS may itself be a small
knowledge-based problem solver, and its internal pro-
u'{esses have only local effects, rather than causing poten-
tial interactions with the rest of the system. This quality
alleviates the ‘‘combinatorial explosion’" that often oc-
curs when search techniques are used on very large prob-
lems, In fact, when portions of Hearsay-11 .were experi-
rru=.-ntal|_3.r rewritten as a production systerh. the system ran
approximately 100 times slower.*®

HEARSAY-1I SPEECH-UNDERSTANDING SYSTEM

LEVELS KNOWLEDGE SOURCES
DATABASE
INTERFACE ‘ SEMANT
é PREDICT STOP
PHRASE 1 Q T
PARSE C\ CONCAT 4

WORD-SEQUENCE

d
1WORD-SEO

WORD-SEQ-CTL

oo d / L WORD-CTL
1'\40w "\VER'FY O—"1 aroL
L ‘-—-'/
SYLLABLE J O]
TPOM ‘_/

d

SEGMENT d/
SEG

PARAMETER C/

L

Figure 23. Levels and knowledge sources in Hearsay-

Il, as of September 1976. KSs are indicated by vertical arcs with the

ci AR
ircled ends indicating output levels. (Used with permission of the ACM. copyright 1980.3")

184

[EE————

e

rlllllfittlliiif““4

[

Casnet. An expert system can be set up to operate at
several different levels of knowledge. Hart*® has charac-
terized a surface system as ‘‘one having no knowledge of
such fundamental concepts as causality, intent, or basic
physical principles,’’ and a deep system as *‘one that does
attempt to represent physical concepts at this level.”
Mycin, for example, is a surface system: its rules linking
observations with diseases do not include any knowledge
of how the diseases arise or progress or how their symp-
toms are caused. The Casnet system is a deep system
because it uses a model of the causal relations among a
detailed set of disease states in a family of diseases known
as glaucoma.® Casnet uses production rules, semantic
nets, and other techniques, as well as the following three
levels of disease description:

e Observations (or tests). These consist of disease
symptoms and laboratory tests and form the direct
evidence that a disease is present.

e Pathophysiological states. These are the internal
condtions assumed to occur in the patient. ‘‘States”
as used here are different from the problem states
mentioned earlier. Here, each state is a condition
that may or may not be present, and the states are
not mutually exclusive.

e Categories of disease. Each category consists of a
pattern of states and observations.

Signal Acquisition. Parameter Extraction, Segmentation. and
Labeling:

o SEG: Digitizes the signal. measures parameters. and

produces a labeled segmentation
Word Spotting

e POM: Creates syllable-class hypotheses from segments

o MOW: Creates word hypotheses from syllable classes

e WORD-CTL: Controls the number of word hypatheses that
MOW creates.

Phrase-island Generation:

o WORD-SEQ: Creates word-sequence hypotheses that
represent potential phrases from word hypotheses and
weak grammatical knowledge

® WORD-SEQ-CTL: Controis the number of hypotheses that
WORD-SEQ creates.

o PARSE: Attempts to parse a word sequence and. if
successful. creates a phrase nypothesis from it

Phrase Extending:

e PREDICT: Predicts ail possible words that might
syntactically precede or follow a given phrase

e VERIFY: Rates the consistency between segment
hypotheses and a contiguous word-phrase pair

o CONCAT: Creates a phrase hypothesis from a verified
contiguous word-phrase pair

Rating. Halting, and Interpretation:

e RPOL: Rates the credibility of each new or moaified
hypothesis. using information piaced on the hypothesis oy
other KSs.

e STOP: Deciges to halt orocessing (detects a compiete
sentence with a sufticiently high rating, or notes the
system has exhausted its availaple resources and selects
the best phrase hypothesis or set of complementary phrase
hypotheses as the output)

o SEMANT: Generates an unambiguous interpretation for
the information-retrieval system that the user has queried

Figure 24. Functional descriptions of a few of the
Hearsay-ll KSs. (Used with permission of the ACM, copyright

1980 31)

For an example involving glaucoma, see Figure 25. The
therapy recommendations made by Casnet are deter-
mined by all three levels of description of a disease.

In Casnet, the pathophysiological states of a disease
are causally related by rules of the form

where n;and n; are states, and g; ; is the causal frequency
with which state n;, when present in a patient, leads to
state n;. Since the states are not mutually exclusive, the
sum

ra,
J

may exceed one. The rules are combined into a causal
network, a semantic net that shows the courses a disease
can take.

Starting states, or states in the network without any
predecessors, are taken to be conditions that can arise
spontaneously in the patient. Each other state is assumed
to occur only as a result of the occurrences of a state im-
mediately preceding it in the network (Figure 26).

Rules for associating tests (or observations) with states
also exist in the form

where ¢; is a test (or observation) or Boolean combination
of tests, n; is a state, and Q; ; is a number in the interval
[-1,1], representing the confidence with which ¢ is
believed to be associated with n;. A positive result for test
1, is taken to indicate that state n; is probably present or
not present in the patient, as Q; , is greater or less than
zero, respectively.

[n evaluating the rules, if

are two rules about n,, and both tests f; and are
positive, then (heuristically) the rule taken to be ap-
plicable is the one believed ‘*most reliable,” i.e., theone
with the highest absolute value of Q. This value of Q is
then used as the certainty factor, or CF. The CF indicates
how certain the belief is that state n, has occurred in the
patient. [f the CF for n; is above an arbitrary threshold
H, then state n, is assumed to be confirmed. If the CF is
below — H, then state n, is assumed to be denied. Other-
wise, n, is taken to be undetermined.

185

SGEL%%DARY ANGLE CLOSURE
DISEASE EJGLaucoma pyGLAUCOMA
GAIESORIES CHRONIC ANGLE
OPEN ANGLE 7 \CLOSURE
GLAUCOMA ACUTE ANGLE AN
CLOSURE 2N
GLAUCOMA 7 7 f

CLASSIFICATION
—
LINKS) “ CAUSAL LINKS

L i
v 7
P 4 / 1
s F "

4 /
[}

[

L

PATHOPHYSIOLOGICAL

STATES
GLAUCOMATOUS
VISUAL FIELD

\
1 i \
It ELEVATED\ i
! [inTRaocULAR | n
| 1 PRESSURE | | ;
1 L i ‘
A A Aj .
] , 1
ASSOCIATIONAL 1 [!
LINKS T i !
[!
T 1 7 I

1 .-J" 1
GONIOSCOPY SYNECHIASH) ViSUAL

[
i
acuiTy. TONOMETRY (0P~ 4

P

o
0BSERVATIONS ' e £520/100 e Sl A S
/) e phs ! ARCUATE SCOTOMA N
~ ~ all-gingD X~ oPHTHALMOSCOPY:)
7 symproms N V// NN\ C0>0.7
N e N DILATED PUPIL NS
.

Figure 25. Three-level descriptions of a disease process used by Casnet, an expert diagnostic system, to make therapy
recommendations. (Used with permission of Nortn-Hollana. copyrignt 1978.3)

186

{

. L ~ caTARACT 2] lens LU
PRIMARY ANGLE) 9 DEBRIS (23
CLOSURE ;
HANISM ”
MeS Ts / LENS |- ocutar LY) i
ANTERIOR ’ 2 SEGHEHT 2 :
CHAMBER POSTERIOR / INFLAMMATION (4 \ D%mi(ls’\é %m
SYNECHIAS (15
“ E : F TRABECULAR
DECREASED v? NEOVASCULARIZ MESHWORK
PERIPUPILLAR‘@ ™ OF IRIS (20 N2
- SPACE somge (18 ¢] =
: ;
i pUp,f,_ARY s NEovASCUARIZ | |5 | PSEUOZEXFRATION
BLOCK OF TRABECULAR cApSULE (32
) 1 o - = MESHWORK (21
- s MASS |
« | EPITHELIAL |.01
- EeoTh i i os??é:sso 5] e L1
DIFFERENTIAL 17
5] QUTFLOW i 1 QVER T
FACILITY 9
NARROW arT M @] erimary [30
ANGLE @ 7s OPEN ANGLE
y 8 2 |2/, MECHANISM(33
THGLE 5 PROLONGED d E_LE\S»ETE[L ;
b ANGLE) INTRAOCUL 9[- T aqueous |o1
. el CLOSURE PRESSURE ‘\-—l HYPER. kO
y 5 ! ¥5 secrerion G0
LI | PROLONGED
ANGLE PERIPHERAL ANTERICR
] CLOSURE SYNECHIAS: IMPA(RED ELEVATED
¥ 39 FUNCTION OF THE INTRAGCULAR
TRABECULAR PRESSURE
‘ Eégg?:gé; MESHWORK ¥ o
. ELEVATED PRESSURE
AQUEOUS
TRANSMITTED
OUTFLOW
TO OPTIC
v 99 NERVE HEAD
SUDDEN, HIGHLY [. 01
INCREASED 9 DISCOMFORT SECREASED) _]OPTIC NERVEI—
INTRAOCULAR. ano pAIN (12 BLOCOSUPPLY e | oo
‘ PRESSURE T0 OPTIC TO NORMAL
) ‘ 8 NERVE HEAD PRESSURES
- INFLAMMATION: {8
CONGESTION NEURAL TiSSUE
AND OCULAR LOSS AND
DAMAGE CUPPING OF
- NERVE HEAD
: v 3
GLAUCCMATOUS
VISUAL FIELD
L] O
Figure 26. Partial causal network for glaucoma. States with no antecedent causes are indicated by aslgrisks. The circled numbers
. correspond to the state labels n; used in the text. (Usea with permission of North-Holtand copyrignt 1878 %)
-
"

(;asnet allows the use of three main strategies for se-
lecting tests for the user to perform on the patient:

U Sm'fxll decision trees containing questions on related
topics. Thus the questions are asked only if certain
conditions are detected to hold.

® Likelihood measures over the pathophysiological
states. These are computed by assuming the occur-
rence (or nonoccurrence) of whatever states in the
network have already been confirmed (or denied),
and using the causal frequency values in the net-
work—as if they were probabilities—in the usual
conditional probability formulas, to compute for
each state n; a ‘‘conditional likelihood’’ W(n;) that
n; can be confirmed. To use these likelihoodjvalues
for test selection, each test ¢ is assumed to have a
cost C(¢;). One approach is to select a state n;and
test £;to maximize theratio W(n,) /C(t,) , given that

test ¢; tests for state n;. Another approach is to look
only at tests ¢; for which C(¢;) is less than some
cutoff, and select n; and ¢; to maximize W(n;)

given that /; tests for n;. m

® Calculation of the most likely cause of the disease.
For this approach, the most likely cause of a disease
is taken to be the starting state capable of explaining
the largest number of confirmed states in the net-

CHOLESTASIS
jﬁi INTRA-HEP

INFLAMMATION

N\

CHOLANGITIS ~ SCI-CHOLANGITIS

FUNCTIONAL ANATOMICAL

TN

POST-OPER

S

ANESTHETICS

PHYSICAL

/

STONE CANCER STRICTURE

BD-CANCER AMPULLARY- GALLBLADDER-

CANCER CANCER

T~

AV-CANCER PA}CREAS-CANCER
HEAD-OF BODY-TAIL-OF
PANCREAS PANCREAS

Figu

mgdir:alzgi.a T:o qunceptual structure of cholestasis used by MDX, a

i i l!gx ostic system still under development. The MO X compris.es
pert subsystems, one for each node of the tree, (Used win

permission of the Am
1979 13 encan Association for Artificial Intelligence, copyrignt

188

work \{vithout contradicting the denial of any denied
stafes in the network. This is the starting state from
which one can produce paths traversing the greatest
nun.1ber of confirmed states without traversing any
denied states (if two such starting states exist, the
one V.Vith the greatest likelihood measure is selected).
If this state does not explain all confirmed states in
the network, a second starting state is selected in the
same manner to explain the remaining confirmed
states, and so forth, until all confirmed states have
peen covered. Tests are then selected that have bear-
ing on the selected starting states.

.Sometimes the test results may contradict or conflict
with the model, for exampie, when all paths into a con-
firmed state contain a denied state or an undetermined
state (|CF | <H) for which CF<0. Casnet includes
some. ways of dealing with such situations, which are
described elsewhere.8

Pathgphysiological states are associated with disease
categories as follows. Let ny, na, . . . , n, be the states in
a causal pathway in the network, with starting state n,.
Then we can build a classification table of the form l

First unconfirmed Disease
state in the pathway category
ns D‘
ny Dy
ng Dy -
s Dy

yvhere each D;is a disease category. (The implementation
in Cgsnet is somewhat different, because a single classi-
fication table may include information about several
causal pathways. However, the use of these tables corre-
sponds to the description given here.)

Each starting state has pointers to the classification
tables relevant to the diseases caused by that starting
state. These tables are used, once the mosi likely starting
states are found, to determine the disease cate'gories of
the patient.

The classification tables can be augmented to include
treatment recommendations:

First unconfirmed

. Disease Recommended
state in the pathway category treatment
na D, T
ny D, T
ng Dy _y Ty -y
D, T,

1

N

L
-
.
-
L
-
-

However, the problem of recommending treatment is
usually more complicated. Instead of a single treatment
T, for each category Djaset Ty, Tj2 .- > Tin of
several possible treatments may exist. The treatment
chosen is determined by rules of the form

t; ememmeems > T}k

which assigns preference to treatmenis on the basis of
test results. Preferences are computed for various treat-
ments associated with a disease category in the same way
as certainty factors were computed for pathophysio-
logical states earlier, and the treatment of highest
preference is recommended.

As of 1978, Casnet (as set up to handle glaucoma) had
more than 100 states, 75 classification tables, and 200
diagnostic and treatment statements. Casnet's rules must
be invoked once for each eye, and special rules are used
for various types of binocular comparisons. According
to Kulikowski,’® knowledge from medical textbooks
alone allowed Casnet to perform at 70- to 75-percent ac-
curacy. To get the performance above 90-percent ac-
curacy, information from human experts was incor-
porated.

MDYX. A medical diagnostic system still under
development, MDX has an architecture designed to han-
dle the ‘“‘combinatorial explosion” problems discussed
earlier. It comprises a collection of small, expert sub-
systems that are similar to Hearsay-11's KSs. These sub-
systems are organized in a hierarchy that corresponds to
the taxonomy of a disease. For example, consider the
classification of a medical condition called cholestasis
(Figure 27). A complete implementation of MDX for
cholestasis (not yet finished) would include an expert
subsystem corresponding to each node of the classifica-
tion tree. The communication and transfer of control
among these expert subsystems, instead of being handled
by global mechanisms such as Hearsay-II's blackboard
and scheduler, are handled by the experts themselves, and
are constricted to flow along the lines of the hierarchy.

The hierarchy of experts corresponding to the tree in
Figure 27 might be entered at the root of the tree by a re-
quest for a diagnosis. When invoked, the expert at each
node does some processing involving its specialized
knowledge and may request information from other ex-
perts to make a diagnosis. Communication and transfer
of control among experts is restricted to follow the arcs
of the tree. Thus if the cholestasis expert were to send a
message or request to the cholangitis expert, it would
pass through the extra-hepatic and inflammation experts
along the way, which would perhaps modify the message
so that the cholangitis expert could understand it. If an
expert is not implemented, a human at a computer ter-
minal can take the part of that expert without affecting
the rest of the system. For more information about
MDX, see Chandrasekaran.'3

Conclusions

Expert system techniques are now finding their first
applications outside artificial intelligence research
laboratories. Dendral® has been used by university and
industrial chemists on a number of problems; R1 18 is be-
ing used by Digital Equipment Corporation to aid in in-
stalling computer systems; and Schlumberger’s Dipmeter
Advisor is being adapted for field use after several years
of development in the laboratory. For the continued suc-
cess of this transition from research laboratories to the
real world, more progress is needed in resolving several
problems.

One problem is the amount of effort it takes to build
an expert system; construction somerimes takes as many
as 10 to 25 man-years and costs as much as $1 w 32
million. One reason is the lack of software tools for im-
plementing expert COMPUtEr systems. Progress is current-
ly being made in this direction with tools such as AGE,
Emycin, Expert, KMS, and OPS-5, but more work is
needed.

A second problem is the amount of time needed to take
the knowledge from an expert in some problem domain
and encode it in a knowledge base. Again this problem is
due to a lack of tools for the task, but it is also due to the
large gaps that still remain in our understanding of
human problem solving. Some of the knowledge that an
expert uses to solve a problem often cannot be made con-
sciously accessible to him or to others without a great
deal of effort.

A third issue is that since expert systems have until
recently been largely experimental, we have not had to
consider the need for long-term maintenance or the abili-
ty to be ‘‘friendly’’ to a community of users who may
not have a sophisticated knowledge of computers. More
attention will have to be paid to these “real-world
details’’ if expert systems are to be useful in the long
run. @

Acknowledgments

1 thank the following people who were willing to
discuss problems, provide source material, and read
rough drafts during the preparation of this article:
Howard Bloom, Ted Chang, Bill Gevarter, and Ted
Hopp.

Most of the material in this article is adapted from a
report [prepared during a summer research appointment
at the NBS in 1981. This work was also supported in part
by NSF grant MCS-8117391 to the Laboratory for Pat-
tern Analysis at the University of Maryland.

189

1.

References

H. P. Niiand N. Aiello, ‘““AGE (Attempt to Generalize): A
Knowledge-Based Program for Building Knowledge-
Based Programs, Proc. Sixth Int’l Joint Conf. Aruficial
Intelligence, 1979, pp. 645-655.

R. M. Stallman and G. J. Sussman, ‘*Forward Reasoning
and Dependency-Directed Backtracking in a System for
Computer-Aided Circuit Analysis,”” Vol. 9, Arrificial
Inteiligence, 1977, pp. 135-196.

W. van Melle, '*A Domain-Independent Production Rule
System for Consultation Programs,’ Proc. Sixth [nt’l
Joint Conf. Artificial Intelligence, 1979.

S. M. Weiss and C. A. Kulikowski, *“EXPERT: A System
for Developing Consultation Models,”’ Proc. Sixth Int’l
Joint Conf. Artificial Intelligence, 1979, pp. 942-947.

J. Reggia et al., “Towards an Intelligent Textbook of
Neurology,”" Proc. Fourth Annual Symp. Computer Ap-
plications in Medical Care, 1980, pp. 190-199.

C. L. Forgy, The OPS5 User's Manual, Tech. Report,
Carnegie-Mellon University, 1980.

R. Chilausky, B. Jacobsen, and R. S. Michalski, ‘*An Ap-
plication of Variable-Valued Logic to Inductive Learning
of Plant Disease Diagnostic Rules,"” Proc. Sixth Annual
Int’l Symp. Muitiple-Valued Logic, 1976.

S. M. Weiss et al., ‘A Model-Based Method for

Computer-Aided Medical Decision-Making,"' Arnficial”

Inteiligence, Vol. 11, No. 2, 1978, pp. 145-172.

E. Feigenbaum, G. Buchanan, and J. Lederberg,
*‘Generality and Problem Solving: A Case Study Using the
DENDRAL Program,' Machine Intelligence 6, D. Melt-
zer and D. Michie, eds., Edinburgh University Press,
1971, pp. 165-190.

R. Davis et al., '*The Dipmeter Advisor: [nterpretation of
Geological Signals,"" Proc. Seventh Int'l Joint Conf. Ar-
tificial Intelligence, Aug. 1981.

H. E. Pople, '*The Formation of Composite Hypotheses
in Diagnostic Problem Solving: An Exercise in Synthetic
Reasoning,'’ Proc. Fifth Int’l Joint Conf. Arnficial n-
telligence, 1977, pp. 1030-1037.

J. Moses, **Symbolic Integration: The Stormy Decade, "
Comm. ACM, Vol. 14, No. 8, 1971, pp. 548-560.

B. Chandrasekaran et al., ‘‘An Approach to Medical
Diagnosis Based on Conceptual Structures,”’ Proc. Sixth
Int’l Joint Conf. Aruficial Intelligence. 1979, pp. 134-142.

N. Martin et al., *‘Knowledge-Base Management for Ex-
periment Planning in Molecular Genetics,”’ Proc. Fifth
Int’l Joint Conf. Artificial Intelligence, 1977, pp. 882-887.

R. Davis, B. Buchanan. and E. Shortliffe, ‘*Production
Rules as a Representation for a Knowledge-Based Con-
sultation Program,"” Artificial Intelligence, Vol. 8, No. |,
1977, pp. 1545,

P.E. Hart, R. O. Duda, and M. T. Einaudi, 4 Computer-
Based Consulitation System for Mineral Exploration,
Tech. Report, SRI International, Menlo Park, Calif.,
1978.

J. Osborn et al., ‘*Managing the Data from Respiratory
Measurements,”’ Medical Instrumentation, Vol. 13, No.
6, Nov. 1979,

J. McDermott and B. Steele, ‘*‘Exiending a Knowledge-
Based System to Deal with Ad Hoc Constraints,”” Proc.

Seventh Int'l Joint Conf. Artificial Intelligence, 1981, pp.
824-828.

190

_>—,,

19.

20.

24.

25,

26.

29,

30.

3L

33

34,

3s.

36.

37.

8.

J. Mylopoulos, **‘An Overview of Knowledge Representa-
tion,"" Proc. Workshop Data Abstraction, Databases, and
Conceprual Modeling, June 1980, pp. 5-12.

M. Minsky, ‘*A Framework for Representing Knowl-
edge,”” The Psychology of Computer Vision, P. H.
Winston, ed., McGraw-Hill, New York, 1975, pp.
211-277.

N. J. Niisson, Principles of Artificial Intelligence, Tioga,
Palo Alto, Calif., 1980.

P. H. Winston, Artificial Intelligence, Addison-Wesley,
Reading, Mass., 1977.

R. C. Schank, ‘‘Conceptual Dependency: A Theory of
Natural Language Understanding,” Cognitive Psychol-
ogy, Vol. 3, No. 4, 1972.

R. C. Schank, Conceptual [nformation Processing,
North-Holland, New York, 1975.

L. K. Schubert, ‘“‘Extending the Expressive Power of
Semantic Nets,” Artificial Intelligence, Vol. 7, No. 2,
1976, pp. 163-198.

D.G. Bobrowand T. Winograd, ‘ An Overviewof KRL, a
Knowledge Representation Language,’’ Cognitive
Science, Vol. 1, No. 1, 1977, pp. 3-46.

[. Goldstein and S. Papert, ‘“‘Artificial Intelligence,
Language and the Study of Knowledge,'' Cognitive
Science, Vol. 1, No. 1, 1977, pp. 84-123.

S. E. Fahlman, VETL: 4 System for Representing and Us-
ing Real-World Knowledge, MIT Press, Cambridge,
Mass., 1979.

R. Brachman, ‘‘On the Epistemological Status of Seman-
tic Networks,"' Associative Networks: Representation and
Use of Knowledge by Computer, N. V. Findler, ed.,
Academic Press, 1979, pp. 3-50.

Bleich. ‘*Computer-Based Consultation,"”” American J.
Medicine, Vol. 53, 1972, pp. 285-291.

L.D. Ermanetal., ''The Hearsay-II Speech-Understand-
ing System: Integrating Knowledge to Resolve Uncertain-
ty,”" Computing Surveys, Vol. 12, No. 2. June 1980, pp.
213-253.

C. Hewitt, Description and Theoretical Analysis (Using
Schemara) of PLANNER: A Language for Proving
Theorems and Manipulating Models in a Robor, Tech.
Report 258, MIT Al Laboratory, 1972.

G. J. Sussman and D. Mc¢Dermott, **From PLANNER (o
CONNIVER—a Genetic Approach,”” AFIPS Conf.
Proc., Vol. 41-11, 1972 FJCC, pp. 1171-1179.

M. H.van Emdenand R. A. Kowalski, ‘‘The Semantics of
Predicate Logic as a Programming Language,’ J. ACM,
Vol. 23, No. 4, 1976.

D. McDermott, ‘“The PROLOG Phenomenon,"" Sigart
Newsletter, No. 72, July 1980, pp. 16-20.

N. J. Nilsson, Problem-Solving Methods in Aruficial In-
telligence, McGraw-Hill, New York, 1971,

R. A. Kowalski, Logic for Problem Solving, North-
Holland, New York, 1979.

R. V. Hogg and A. T. Craig, /ntroduction 1o Mathema-
tical Statistics, third ed., Macmillan, New York, 1970.

Hockstra and Miller, ‘‘Sequential Games and Medical
Diagnosis," Computers and Biomedical Research, Vol. 9,
pp. 205-215.

/

i'
£
-
-
-
»
n
L
1
"
L
¥
v
-
B
w
=
v

40. J. A. Reggia, P. Y.Wang, and D. S. Nau, ‘‘Minimal Set
Covers as a Model for Diagnostic Problem Solving,”
Proc. Medcomp 82, Sept. 1982, pp. 340-347.

41. R. Karp, ‘‘Reducibility Among Combinatorial
Problems,"" Complexity of Computer Computations, J.
W. Thatcher, ed., Plenum Press, New York, 1972, pp.
85-103.

42. J. Reggia, D. Nau, and P. Wang, Diagnostic Expert
Systems Based on a Set Covering Model, tech. report,
Computer Science Dept., University of Maryland, Oct.
1982.

43. E.W. Dijkstra, **A Note on Two Problems in Connection
with Graphs,'* Numerical Mathematics, Vol. I, 1959, pp.
269-271.

4. D. Huffman, “‘Impossible Objects as Nonsense Sen-
tences,' Machine [Intelligence 6, D. Meltzer and D.
Michie, eds., Edinburgh University Press, 1971, pp.
295-323,

45. M. Clowes, “‘On Seeing Things,"’ Artificial Intelligence,
Vol. 2, No. 1, 1971, pp. 79-116.

46. A. Newell and H. A. Simon, “‘GPS, a Program that
Simulates Human Thought,”’ Computers and Thought, E.
A. Feigenbaum and J. A. Feldman, eds., McGraw-Hill,
New York, 1963.

47. R. E. Fikes and N. J. Nilsson, *‘STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving,'" Arrtificial Intelligence, Vol. 2, No. 3, 1971, pp.
189-208.

48. D. L. McCracken, ‘‘Representation and Efficiency in a
Production System for Speech Understanding,"” Proc.
Sixth Int’l Joint Conf. Artificial Intelligence, 1979, pp.
556-561.

49. P. E. Hart, ““Directions for Al in the Eighties,” Sigart
Newsletter, No. 79, Jan. 1982, pp. 11-16.

50. C. Kulikowski, personal communication, 1981.

Dana S. Nau is an assistant professor of
computer science at the University of
Maryland. His previous experience in-
cludes research appointments at IBM
Research in New York and at the National
Bureau of Standards in Maryland. During
the latter appointment, he made recom-
mendations for the use of expert computer
system techniques in automared manufac-
turnng.

Nau has published papers in both biomathematics and artifi-
cial intelligence. His current research interests include searching
and problem-solving methods in artificial intelligence, and ex-
pert computer systems. .

Nau received a BS in applied mathematics from the Universi-
ty of Missouri at Rolla in 1974, and received an AM and PhDin
computer science from Duke University in 1976 and 1979,
respectively, where he attended on NSF and James B. Duke
graduate fellowships.

February 1983

191

0018-9162/83/0200-0063501.00 & 1983 IEEE

COMPUTER

