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Hierarchical Representatioh of Problem-
Solving Knowledge in a Frame-Based
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In most frame-based reasoning systems, the information being manipulated is represented
using frames, but the problem-solving knowledge that manipulates the frames is repre-
sented as production rules. One problem with this approach is that rules are not always a
natural way to represent knowledge; another is that systems containing lots of rules may
suffer from probiems with “exponential blowup™ in the amount of computation required.
This paper describes a way to address these problems by organizing the problem-solving
knowledge not as rules, but in a particular kind of frame hierarchy. The approach described
in this paper has been implemented in a problem-solving system called SIPP (Semi-
Intelligent Process Planner), which produces plans of action for the manufacture of metal
parts. The paper gives an overview of SIPP, compares its knowledge representation and
problem solving methods to approaches used in other knowledge-based systems, and de-
scribes goals for further research. '

L. INTRODUCTION
In most frame-based reasoning systems, the information being manipulated

18 stored in the form of frames, but the problem-solving knowledge that manipu-

lates the frames is stored separately in the form of production rules. One problem
with this approach is that rules are not always a natural way to represent knowl-
edge; another is that systems containing lots of rules may suffer from problems
with “exponential blowup” in the amount of computation required.

SIPP (Semi-Intelligent Process Planner) addresses these problems by organ-
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izing the problem-solving knowledge not as rules, but in an unusual frame-based
hierarchical organization. Problem solving in SIPP is done by means of a modified
Branch and Bound procedure somewhat similar to forward chaining, which
produces sequences of frames which form plans of action. For SIPP’s application
domain, this approach appears more natural than rule-based representation—and
it can also be used to avoid problems with exponential blowup.

SIPP was developed for use in a manufacturing task called generative process
planning. SIPP produces least-cost plans of action for the creation of metal parts
using metal removal operations, based on knowledge about the intrinsic capabili-
ties of each manufacturing operation. It is anticipated that the approach used in
SIPP will be useful in other problem domains as well.

This paper gives an overview of SIPP, compares its knowledge representa-

tion and problem solving methods to approaches used in other knowledge-based

systems, and discusses the virtues and drawbacks of Prolog as a language in which
to write such systems. The paper also discusses the implications of this work for
further research on Al problem solving, geometric reasoning, and automated
manufacturing. '

H. PROCESS PLANNING

Process planning (also called manufacturing planning) is the task of deter-
mining what machining processes and parameters are to be used in manufacturing
a part. Process planning is distinct from production planning, which involves
taking the process plans for all parts to be produced and scheduling a factory’s
resources to produce these parts.

Devising a process plan automatically using the part’s specifications (e.g., a
full technical drawing) is a very difficult problem. However, computer systems
which provide even partial automation of process planning yield substantial
benefits in the efficiency of a job shop. This promise hasled to substantial research
in computer-aided process planning.

In most existing computer-aided process planning systems, process selection
1s based on the use of Group Technology (GT) codes.* A GT code is a numerical
code which a one may assign to a part, based on various of the part’s features. In
general, more than one part will have the same GT code-—but parts which have
the same GT code will be “similar” in the sense that they are produced using

- similar machining processes. Before such a process planning system can be used,
one must decide upon an appropriate GT coding scheme, and in addition one
must group similar parts into part families, with each family corresponding to one
or more GT codes.

For each part family F, one must then prepare a standard process plan for
F—i.e., a process plan for some representative part in F. This plan will presuma-
bly be similar to the process plans for other members of F. When a process plan for
some part P is desired, a human enters the GT code for P into a database retrieval
system. The system uses the code to find the part family F in with P belongs, and
retrieves the standard process plan for F. The user then modifies this plan by hand

to produce a process plan for P.

Systems using this approach, such as CAPP™ and MIPLAN? are called
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variant process planning systems. Such systems are quite useful in industry, as
they allow process plans to be made very quickly. However, fuller automation of
process planning will require more complete information about the part than just
a GT code. For example, detailed information must be available about each
surface to be machined.

A few process planning systems have been developed experimentally which
use as input a representation of each of the machinable surfaces of the part.*

CPPP'>® is a system which does process selection and. sequencing for
rotational (lathe-turned) parts. To use CPPP, a user gives CPPP the name of a
“part family” containing the desired part, and for each surface to be machined,
gives CPPP a code describing the surface.

The part family name is used to retrieve a process model, which is a simple
computer program written in a language designed for that purpose. The process
model must have been previously written and debugged by a human process
planner, and it must be general enough to handle all the possible part features in
the family. Because of the restrictions of the process planning language, the
process model amounts to a decision tree in which information about the surfaces
is used to select processes and put them into the appropriate order,

APPAS? is a system which does process selection for prismatic parts. To use
APPAS, the user enters for each surface a code describing the surface. APPAS
then uses knowledge of the capabilities of various processes to select a process for
each surface. APPAS considers only individual surfaces, and does not consider
the geometrical relationships which may occur among the surfaces.

"CADCAM?? is an extension of APPAS. It is limited to hole-making pro-
cesses. Its main features are a graphics interface which allows the user to designa
part interactively, and an encoding of the process planning decision logic into

~ decision tables. As soon as a design is completed, a detailed process plan can be

generated which provides quick feedback to the designer.

TIPPS® is a process planning systemn consisting of modules for input, process
selection, parameter selection and report generation. The input to TIPPS is a
modified boundary model of a part in an IGES-like format which has been
augmented (to include information about tolerances and surface conditions).
Process capabilities are modeled in a language called PKI in which each process is
modeled in an if-then rule. The user identifies the machining surfaces interactively
on a CRT display. After surfaces are identified, the system generates a process
plan using process knowledge. The system is limited by the process modelling
language.

The use of rule-based reasoning for process planning is being tried experi-
mentally in GARI” and TOM" Another system? is said to use some elementary
expert system techniques, but the paper describing it does not give any further
details. Each of these systems has various limitations on the kinds of process plans
it can produce.

*By a machinable surface we mean any peometric surface or combination of geometric
surfaces which can be produced by a single machine tool operation. For example, a hole is a
single machined surface, although it consists of both a cylinder and a cone. For more
information on machining operations, sce Ref. 2, Chap. 1.
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As discussed in Refs. 17 and 19, more sophisticated approachesto [
process planning will require sophisticated techniques for representing ad yy
soning about three-dimensional objects, such as the techniques describes 4
Requicha’s work.?2 Qur ultimate goal is to develop a system which ix

the use of Al techniques with solid modelling techniques such as those mg |

in PADL-2.2* SIPP represents a first step in this direction.

HI. REPRESENTING STATIC KNOWLEDGE

In order to represent knowledge, SIPP includes a frame-based knoniedy
representation language. Except for the fact that the frame system was by 3
Prolog, the way that static knowledge is represented in SIPP is not particalary
~new. SIPP’s frame system is reminiscent of several other such systems (for o
ample, Ref. 21). Message-passing of the kind used in Smalftalk and Flavor i
example, see Ref. 26) was not implemented in SIPP because it was not necewss
forour gurposes; however, elementary message-passing would be relativeh ae
to add.

SIPP’s frame system allows the user to define two types of objects: izems s
types. Types correspond to sets, and items correspond to members of wa
Normally, the knowledge about a problem domain consists of declaratioes &
types, and the data used in solving a specific problem in that domain (both &
_ input data defining the problem and the intermediate data created whik %
probiem is being solved) consists of items. Each type oritem is defined by a fram

Since SIPP’s frame language was was implemented using Prolog, its systa
is reminiscent of Prolog syntax. However, the statements in this languag
are interpreted by the frame system rather than by Prolog. As an cxazpk
the frames shown below describe a hierarchical structure in which a flat_surtax
is a polyhedral_surface, a polyhedral surface is a non_cylindrical surfacx. s
non_cylindrical_surface is a surface, and a surface is a thing,

type(thing, nil).
slots(thing,|
[parent, X, item(X,-)],
[pathcost, X, number(X)],
fgoal, X, item(X,.)],
[successes, X, list of atoms(X)],
- [status, X, true],
[comment, X, true}],
[active, X, true],
[precedence, X, number(X)]
defaultvals(thing, [successes=][ ]]).

type(surface, thing).

_slots(surface, |
[surface_finish, X, number(X)),
[pos_tolerance, X, number(X)],
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D.

norm={1,0,0],
flatness=0.1,
pos.tolerance=0.1,
neg-tolerance=0.1,
surface_finish=100,
adjacent={f2 f3 4 £5]

Thea 8 will inherit the slot value
 mstead define ] as:

(11, Rat_surface).

shorvals(fl, |

porm=([1,0,0],
flatness=0.1,
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[neg-tolerance, X, number(X)],
[wallthickness, X, number(X)],
/* wall_thickness=how much deeper than the stock or
casting */
[contains, X, list_of_atoms{X)],
/* surfaces contained by this one (e.g., holes & slots) */
[adjacent, X, list_of_atoms(X)]
/* all surfaces adjacent to this on¢ *

D
g,pe(non.cylindricaLsurfaoe, surface).
" ype(polyhedral surface, non_cylindrical. surface).
do(s(polyhedral..Surface, {
{norm, [X.Y,Z], (number(X),number(Y),number(Z))],
[Datness, X, number(X)],
[angularity, X, number(X)],
[paratielism, X, number(X)]

b
type(flat_surface, polyhedral_surface).

The “slots” entries for polybedral_surface, and thing specify what slots these
abyects have, as well as what kinds of data values are permissible to be stored in

#ese slots. Slot declarations are inherited from above; for example, since a

L surfaceisasurface, aflat_surface has aslot called adjacent. Multipleinheritance
ancestors) is also supported in SIPP,

¢, inheritance from more than one set of
sthough it is not needed in the current knowledge base.

The “defauitvals” entry for thing specifies a default value for one of its slots.
Any time a default value is specified for a type, it may be overridden at lower
kevels of the hierarchy. For example, suppose we define the item fl as:

item(fl, flat_surface).
slotvals(fl, [
norm={1,0,0],
flatness=0.1,
pos.tolerance=0.1,
neg_tolerance=0.1,
surface_finish=100,
) adjacent=[f2,13,f4,5]
“ﬂ_ﬂ fl will inherit the slot value “successes={]" from thing. However, suppose
we mstead define fl as: ' '

item (fl, flat_surface).

slotvals(fl, |
norm={1,0,0},
flatness=0.1, .
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surface_finish=100,
adjacent=(f2,£3,f4,£5],
successes=[face_mill 1]
D.

Then the specified value “successes=[face_mill~.11” will override the inherited
value.

IV. REPRESENTING PROBLEM-SOLVING KNOWLEDGE

The way that SIPP represents problem-solving knowledge is a bit more
unusual. In most knowledge-based problem-solving systems that use frames,
problem-solving is done by manipulating the frames using production rules of the
form “IF conditions THEN action.” There are two problems wi
the domain of process planning. The problems with combinatorial explosion in
large rule bases are well known. In addition, the rule-based approach can be
somewhat unnatural: someone who is writing down a set of preconditions for ap
operation such as face milling will probably find it more natural to concentrate on
the characteristics that distinguish it from other kinds of milling operations, rather
than including characteristics that distinguish it from every other kind of machin-

ing operation. ' '
To address these problems, SIPP does not use production rules, but instead

represents its problem-solving knowledge hierarchically within the frame system.

In the example given below, rough_bore is a subtype of bore, which is a subtype of
hole_improve_process, which is a2 subtype of hole_process. This means that
rough_bore is applicable for creating a particular surface H only if the restrictions

for hole_process, ho!e_improve.process, bore, and rough_bore are ali satisfied
by H.

type(hole_process, process).
relevant(hole_process, hole). '
defaultvals(hole_process, [cost=1]). /* at least the cost of twist_drill */
restrictions(hole_process, H):- . . | various geometric restrictions
type(hole,.improv&.process, hole_process).
' defaultv_als(ho]e._improve_process. [

precedence=20,

projected_cost=1, /* at least the cost of twist_drill */

cost=3 /* at least the cost of rough bore */

re'strictions(hole_jmprove..prqcess, H):- H?special_features €q none.
. type(bore, hole_improve_process)_.
defaultvals(bore, [cost=3, precedence=22]).
~ testrictions(bore, H) :- . .. various tolerance restrictions

type(rough_bore, bore).
restrictions(rough_bore, H) :. H?pos_tolerance gte 0.002,
H?neg_tolerance gte 0.002. '
actions(rough_bore, P, H) :-

copy_item(H,G),

e rn. . DO 2
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G:diameter gets H?diameter - 0.005,
G:pos_tolerance gets 1,

G:neg tolerance gets 1,
G':straightness gets 1,

G:roundness gets 1,

G:parallelism gets 1,
G:true_position gets 1,
G:surface_finish gets 125,
subgoal(P,G).

This example illustrates how the frame manipulation language allows the
user to retrieve and modify slot values. “eq” and “‘gte” are similar to Prolog’s “=""
and “>="" functions, respectively, except that they interpret constructions such as
H:pos_tolerance and H7pos_tolerance asreferencestothe values of slotsinthe item
H. The difference between H:pos_tolerance and H?pos_tolerance is that if the

. pos_tolerance slot for H doesnothave a value, then H:pos..tolerance causes an error
: but H?pos_tolerance asks the user for the value. “gets” is an assignment operator;

for example, *“H:pos_tolerance gets 1" puts the value 1 into the pos_tolerance slot
in the item H.

This example also illustrates how the user may specify actions associated with
the processes. Suppose SIPP is trying to make some hole H (H will be represented
by an item frame). If SIPP decides to consider rough boring as a way to make H,
then it will create an item frame P describing the particular rough_bore process to
be used to create H. Then the actions statement for rough_bore will be invoked

~ (how and when this happens will be described later in another example). Rough

boring is a process which can be used to improve various characteristics of a
hole—but the role has to be there already in order for rough boring to be used on
it. Since the frame H describes the hole which is to be present after rough boring is
done, the actions statement first creates a frame called G to describe the hole
which must be present before rough boring is done. Initially, G is an exact copy of
H—but some of G’s slot values are now changed by the actions statement. Since
the purpose of rough boring is to improve various surface characteristics such as
roundness, parallelism, etc., the actions statement sets these slots in G to less
stringent values than the values that appear in H. In addition, since rough boring
increases the diameter of a hole, the actions statement sets the diameter of G to a
smaller value than the diameter of H. Finally, the actions statement tells SIPP that
G must be created before the rough_bore process P can be done.

The cost slots used in the frames above do not denote exact dollar-values for
the processes. Instead, they are relative costs which are derived from actual
process costs and shop preferences. Depending on the particular machine shop,
one might want to specify different cost values than the ones given above. How
these cost values are used during problem solving is described in the next section.

V. PROBLEM-SOLVING STRATEGY

SIPP creates a process plan for an object by creating process plans for each of
its machinable surfaces. For each machinable surface, SIPP uses a modified
least-cost-first Branch and Bound search to find a least-cost sequence of processes
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for making that surface. This procedure is shown below; the lines are numbered
for reference in the text.

procedure make(s):
(P1)  ACTIVE :={[ps]|pisa process type that is relevant for creating a
surface such as s}

(P2)  loop

(P3) if ACTIVE is empty, then retarn failure

(P4) select r=[p1, 52, p2, 53, p3, ...] as described in the text, and
remove it from ACTIVE

(P5) if the restrictions associated with P1 are satisfied then begin

(P6) expand ¢ as described in the text

®7n if success has been achieved, then return the suc-

cessful plan

(P8) end

(P9)  repeat

end make

As with most Branch and Bound procedures, SIPP uses an “active list” of all
alternative process plans being actively considered. Each plan consists of some
sequence of processes, along with the surfaces these processes create, culminating
in the creation of the desired surface. For example, if we let ¢ = [p1, 52, P2, 53,
P3, 5], then ¢ represents the following plan:

first use process Pl to create a surface 52,
then use p2 to transform s2 into 53,
then use p3 to transform 3 into s.

Each of p1, 52, p2, 53, p3, and s are represented by frames.
SIPP expands plans backwards from the ultimate goal of creating s, until a
- complete and successful plan for creating s is found. Since this expansion is done
backwards, the processes P2, p3,. .., in the plan ¢ will have already been
completely determined, but the process pl may not yet be completely deter-
mined. In this case p1 will be a type frame (such as hole_process or mill) that
represents some class of processes. If the restrictions specified in the frame for p1
are not satisfied, then t has no expansion; otherwise, the expansion of t consists of

the set of plans ' '

{{pY', 52, p2, 53, p3, 5} I PY’ is a subtype of p1}.

_ If p1 has been entirely determined—and if the restrictions given in the frame
for p1 are satisfied—then the actions specified in the frame for p1 will state one of
the following:

(1) thatplisaprocess that can be performed directly (in which case SIPP has
found a complete and successful process plan).

(2) that some other surface must first be present in order for pi to be
performed (in which case the processes necessary to create this surface
may or may not also be given). For example, if 52 is a hole and plisa
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rough-boring process, then some hole s1 must already be present so that
p1 can be done to 51 to create s2. In this case, the expansion of ¢ is

{{p0, 51, p1, 52, p2, 53, p3, 5] | pO is relevant for creating a surface
such as s1}.

SIPP selects plans for expansion one at a time. Which plan is selected is
determined by means of lower bound on the costs of the plans. For example, the
lower bound on the plan ¢ described above is

LB(?) = the costs of p2 and p3
+ a lower bound (or the exact cost) of p1
+ a lower bound on the cost of any processes that must be done
before pl.

The costs of p2 and p3 are given in the slots p2?cost and p37cost. If pl is
completely determined, then p1?cost contain its exact cost; otherwise, p1?cost
will contain a lower bound on its cost. p1?projected_cost will contain a lower
bound on the cost of any processes that must be done before p1. Thus the lower
bound is

LB(f) = pl?projected_cost + p1?cost + p22cost + p32cost.

SIPP always selects the plan having the least lower bound. -

‘To illustrate the way SIPP’s problem solving strategy works consider the
simple knowledge base shown below, which contains frames reminiscent of (but
much simpler than) the frames actually used in SIPP. This example inciudes four
frames called process, hole_process, twist_drill, and rough_bore. The statements
are numbered for reference in the text.

(F1)  type(process, thing).

(F2)  slots(process, [[projected_cost, X, number(X)], [cost, X,
number(X)]}).

(F3)  defaultvals(process, [projected_cost = 0, cost = o).

(F4)  type(hole_process, process).
(F5)  relevant(hole_process, hole). _
(F6)  slots(hole_process, {[cost, X, number(X)], [projected_cost, X,
‘aumber(X)]D.

(F7)  defaultvals(hole_process, [cost = 0.5, projected_cost = o).
(F8)  restrictions(hole_process, H) :-

H?contained_in eq Surface,

Surface?type eq flat,

- Hnorm eq Hvector,
parallel(Hvector,Svector).

(F9)  parallel([Hx,Hy,Hz].[Sx,Sy,Sz]) :- Hx*Sy eq Hy*Sx, Hx*Sz eq
Hz*Sx, Hy*Sz eq Hz*Sy.
' /* parallel vectors have proportional components */
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(F10)  type(twist_drill, hole_process).

(F11)  restrictions(twist_drill_process, H) :-
Hdiam gte 0.0625,
H?diam Ite 2,
Hdepth Ite 6.

(F12)  actions(twist_drill,P,H) : - success(P).

(F13)  type(rough_bore, hole_process).

(F14)  defaultvals(rough_bore, {
projected_cost = 0.5, /* at lest as much as twist_drill */
cost = 1]).

(F15)  actions(rough_bore,P,H) :-
copy_item(H,G),
G:diam gets H?diam - (0.01 * H?diam"0.5),
subgoal(P,G).

Statement F6 sets up two slots for hole_process, called cost and projected_cost.
Since twist_drill and rough_bore are both subtypes of hole_process, they also
have these slots. The twist_drill frame inherits from hole_process the default slot
values given in statement F7, but in the rough bore frame, these values are
superseded by the values given in statement F14.

Statement F5 declares that hole_process is relevant for making holes. How-
ever, hole_process will be applicable for creating some hole h only if the restric-
tions given in statment F8 are satisfied when H = k. Since twist_drill and
rough_bore are both subtypes of hole_process, they will not even be considered
unless statement F8 is satisfied—and furthermore, twist_drill will be applicable
only if statement F11 is satisfied.

-Suppose we want to create some hole k. The user may either supply the

necessary information about 4 beforehand in the form of an item frame describing

- h—or else the user may omit this information, in which case SIPP will create an

~ item frame for h as it goes along, asking the user for information about h as
needed.

We can start SIPP out by entering the command “make A.” This starts SIPP

on a least-cost-first search for ways to make A. In statement P1 of the make

-procedure, SIPP initializes the active list. The only kind of process that is relevant
for creating h is a hole_process (see statement F5), so SIPP puts onto the active
list the plan [hole_process, h]. The lower bound for this plan is

LB(hole_process, h}])
= hole_process?cost + hole_process?projected_cost
=05+ 0.0=05.

[hole_process, A] is the only member of the active list, so in statement P4 it is
-selected and removed from the active list. In statement P35, SIPP looks at the
restrictions for hole_process to see if they are satisfied by h. Thus statement F8 is
~evaluated with H = h. Statement F8 says that A must be contained in a single

- surface which must be flat, and that the norm of the surface must be parallel to the

axis of A.
Suppose these restrictions are satisfied. Then in statement P6, SIPP puts all
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subtypes for hole_process onto the active list, as alternate plans for creating 5.
From statements F10 and F13, there are two subtypes for hole_process: twist_dril
and rough _bore. twist_drill?cost and twist_drill?projected_cost are inherited
from hole_process, and thus [twist_drill, 4] goes onto the active list with

LB([twist_drill, A])
= twist.drill?projected_cost + twist_drill7cost
=0+05=05.

[rough_bore, k] goes onto the active list with

LP([rough_bore, k])
= rough_bore?cost + rough_bore?projected_cost
=1+05=15.

Success has not yet been achieved, so SIPP returns to the beginning of the
loop. In statement P4, it removes from the active list the plan having the least
lower bound: [twist_drill, k).

Suppose the restrictions associated with twist_drili (statement F11) are satis-
fied by . The twist_drill frame has no subtypes, but it does have actions (statement
F12), and these actions are evaluated in statement P8. The “success” predicate in
statement F12 tells SIPP that it has found the least-cost way to create h: twist
drilling at a cost of 0.5.

Suppose, on the other hand, that the restrictions associated with twist_drill
are not satisfied——or equivalently, suppose that the user is dissatisfied with twist
drilling, and wishes SIPP to look for alternate solutions. Then SIPP returns to
the beginning of the loop again, and selects the rough_bore plan (which has 1.5
as its lower bound). If rough_bore had any restrictions, they would be evaluated
at this point—and if they failed, SIPP would inform the user that there was no
other way to make k. However, since rough_bore has no restrictions, SIPP goes
ahead and executes the actions given in statement F15, with P = rough_bore
and H = h.

Statement F15 sets up the subgoal of creating a hole which is identical to h
except that it has a smaller diameter than h. In particular, “copy-item(H,G)”

- creates an item (say, A1) which is an exact copy of H, and binds the variable G to

h_1. Thus “G:diameter gets H?diameter - (0.01 * H/diameter"0.5)” sets the
value of the diameter slot in h_1 to 0.01 times the square root of the diameter of &.
“subgoal(P,G)" tells SIPP that the creation of A1 must be accomplished before
rough_bore can be performed—so at this point, SIPP needs to consider ways to

create h_1.*
Just as it did initially for h, SIPP puts onto the active list every process type

‘that is relevant for creating any surface type s such that £_1 is of type 5. From

statement F5, hole_process is relevant to creating holes, so since i_1 is a hole,
the plan [hole_process, A_1, rough_bore, 4] is put onto the active list with the
folowing lower bound:

*SIPP also allows the user to specify that the creation of of a surface G can only be
accomplished using some specific process. This can be done by saying, for example,
“specific_subgoal(P,G,rough_face_mill)"” rather than “subgoal(P,G).”
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LB([hole_process, h_1, rough_bore, A])
= hole_process?projected_cost + hole_process?cost +
; rough_bore?cost
, : =0+05+10=1.5.

This is the only plan on the active list, so it is selected and removed in statement
P4. If the restrictions for hole_process are satisifed byhA_1, thenin statement P6 (as
was done with k earlier), the plans of creating h_1 using twist._drill and bore are
placed on the active list, this time with the following lower bounds:

LB([twist_drill, £_1, rough_bore, AJ)
= twist_drill?projected._cost + twist_drill?cost + rough_bore?cost
=0+05+10=15

LB({rough bore, k_1, rough_bore, A))
= rough.bore?projected_cost + rough_bore?_cost +
rough_bore?cost
=05+10+1.0=25.

SIPP continues in this manner until it finds a successful process plan.

One difference between this example and the real operation of SIPP is as
follows: In SIPP’s knowledge base, the frame describing rough_bore includes
information telling SIPP that rough_bore is not to precede another instance of
rough.bore (nor various other processes). Thus SIPP would be intelligent enough
not to consider plans such as [rough_bore, h_1, rough bore, 4j.

VL. DISCUSSION
A. Current Status

SIPP is currently up and running as a prototype system whose knowledge
base contains about 55 frames; details about its implementation are described in
Ref. 18. SIPP can either read prepared data from a file, or (if some or all of this
data is omitted) run interactively, asking the user for any needed information.
Various user features have been implemented—such as the ability to go back and
produce other process plans for a machinable surface if the user wants to see
alternatives to the first process plan the system produces.

B. Geometric Reasoning

Currently, SIPP’s reasoning capabilities about tolerance requirements are
reasonably good—but (as with other existing process planning systems) its geo-
metric reasoning capabilities are quite limited. For example, when drilling a hole
or creating a pocket, SIPP may pay attention to the surface s that contains the hole
or pocket, but does not look at any other surfaces of the object. Thus if the object
is shaped in such a way that the surface s is inaccessible, SIPP will not realize this.

~ The addition of sophisticated geometric reasoning capabilities is a ‘major

* future goal. This goal will require the integration of SIPP with a solid modeling

-system, the development of a feature extraction system to obtain relevant surface

features from the solid modeling system, and the solution to various problems in

subgoal interaction in the creation of machined surfaces. We are already doing
research related to some of these problems, 212
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C. Hierarchical Knowledge Representstion

Even though SIPP’s expansion of plans proceeds backwards from the ulti-
mate goal, the way expansion is done is closely related to forward chaining. As
with forward chaining, one first evaluates the restrictions associated with a frame,
and if those restrictions are satisfied, one then either evaluates its actions (as
would be done in a forward-chain system) or considers its subtypes. With suitable
modification, the problem-solving knowledge used in SIPP could probably be put
into a forward-chaining rule-based system as OPS-5'° or YAPS.!

However, there are certain advantages to the hierarchical approach used in
SIPP. Earlier, we mentioned that SIPP’s approach addresses two problems with
rule-based systems: the unnaturalness of production rules in the process planning
domain, and the problems with “exponential blowup™ that occur in rule-based
systems that contain lots of rules. We now discuss these issues in more detail.

1. Naturalness of Representation

Our initial impression of SIPP’s hierarchical representation technique is that
it appears quite naturat to use: Hierarchical representation of the problem-solving
knowledge has many of the same advantages as hierarchical representation of
static information. For example, by declaring class of processes such as
hole_process or face_mill to be a subtype of some other class, one can use all of the
properties of the larger class without having to remember explicitly what those
properties are.

There have also been a few problems in using the frame system as it was
implemented in SIPP, and these have given us ideas for possible extensions to its
capabilities—particularly in the ways that inheritance is done. As with most other
frame systems, SIPP frames inherit properties from above in a depth-first
manner—but this type of inheritance is not always general enough. For example,
suppose hole_process is a type with two different subtypes: twist_drill and
spade.drili. Suppose further that twist_drill?cost = 1.0 and spade_drill cost = 1.5.
Since hole_process?cost is supposed to be a lower bound on the cost of anything
which is a hole_process, one would want to synthesize hole_process?cost from
below, as the minimum of {P?cost | P is a subtype of hole_process}. In general,
whenever a slot value is not explicitly given, it would be useful for the frame to

. contain information telling exactly how that particular value should be inherited,

and from where. Onc of our students is currently putting this feature into a
second-generation version of SIPP which is being written in Lisp.!

2. Exponential Blowup

In order to decide which rules are applicable to a given problem state,
forward-chaining production rule systems normally look at each of their rules,
evaluating the preconditions of the rules to determine which rules are applicable.
If the system contains many rules, this can cause a problem with “exponential
blowup,” in which large amounts of time are expended evaluating the precondi-
tions of each of the rules. This problem has been alleviated in systems such as
OPS-5'° and YAPS!' by providing ways to determine whether a rule is applicable
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without having to reevaluate all of its preconditions each time around—but if the
system contains a large number of rules, exponential blowup will still occur.
Another approach, which is used in KEE,? is to provide facilities whereby the
user can divide a set of rules into smaller subsets such that each subset § is relevant
for a different domain D.* Given a problem to solve, the system first determines
which problem domain the problem is in, and then it uses the rule set § for that
domain, ignoring all the other rules. But if § is a large set, exponential blowup can
still occur..

Suppose a rule-based system is trying to solve a problem in some problem
domain D, and suppose S is the set of rules for D). Each time the system applies a
tule, this will change the system’s current state C. The problem of exponential

-blowup would be greatly alleviated if the system could always tell from the
description of C that only some small subset S¢ of the rules in § were relevant to
C—for then the system could temporarily ignore the other rules in S. The
knowledge representation scheme used in SIPP provides a convenient and natural
way to do this.

Finding the set rules relevant to the current state of a rule-based system
corresponds in SIPP either to (1) retrieving the subtypes of some process type, (2)
retrieving all process types relevant to the creation of a surface type (this occurs
when a subgoal statement is encountered), or (3) retrieving a single specific
process type (when a specific_subgoal statement is encountered). In each case,

" only a few of SIPP’s frames are relevant—and the information about which frames

are relevant is given explicitly in SIPP’s frame system. Unfortunately, Prolog’s
way of retrieving information from its database does not take advantage of this
information to prevent exponential blowup—but a second-generation version of

SIPP is being writted in Lisp which will take advantage of this information.

D. Pros and Cons of Using Prolog

SIPP is currently implemented in C-Prolog. At this point, we are building a
second-generation version of SIPP in Franz LISP, and intend to do further work
using the LISP version instead of the Prolog version. Below we discuss some of the
considerations that went into this decision—both the advantages and the disad-
vantages of Prolog in comparison to Lisp.

For the most part, we did not make use of Prolog’s backtracking capabil-
ities—but intead used Prolog as a general-purpose AI language in which we
wrote our own control strategies. This was surprisingly easy for the most part—
often easier than it would have been in Lisp. The ability to bind variables
using unification made for particularly nice coding in some cases. In addition,
interpreted C-Prolog code runs as fast in some cases as the equivalent compiled
Franz Lisp code!

Programming in Prolog does not appear to us to be “logic programming.”
Certainly, Prolog programs for various theoretical problems may be considered to
be logic programs, but practical problems require non-logical predicates such as

*By “problem domain,” we simply mean some class of problem_s.'
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repeat, read, wrile, assert, retract, fail, and the cut—as well as Prolog’s left-to-right
evaluation of clauses. Without these features, Prolog would not be a particularly
useful programming language—and in fact, many of Prolog’s current drawbacks
are because these features do not always give sufficient functionality. Below are
the main problems we encountered with Prolog:

(1) Prolog allows no way to change the value of a variable once it is bound.
Although there are often ways to achieve the same effect in other ways,
this limitation sometimes proves very inconvenient.

(2) Prolog has no direct way to handie loops. If this can be handled by
replacing a loop iteration with a backtrack or a recursive call, things
usually work out rather well—but this approach is not always reasonable.
The only other alternative is a repeat-fail loop—which loses the variable
bindings every time the loop begins its next iteration.

(3) Prolog is a poor language for writing large systems because there is no
way to set up subroutine packages in which only certain routines are
available to the user. Instead, all Prolog definitions are global. Until
recently, most Lisp implementations had this same drawback, but recent
Lisp implementations (such as the latest release of Franz Lisp) provide
the user with ways to define packages.

(4) Students who were originally trained to program in a conventional pro-
gramming language such as Pascal seem to find it easier to learn Lisp than
Prolog—mainly because Lisp is less of a departure from conventional
languages than Prolog is.

(5) Even with the above problems, Prolog is a sufficiently nice language that
we still would have considered doing further work on SIPP in Prolog,
were it not for the need to integrate SIPP with solid modeling and graph-
ics software. This would require interfacing Prolog to subroutines written
in other languages. This feature is not available in the Prolog system
which we have, and we are told that it does not work very well in Prolog
systems which do have it.

Probably most of these problems are present simply because Prolog is an
immature language. Certainly the early implementations of Lisp were rather
primitive capabilities when compared with the Lisp systems that gre available
now. We hope and anticipate that Prolog will evolve in such a way that many of
our current criticisms of it will become irrelevant.
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