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SIPS: AN APPLICATION OF HIERARCHICAL KNOWLEDGE CLUSTERING
TO PROCESS PLANNING

D. A. Nau* and M. Gray
Computer Science Department
University of Maryland
College Park, Maryland

This paper describes SIPS, an Al system which selects machining operations for the creation
of metal parts. SIPS is a successor to SIPP, which was described at a previous ASME conference.
Whereas SIPP was intended purely as a prototype, SIPS is intended to be at the core of a useable
process planning system.

SIPS uses knowledge-based reasoning techniques to make process plans completely from
scratch, using only the specification of the part to be produced and knowledge about the intrinsic
capabilities of each manufacturing operation. SIPS incorporates a knowledge representation
language written in Lisp, a best-first Branch and Bound strategy for finding process plans of
least possible cost, and a new knowledge representation technique called hierarchical knowledge

clustering.

1 Introduction

This paper describes a generative process planning system called SIPS (Semi-Intelligent Process Se-
lector), which uses frame-based reasoning techniques to select machining processes for the creation
of metal parts using metal removal operations. SIPS uses knowledge-based reasoning techniques to
make process plans completely from scratch, using only the specification of the part to be produced
and knowledge about the capabilities of each manufacturing operation.

In most frame-based reasoning systems, the data manipulated by the system is represented
using frames, but the problem-solving knowledge used to manipulate this data is represented as
production rules. Such rules are not always a natural way to represent knowledge—and in addition,
large rule bases may cause severe problems with inefficiency as the system repeatedly searches
the rule base to find applicable rules. SIPS addresses these problems using a new knowledge
representation technique called hierarchical knowledge clustering.

SIPS is a successor to a previous system called SIPP [17,18]. Whereas SIPP was intended
purely as a prototype, SIPS is intended to be at the core of a useable process planning system.
It is being integrated into the process planning portion of the AMRF project at the National
Bureau of Standards, and plans are underway to integrate it with systems being built at General
Motors Research Laboratories. This paper gives an overview of SIPS, and describes its knowledge
representation and problem solving methods.

*This work was supported in part by an NSF Presidential Young Investigator Award to Dana Nau, with matching
funds from IBM Research, General Motors Research Laboratories, and Martin Marietta Laboratories; and through
sabbatical arrangements with the National Bureau of Standards and General Motors Research Laboratories.
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2 Background

Most commercially available computer-aided process planning systems are based on the use of
Group Technology (GT) codes [4], which are used to classify a part as being in a family of similar
parts. In such systems, when a process plan for a part is desired, a human user enters the GT code
for the part into the system, and the system retrieves a process plan which was previously used for
some other similar part. The process plan is then modified by the user to produce a plan for the
desired part. Examples of such systems are CAPP [11] and MIPLAN [12].

Generative process planning systems have been developed experimentally which use as input a
represention of each of the machinable features of the part.! Examples include CPPP [13,8], APPAS
[22], CADCAM [3,6], and TIPPS [5]. Due to the difficulty of truly generative process planning,
each of these systems has various limitations on the kinds of parts for which it can produce process
plans.

More sophisticated approaches to generative process planning will require sophisticated rep-
resentational and reasoning techniques [15,16]. The use of Al rule-based reasoning is being tried
experimentally in Gari [7) and TOM [14]. Another system [21] is said to use some elementary
expert system techniques, but the paper describing it does not give any further details. Each of
these systems has various limitations on the kinds of process plans it can produce.

3 Knowledge Representation

In order to represent knowledge, SIPS includes a frame system which was written in Lisp. Frames
are somewhat similar to Pascal record structures: Pascal records have fields which have both names
and values, and frames have slots which have both names and values. However, frame systems also
have various other features. For example, slot values can be inherited from “parent” frames if the
values are not explicitly given, and frame systems usually allow the user to define “daemon” proce-
dures which cause various computations to occur spontaneously whenever appropriate conditions
are met.

SIPS’s frame system incorporates several worthwhile advances over the frame system used in
SIPP. These include more flexible and general ways of handling inheritance, and a full implemen-
tation of the hierarchical knowledge clustering idea (which was explored only experimentally in
SIPP).

SIPS has two basic types of frames: archetypes and items. Archetypes correspond roughly to
sets, and items correspond to members of sets. Normally, the knowledge about a problem domain
consists of archetypes, and the data used in solving a specific problem in that domain (both the
input data defining the problem and the intermediate data created while the problem is being
solved) consists of items. Both itemns and archetypes have slots into which values can be stored and
retrieved. The frame system has general inheritance mechanisms which allow slots and slot values
either to be inherited in the usual way from parent to child, or to be computed as arbitrary functions
of values stored in other frames (for example, sce the $ifneeded function described below).

3.1 Static Knowledge

The way SIPS represents static knowledge (e.g., representations of three-dimensional objects) is
similar to most other frame systems. The following example is considerably simpler that what
actually appears in SIPS’s knowledge base, but it will give the reader an idea how SIPS repre-
sent static knowledge. More significant is how SIPS represents problem-solving knowledge (e.g.,
knowledge about the capabilities of machining processes); this will be discussed in Section 3.2.

(defarchetype surface () (
(surface-finish $type posnumberp
$init 100
$comment "permissible deviation from perfect smoothness")

!By a machinable feature we mean any geometric surface or combination of geometric surfaces which can be produced
by a single machine tool operation. For example, a hole is a single machined surface, although it consists of both
a cylinder and a cone. For more information on machining operations, see [2, Chapter 1].
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(wall-thickness $type posnumberp
$comment "how much deeper than the stock or casting")
(contains $type framelistp
$init ()
$comment "all surfaces contained by this one (e.g. holes, slots)")
(adjacent $init ()
$comment "all surfaces adjacent to this one")))

This defines an archetype called surface which has four slots. For most (but not all) of these
slots, data types have been specified using the $type keyword. For example, any value put into the
surface-finish slot must be a positive number. Using the $init keyword, an initial value of 100
has been specified for the surface-finish slot. For each of the slots, the $comment keyword has
been used to specify a comment which can be printed out by SIPS when the user wants to know
what the slot is for.

(defarchetype flat-surface (surface) (
(norm $type coord3
$comment "unit vector perpendicular to the surface")
(flatness $type posnumberp
$comment "permissible deviation from perfect flatness")
(angularity $type posnumberp
$comment "maximum permissible angularity")
(parallelism $type posnumberp
$comment “permissible deviation from perfect parallelism")))

This defines an archetype called £1at-surface which is a child of surface. This archetype inherits
all four of the slot definitions given for surface, and also has four new slots.

(defitem f1 flat-surface (
(norm (1 0 0))
(flatness 0.1)
(adjacent (£f2 £3 f4 £5))))

This defines the item f1 to be an instance of flat-surface. Values for the norm, flatness, and
adjacent slots have been given explicitly, and the values for several other slots are inherited from
flat-surface. For example, the value of the contains slot is the empty list, and the value of the
surface-finish slot is 100.

3.2 Problem-Solving Knowledge

Most frame-based systems use frames to represent the data being manipulated, but represent
problem-solving information using if-then rules. Recent work [18,20] suggests that in some problem
domains (such as process planning), rules may not be the best way to represent problem-solving
knowledge. For this reason, SIPS uses a frame-based representation of problem-solving knowledge
called hierarchical knowledge clustering, in which knowledge about the capabilities of machining
processes is organized into a taxonomic hierarchy. Archetype frames are used to represent classes
of machining processes (such as twist-drill or mill), and item frames are used to represent
specific machining processes (such as spade-drill-2 or rough-end-mill-14).

The following example is much simpler than the information appearing in SIPS’s knowledge
base, but it illustrates how hierarchical knowledge clustering works.

(defarchetype process () (
(cost $type posnumberp
$init (min-child-cost current-frame ’'cost)
(projected-cost $type posnumberp
$init (min-child-cost current-frame ‘projected-coat)))
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This defines an archetype called process which has two slots, cost and projected-cost. The
initial value for the cost slot is the minimum of the cost slots of the children of process. Similarly,
the initial value for projected-cost is the minimum of the projected-cost slots of the children.
(The intent of this is that the cost slot will contain a lower bound on the cost of performing a
machining process, and the projected-cost slot will contain a lower bound on the cost of any
other processes which might be required beforehand.)

(defarchetype hole-process (process) ())
(relevant hole-process hole)
(defrestriction hole-process (h) (surface)
(setq surface (getval h 'contained-in))
(equal (get-archetype surface) 'flat)
(parallel (getval h ’axis) (getval surface 'norm)))

This defines an archetype called hole-process which is a child of process. No slots are specified
explicitly for hole-process, but since it is a child of process, it has cost and projected-cost
slots whose initial values are the minimum values of these slots in the children of hole-process.
Since the children of hole-process are twist-drill and rough-bore (see below), this means that
cost gets the value 1 and projected-cost gets the value 0. The relevant statement says that
hole-process is relevant for creating any item which is a hole.

The defrestriction statement is used to specify one or more restrictions, all of which must
be satisfied before hole-process can be used to create a hole h. h is a parameter, surface is a
local variable, the setq function assigns a value to a variable, the get-archetype function tells
what kind of frame its argument is, the getval function returns the value of a slot in a frame, and
the parallel function tests for parallelism of two vectors. Thus, the defrestriction statement
states that a hole-process can be used to create a hole h only if the surface containing h is a flat
surface whose normal vector is parallel to the axis of h.

(defarchetype twist-drill (hole-process) (
(cost $init 1)
(projected-cost $init 0)))
(defrestriction twist-drill (h) (diam)
(setq diam (getval h 'diameter))
(greaterp diam 0.0625)
(lessp diam 2)
(lessp (getval h ’depth) 6)
(greaterp (getval h 'roundness) 0.004))
(defaction twist-drill (p h) ()
(success p))

This defines an archetype called twist-drill which is a child of hole-process. Its cost and
projected-cost slots have initial values of 1 and 0, respectively. Since twist-drill is a child
of hole-process, SIPS will not consider using twist-drill to create a hole h unless h satisfies
the restrictions for hole-process. However, if SIPS does decide to consider twist-drill, the
defrestriction statement says that twist-drill cannot be used to create h unless the diameter
of h is greater than 0.0625 and less than six times the depth of h, and unless the roundness of h
exceeds 0.004. If these restrictions are satisfied, then the defaction statement says that twist-
drill will succeed in creating h without requiring that anything else be done.

(defarchetype rough-bore (hole-process) (
(cost $init 3)
(projected-cost $init (getval "hole-process ’'cost))))
(cannot-precede rough-bore twist-drill)
(defrestriction rough-bore (h) ()
(greaterp (getval h ’roundness) 0.0003))
(defaction rough-bore (p h) (g diam)
(setq g (copy-item h))
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(setq diam (getval h 'diameter))

(putval g 'diameter (difference diam (times 0.01 (eqrt diam))))
(putval g ‘roundness 0.01)

(subgoal p g))

This defines an archetype called rough-bore which is a child of hole-process. The cost and
projected-cost slots for rough-bore have values of 3 and 1, respectively. rough-bore cannot
precede twist-drill in any plan produced by SIPS. Since rough-bore is a child of hole-process,
SIPS will not consider using rough-bore to create a hole h unless h satisfies the restrictions for
hole-process. However, if SIPS does decide to consider rough-bore, rough-bore cannot be used
to create h unless the roundness of h is greater than 0.0003. If SIPS decides to use rough-bore,
rough-bore can create h provided that another hole called g is created first. The diameter of g is
less than the diameter of h, and g need not be as round as h.

4 Problem Solving

To use SIPS, one represents a metal part as some collection of features (flat surfaces, holes, slots,
etc.). Each feature is represented by an item frame. The user invokes SIPS separately on each
feature in order to produce a plan for creating that feature.

When told to create a plan for some feature f, SIPS invokes a least-cost-first Branch and Bound
search to produce a least-cost plan. The Branch and Bound procedure uses an active list containing
all alternative plans being actively considered. Each plan consists of some sequence of processes,
along with the features these processes create, culminating in the creation of f. For example, the
sequence t = (p1, /1, P2, f2, p3, [) represents the following plan:

first use process p; to create the feature fy,
then use pp to transform f; into fz,
then use p3 to transform fz into f.

Each of py, f1, P2, f2, P3, and [ are represented by frames.

SIPS expands plans backwards from the ultimate goal of creating f, until a complete plan for
creating f is found. Since this expansion is done backwards, the processes p; and p3 in ¢ will have
already been completely determined, but p; may not yet be completely determined.

If p; has not been completely determined, it will be represented by an archetype (such as
hole-process) which represents a set of several different kinds of processes. If the restrictions for
p1 (given in the defrestriction statement) are not satisfied, then the expansion of ¢ is empty;
otherwise, the expansion of ¢ consists of the set of plans

{(@1, f1, P2> f2,p3, f)| 1 is a child of p1}.

If p; has been completely determined, then it will be represented by an archetype (such as
twist-drill) which falls at the bottom of the hierarchy and thus only represents one kind of
process. In this case, if the restrictions for p; are satisfied, SIPS will create a p-item describing the
particular instance of p; that is to be used to create f1, and will perform the actions specified for
p1. Normally, the actions (given in the defaction statement) will state one of the following:

1. that p; can be performed directly (e.g., the success statement given earlier for twist-drill).
In this case SIPS has found a successful plan.

2. that some other feature f, must first be created in order for p; to be performed. In this case,
the expansion of ¢ is

{(po, fo, P1> f1, P25 f2, P3, f)|po is relevant for creating whatever kind of feature fo is}.

SIPS selects plans for expansion one at a time. Which plan is selected is determined by means
of lower bounds on the costs of the plans. The lower bound on the plan ¢t = (p1, f1, p2, f2,p3, f) is
computed by adding the values of the cost slots for p;, p; and p3 to the value of p;’s projected-

cost slot.
Two main features of SIPS’s Branch and Bound procedure are:

223




1. Several different possible plans are explored in parallel. At each point, SIPS considers the
plan that currently looks the best (i.c., the one that has the Jeast lower bound). As a result,
the first successful plan found by SIPS is guaranteed to be the cheapest possible successful

plan.

2. A process p will never appear as part of a plan on the active list unless its restrictions have
been satisfied. Thus, unless the restrictions for p are satisfied, the children of p will never be

examined.

5 Discussion

A predecessor to SIPS was implemented using Prolog [17,18]. SIPS, which is implemented in Lisp,
incorporales a number of refinements and improvements—particularly in the operation of the frame
system. SIPS is currently being integrated into the AMRF (Automated Manufacturing Research
Facility) project at the National Bureau of Standards, where it will be used to produce process
plans for an automated machinc shop; and plans are underway for integrating it with software
being developed at General Molors Research Laboratories.

For the process planning problem domain, hierarchical knowledge clustering appears to be more
natural to use than a “flat” sct of production tules. For example, in a frame representing rough
face milling, one can concentrate on describing the restrictions and capabilities that distinguish
rough face milling from other kinds of face milling processes, rather than having to distinguish it
from every other kind of machining operation.

Problems with inefficiency in production rule systems containing large rule bases are well-known,
and several approaches have been proposed for alleviating these problems. Systems such as OPS-5
[10) and YAPS [1] provide ways to determine whether a rule is applicable without having to re-
evaluate all of its preconditions each time around, and KE® [9] provides facilities whereby the user
can partition a set of rules into subsets and tell the system to use just one of these subsets in solving
a problem. However, if the set of rules to be used for a particular problem is large, problem-solving
using production rules can still be inefficient. These issues are discussed in more detail in [19].

Suppose a rule-based system has a set of rules S. Each time the system applies a rule, this will
change the system’s current state C. Determining which rule is applicable would be much more
efficient if the system could tell—without having to search the rule base—that some small subset
S¢ of the rules in S were relevant Lo C.

SIPS’s hierarchical knowledge clustering approach is not necessarily appropriate for all problem
domains, but in problem domains (such as process planning) where it is appropriate, this approach
makes it very easy to determine S¢. In SIPS, finding S¢ corresponds either to expanding some
archetype, or (in the case of the subgoal stalement) retrieving all archetypes relevant to the
creation of a feabure. This leads to more efficient problem-solving than would be achicvable using

an ordinary rule-based approach.
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