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Abstract

In most frame-based reasoning systems, the data manipulated by the
system are represented using frames, but the problem-solving knowledge
used to menipulate this data is represented using rules. However, this is
not always the best approach. Rules are not always a natural way to
represent knowledge-—and in addition, rule-based systems containing
large knowledge bases may require large amounts of computation in
order to determine which rules match the current state in a problem to be
solved. This chapter describes @ way to address these problems using a
new technique called hierarchical knowledge clustering.

A prototypical version of hierarchical knowledge clustering was im-
plemented in Prolog, in a system called SIPP. An improved version has
been implemented in Lisp, in a system called SIPS (Semi-Intelligent
Process Selector), which plans what machining processes to use in man-
ufacturing metal parts. This chapter gives an overviesw of SIPS, and
describes its knowledge representation and problem solving methods.

* This work was supported in part by an NSF Presidential Young Investigator Award,
IBM Regearch, General Motors Research Laboratories, Martin Marietta Laboratorles, the
National Bureau of Standards, and NSF grant NSFD CPR-85-00108 to the University of
Maryland Systems Research Center. .
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1. Introduction

In many frame-based reasoning systems, the information being manip-
ulated is stored in the form of frames, but the problem-solving knowl-
edge that manipulates the frames is stored separately in the form of
rules. One problem with this approach is that rules are not always a
naturai way to reprrssant knowledge; another is that systems containing
lots of rules may require excessive amounts of computation to deter-
mine which rules match the current state during problem solving,
This chapter describes a way to address these problems using a new
approach called hierarchical knowledge clustering. In this approach,
problem-solving kﬁowledge is organized into a taxonomic hierarchy in
which each node rbpresents a set of possible actions, and its children
represent different subsets of that set. Restrictions are associated with
each node which determine whether or not the set of actions repre-
. sented by that node are feasible actions to perform, and problem solv-
ing is done using an adaptation of Branch and Bound. For some prob-
fem domains, this approach can be more natural than rule-based
representation, and can alleviate the computational inefficiencies that
can arise with rule-based systems.

Hierarchical kn'r))wledga' clustering was first implemented pro-
totypically in PmlI g, in a system called SIPP {Nau & Chang, 19886).
Experience with SIPP led to refinements of the idea, resulting in a
second implementation-—this time in Lisp. The Lisp implementation,

- called SIPS (SemiiIntelligent Process Selector), is the topic of this
‘chapter. .

This chapter gives an overview of SIPS, and describes its knowledge
representation and problem-solving methods. The chapter also dis-
cusses the implications of this work for Al knowledge representation

~ and problem salving.

2. Problem Domain

SIPS was developed to produce plans of action for the creation of metal
parts using metal removal operations such as milling, drilling, reaming,
etc. Each of these operations is called a machining process, and each
‘machining process fis used to create a feature on the metal part, such as
a hole, a slot, a pocket, etc. Given a specification for what the final part
is supposed to look like, the task of deciding which sequence of ma-
chining processes [to use in creating the part is known as process
planning.

A number of computer systems exist which provide partial automa-
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tion of process planning. In most existing systems, process planning is
done by retrieving from a data base a process plan for another part
similar to the desired part, and modifying this plan by hend to produce
a process plan for the desired part. (For more detailed descriptions of
such systems, cf. Nau & Chang, 1985; Nau et al., 1984.)

Devising & complete process plan automatically using a part’s speci-
fications (e.g., a full technical drawing) is a very difficult problem.
There are several systems which attempt to produce a process plan for
the exact part desired, but most such systems are experimenta! and
have limited capabilities. Systems which use Al techniques include
GARI (Descotte & Latombe, 1981), TOM (Matushima, Okada, & Sata,
1982), and SIPP (a predecessor to SIPS, implemented in Prolog; cf. Nau
& Chang, 1986).

The approach vsed in both SIPP and SIPS is to reason about the
intrinsic capabilities of each machining operation in order to produce
least-cost process plans. Further extensions of SIPS are expected to
address fundamental research issues in reasoning about three-dimen-
sional objects. SIPS is currently being integrated into the AMRF (Auto-
mated Manufacturing Research Facility) project at the National Bureau
of Standards, where it will be used in producing process plans for an
automated machine shop; and plans are under way for integrating it
with software being developed at General Motors Research
Laboratories.

3. Motivation

In most knowledge-based problem-solving systems that use frames,
problem solving is done by manipulating the frames using rules of the
form “if conditions then action.” This approach has proved quite
powerful in a number of problem domains, but in some circumstances
problems can arise.

One problem with rule-based systems is the problem of efficiency;
this problem will be discussed in more detail in Section 6. Another
problem is that the way in which the knowledge is represented can
sometimes be unnatural. Several ways in which this can occur have
been pointed out in the literature (Davis, Buchanan, & Shertliffe, 1977;
Reggia, Nau, & Wang, 1983), but the particular one we will consider is
this: Since human beings often approach problems hierarchicelly, a
hierarchical representation of problem-solving knowledge can some-
times be easier to understand.

For example, suppose someone is writing a knowledge base about
the following milling processes:
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. rough face mﬁlling
- finish face milling
rough end méﬂling
finish end milLlling
rough periphéral milling
finish periphéral milling

The knowledge base presumably consists of a set of rules to determine

which of these pro
process has various

)cesses to use in creating some goal feature f. Each
restrictions on its capabilities, but since they are ail

milling processes, soms of these restrictions will be common to all of

the processes. And

since rough face milling and finish face milling are

both face-milling o

perations, they will have even more restrictions in

common. If one were to write a single rule for each operation, the result
might be the set of rules shown in Figure 1, where A, B, ..., J are
different sets of restrictions and S is the current state.

One problem with this set of rules is that it does not include any way
to decide which rule to invoke when more than one rule is applicable.
Suppose, for exam;')!e, that f may be made either by rough face milling
or by rough end milling. If face milling is a less costly process than end
milling, then one tvould want R1 to fire instead of R3, and the rules
include no way to &ssure this. What is needed is to attach priorities to
the rules correspu" ding to the costs of the machining processes. Al-
though there is no]:conceptual difficulty with doing this (it is in some
ways analogous to the certainty factors used in Mycin; cf. Davis,
Buchanan, & Shortliffe, 1977), the problem is that these priorities are
‘not really available beforehand, but need to be computed in the knowl-
edge base as functions of other machining processes. (How this needs
1o be done is illuslrated in Section 4 in the discussion of SIPS's and

- projected cost slots :

Another problen
particuiarly natural
must describa the

n is that the approach illustrated in Figure 1 is not
|—it requires that for each machining operation, one
rharacteristics that distinguish this operation from

R1: if S = 'goalff)’ & Alf) & B(f] & C[f) then S ;= ‘rough-face-mill(f)’
R2: if § = “goal(f) & A[f) & B{f) & D(f) then 8 := ‘finish-face-mill(f)’
R3: if S = ‘goal(f)’ & Alf) & E{f) & F{f) then 5 := ‘rough-end-mill(f)’ -
R4: if 5 = ‘goal(f)’ & Alf) & B(f) & G(f) then S := ‘finish-end-mill{f)’

R5: if S = ‘goal(f)’ & Alf) & H{f) & I{f) then S := ‘rough-peripheral-mill (fy’
Re: If S = 'goal(f)’ & A(f} & H(f) & J(f] then S := 'finish-peripheral-mill{f)*

Figure 1. Rules Telling which Milling Operations to Use to Create a Feature
1 .
Each ol A, B, ..., J|is a Different Set of Restrictions.
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it 8 = ‘goallfy & A(f) then S := 'mill{fy’
if 8 = ‘mill(f)’ & B(f) then S := ‘face-mill(f)’
it § = ‘mill(fy & E(f) then § := ‘end-mili{f)’

if § = ‘mill(f)’ & H(f) then S := ‘peripheral-mill{f)’

# S = ‘face-mill(f)’ & C(f} then S := ‘rough-face-mill(fy’

if 8 = ‘face-mill(f) & D(f) then § := ‘finish-fece-mill(f)’

if § = ‘end-millf} & F(f) then S := ‘rough-end-mill(fy’

it 8 = ‘end-mill{f)’ & G(f) then 8 := ‘finish-end-mill{f)’

if § = ‘peripheral-mill{f)’ & H{f) then § := ‘rough-peripheral-mill{f)’
it S = ‘peripheral-mill(f}’ & I{f) then S := ‘finish-peripheral-mill(f}’

Figure 2. A Modified Set of Rules for Milling Operations.

every other machining operation in the entire knowledge base. It would
be more natural—and probably more efficient—to write rules that de-
scribe each of the milling processes only in terms of what distinguishes
it from other milling processes, and use these rules only after it has
been decided that milling can be used to create f. This approach would
yield the set of rules shown in Figure 2.

The rules shown in Figure 2 still do not provide a way to handle the
computation of the process costs and the use of these costs in determin-
ing rule priorities, but it is interesting to note that each of the rules
shown in Figure 2 corresponds to a node of the tree shown in Figure 3.
If one were to represent each node in the tree as a frame, one could
represent the process costs as values of slots in these frames, and com-
pute the process costs as functions of slots in other frames. One could
also represent various other relevant properties of the processes—feed
rates, cutting speeds, location of the machine in the factory, etc.

mill

end face peripheral
mill mill’ mill
rough tnish rough finish -rough [ Tinish
end end face face peripheral peripheral
mil mill mil mill miil mil

Figure 3. A Tree Corresponding te the Rules in Figure 2



88 NAU AND GRAY

- The biggest problem with representing the processes as frames
would be how tciJ represent and invoke the if and then parts of the rules.
One approach would be to use procedural attachment and message
passing, using the following protocol: If a “consider-yourself-for-creat-
ing(f})”" message were sent to a frame (say, the mill frame} and if this
frame’s .restrictiths (in this case, Aff)) were satisfied, then this frame
wouid send thelsame message to each of its children {the face-mill,
end-mill, and peripheral-mill frames). However, this approach would
make it very difficult to keep the message from being sent to the end-
mill frame if fack milling were less costly than end milling.

A solution to this problem would be not to use message passing, but

instead to write & global control strategy to supervise the activation of
the frames. Such a strategy would maintain a list of all frames eligible
to be activated, activating first those of least cost. The combination of
this control strategy with the frame representation shown in Figure 3
we refer to as hierarchical knowledge clustering.
" In addition to being a more natural way to organize information
about some proﬂlem domains {such as process planning), hierarchical
knowledge clustering can aiso be more efficient computationally than a
rule-based approach. This is discussed in more detail in the concluding
section of this chapter. -

4. Knowledge Representation

As described in the previous section, hierarchical knowledge cluster-
ing is applicable to situations where the problem-solving knowledge
corresponds to a|set of actions which can be organized into a taxonomic
hierarchy. The hierarchy is set up so that each node represents a set of
possible actions|that can be performed, and the node’s children repre-
" sent different subsets of that set. Each node is represented by a frame
.which has restr‘;l:tions associated with it. A node is eligible for consid-
eration only if the restrictions associated with its parent are satisfied. If
" a node is eligible for consideration, it may or may not actually be
considered, depbndin'g on the choices made by & global control strat-
egy. To make this idea clearer, we discuss the way it is implemented in
SIPS. '

SIPS has two| basic types of frames: archetypes and items. Arche-
types correspond roughly to sets, and items correspond to members of
sets. Normally, the knowledge about a problem domain consists of
archetypes, and|the data used in solving a specific problem in that
domain (both the input data defining the problem and the intermediate

. data created while the problem is being solved) consist of items, Items
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have slots into which values can be stored, and archetypes have slots
into which default values can be stored. The frame system has general
inheritance mechanisms which allow default values either to be inher-
ited in the usual way, or to be computed as arbitrary functions of values
stored in other frames.

One purpose of SIPS’s frame system is to represent static knowledge
about features (holes, pockets, flat surfaces, slots, etc.). These features
are organized into the obvious kind of taxonomy, with archetypes rep-
resenting abstract features and items representing specific instantia-
tions of those features. For example, the hole archetype is a child of
the cylindrical-surface archetype, which is a child of the sur~
face archetype. A specific hole in a specific metal part might be repre-
sented bx an item called, say, *hole—21. This is not particularly dif-
ferent from how such knowledge would be represented in any other
frame system, so we will not discuss it further.

Another purpose of the frame system is to represent problem-solving
knowledge—the kind of knowledge which other systems would repre-
sent using rules. Information about the capabilities of machining pro-
cesses is organized into a taxonomy similar to the taxonomy used for
features, with archetypes representing abstract machining processes
and items representing specific instantiations of those processes. For
example, the twist—drill archetype is a child of the hole~create-
process archetype, which is a child of the hole-process archetype;
and the specific twist drilling process used to create *hole-~21 might
be represented by an item called *twist—drill-13.

The rest of this section consists of a simple example (much simpler
than the information actually appearing in SIPS’s knowledge base) of
how SIPS represents problem-solving knowledge. The first statement
in the example is this:

{defarchetype process () (
(cost $type posnumberp
' $init (min-child—-cost current—frame 'cost)
(projected—cost $type posnumberp
$init (min-child-cost current—frame
'projected—coat}))

This statement defines an archetype called process which has two
slots called cost and projected-cost. The $type specification
{which is used to specify data types for siots) says that any values put
into the cost and projected-cost slots must satisfy a LISP predi-
cate called posnumberp.

The cost and projected-cost slots are intended to contain lower
bounds on, respectively, the cost of performing a machining process
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and the cost of any other processes which might be required be-
. forehand. To achieve this intent, the $init specification (which is used
to specify initial values for slots) says that the initial value for the cost
slot is the minimum of the cost slots of process’s children, and the
_ initial value for ﬁro;} ected~cost is the minimum of the projected-

cost slots of these children. Since the only child of process ishole-
" process (see below), this means that the initial values are 1 for cost
and 0 for projected—cost.

{defarchetype hole—process (process) (}))

.This statement says that hole-process is a child of process. No
slots are given éxplicitiy for hole~process, but since hole~-pro-
cess is a child of process, it has cost and projected—-cost slots
whose initial values are the minimum values of these slots in hole-
process’s children. Since the children of hole-process are twist-
drill and rough-bore (see below}, this means that the initial values
are 1 for cost and 0 for projected-cost,

(relevant hole-process hole)

This stateménlt says that hole-process is relevant for creating any
item which is a hole. In general, when SIPS starts planning the cre-
ation of some feature, it starts by looking at all processes which have
been declared to be relevant for creating the feature. n this example,
neither this statement nor any other statements declare any other pro-
cess to be relevant for creating a hole, 50 to create a hole SIPS would
start by considering only hole-process. A more detailed description
of what SIPS would do at this point appears in Section 5. ‘

(defrestriction hole-process (h) {surface)
{setq surface {getval h 'contained-in})
(equal |(get-archetype surface) 'flat)
(parallel {getval h 'axis) (getval surface

‘norm}))

Every machining process (or class of machining processes) has re-

_ strictions on its |capabilities—for example, restrictions on the size of

the feature it can|creats, and restrictions on how tight a set of tolerences

it can achieve. The above statement describes those restrictions which

" apply to every hole-process—and since twist—drill and rough-

bore are both children of hole~process (see below), this means that

the restrictions Igi‘u'an in this statement must be satisfied before SIPS
will consider twist—drill or rough-bore.

In this statement, h is a paramster which SIPS will bind to the item

HIERARCHICAL KNOWLEDGE CLUSTERING 89

feature describing the frame to be created, sur face is a local variable,
and the rest of the statement is a conjunct of conditions to be satisfied.
These conditions state that a hole-process can be used to create a
hole h only if the surface containing h is a flat surface whose normal
vector is parallel to the axis of h.

(defarchetype twist—drill {hole—process) (
(cost $init 1)
(projected-cost $init 0)))

If SIPS has decided that a hole-process can be used to create some
feature, then any child of the hole—process frame may be considered,
According to the above statement, one of these children is twist—
drill. The statement says that twist-drill’s cost and pro-
Jected-cost slots have initial values of 1 and 0, respectively.

{defrestriction twist-drill (h)} (diam)
{setq diam (getval h 'diameter))
() diam 0.0625)
{({ diam 2)
({ (getval h 'depth) 6)
() (getval h 'roundness) 0.004))

Like hole-process, twist-drill has a set of restrictions which
must be satisfied if they are to be successful. In the above statement, h
is a parameter which SIPS will bind to the item frame describing the
feature to be created, and diam is a local variable. The statement says
that twist—drill cannot be used to create h unless the diameter of h
is greater than 0.0625 and less than six times the depth of h, and unless
h’s permissible deviation from perfect roundness exceeds 0.004.

(defaction twist—drill (ph) ()
(success p))

if SIPS decides that a particular machining process can be used to
create some feature, actions must be taken to accomplish this. When
creating a plan for the creation of some feature, SIPS searches back-
wards from the ultimate goal to be achieved—and so the actions associ-
ated with a machining process set up subgoals to be achieved before the
machining process can be performed. Since hole—process denotes a
class of machining operations rather than any particular machining
operation, it does not have any actions associated with it—but twist-
drill does have actions, as given in the above statement. In this state-
ment, h and p are parameters which SIPS will bind to item frames
describing the hole to be created and the particular twist drilling pro-
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cess to be used to|create it. The statement says that the twist-—di-illing
. process p succeeds directly, without the necessity of achieving any
subgoals.

(defarchetyp|e rough-bore (hole-process) (
(cost $init 3)
(projectied-cost $init (getval 'hole~procvess
‘gost))))
The only other|child of hole—-process is rough-bore. As de-
scribed in the above statement, tha initial value for rough~bore’s
cost slot is 3, and|the initial value for the proj ected-cost slot is the

value of hole-process’s cost slot, which is 1.

(defrestriction rough-bore {f) ()
() (getval f 'roundness) 0.0003))

This statement sets up the restrictions for rough boring. It says that
that rough-bore canriot be used to create a hole f unless f’s permissi-
ble deviation from perfect roundness exceeds 0.0003.

(defaction rough-bore (ph) (g diam)
{setq g (Icopy—item h})
(setq diam (getval h 'diameter))
{putval 'g tdiameter (— diam (* 0.01 (sqrt diam))))
{putval g 'roundness 0.01)
(subgoall p g))

“This statement says that if SIPS decides to use a rough boring pro-
cess p to create the hole h, this can be done provided that another hole
called g is created|first. The hole g has a smaller diameter than h, and
¢ need not be as round as h. In order to produce the description of g,
this statement usek copy~item to make g an exact copy of the item h,
and uses putval to assign values into g’s diameter and roundness
slots. The subgoal function tells SIPS to consider the creation of g as a
" subgoeal to be achleved before rough-bore can be successful.

|
! 5. Control Strategy

When using SIPS.mne normally represents a metal part as some collec-
tion of surface features (holes, flat surfaces, slots, etc.). Each such fea-
ture is represented by an item frame. The user invokes SIPS separately
on each feature in order to produce a process plan for creating that
feature. _
In considering how to create some feature such as a hole, SIPS does
|
|
|

;
|
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procedure make(f}: |
Active := {(p, f)| p is a process archetypo relevant for
creating whatever kind of feature is}

/*for example, hole-process is relevant Ior creating a hole */
loop

if Active is empty, then return fai]ure

select t = (py, fy, Pyi fp .. .) 85 descrihed in the text
remove ¢ from Active

if the restrictions for p, are satisfiad then begin
expand t as described in the text
if success has been achieved, then return the successful plan

/* the plan returned is guaranteed to have the least possible cost */
end :

repeat
end make

Figure 4, SIPS’s Control Strategy

not consider a process such as twist~drill unless the restrictions
have been satisfied for twist-drill’s ancestors. This is accom-
plished by means of the least-cost-first| Branch and Bound procedure
shown in Figure 4. _

SIPS uses an active list containing alllalternative process plans being
actively considered. Each plan consists of some sequence of processes,
along with the features these processes|create, culminating in the cre-
ation of the desired feature f. For example, ifwelett = (p,,f;, Pz,f 20 D3
f), then t represents the following plan:

first use process p, to create the feature f,,
then use p, to transform f, into f,,
then use p, to transform f, into f.

Each of p,, f;, p;. f,, P, and f are represented by frames.

SIPS expands plans backwards from the ultimate goal of creating f,
until a complete and successful plan for creating f is found. Since this
expansion is done backwards, the processes p,, p,, . . . in the plan t
will have already been completely determined, but the process p, may
not yet be completely determined.

If p, has not been completely determined, it will be represented by
an archetype (such as hole—-processor mill) which represents a
class containing several different kinds of processes. If the restrictions
specified in the frame for p, are not satlsfled then the expansion of t is
empty; otherwise, the expansion of t consmts of the set of plans

{(q,. 1, P £y Dy g, is a child of p,}.
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If p, has been completely determined, it will be represente.d by an
archetype {such as fwist-d_rill or rough—face-mill) which falls
at the bhottom of the hierarchy and thus only represents one kind of
process. In this case, if the restrictions given in the frame for p, are
satisfied, SIPS will create an item frame describing the particular in-

 stance of p, that is to be used to create f,, and will perform the actions
specified in the action statement for p,. Normally, these actions will
state one of the following:

1. that this instanJle of p, is a process that can be performed directly
(in which case SIPS has found a complete and successful process
plan). An example of this was given in the action statement for
twist-drill in Section 4. .

2. that some other feature f, must first be created in order for t}.us
instance of p, to be performed. {There are several ways to specify
this, depending on what is known about how to create .the feaicure—
but one example is the subgoal statement discussed in Section 4.)

In this case, the expansion of t is

{(pos Fo» P1» f1» P2» F20 Pas DD is relevant for whatever kind of feature f,
" is}

SIPS selects plans for expansion one at a time. Which plan is se-
lected is determined by means of lower bounds on the costs of the
plans. For example,|the lower bound on the plan t = (py, f1, P21 f2) Pas f
is

3

B(t) = (getval p, projected-cost) + > (getval p; cost).
i=1

Two significant features of the procedure described above are:

1. Several different possible plans are explored in parallel. ﬁ.tt each
point, SIPS considers the plan that currently looks the best (i.e., the
one that has the lowest lower bound). As & result, the first suc-
cessful plan found by SIPS is guaranteed to be the cheapest possi-
ble successful lgalan. _ . '

2. A process p will never appear as part of a plan on the active list
unless its restrictions have been satisfied. Thus, unless the re-
strictions for p are satisfied, the children of p will never be
examined.
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6. Related Work

Hierarchical knowledge clustering can be viewed as a way to do plan-
ning based on abstraction. For example, the hole—process frame dis-
cussed earlier is basically a representation of an abstract machining
process which has several possible instantiations: twist~drill and
rough-bore,

Several types of abstraction have been explored in the literature on
planning, One type of abstraction is that used in NOAH (Sacerdoti,
1977), in which an action A is an abstraction of actions A, and A, if A,
and A, are each steps in the performance of A. This is rather different
from the abstraction used in SIPS: in SIPS, A is an abstraction of actions
A, and A, if A, and A, are alternate instantiations of A.

Another type of abstraction is that used in ABSTRIPS (Nilsson,
1980), in which a complete plan is constructed ignoring some of the
preconditions of each action and the plan is then modified to meet the
preconditions which were ignored. This type of abstraction is more
closely related to that used in SIPS, in the following senses: an in-
stantiation of an action A is an action A, which must satisfy the precon-
ditions of A and also some additional preconditions, and both SIPS and
ABSTRIPS refine a plan containing A by checking those preconditions
of A; which differ from the preconditions of A. However, there are
several important differences:

1. SIPS completely instantiates the last action in a plan before consid-
ering what actions should precede this action, whereas ABSTRIPS
generates a complete (but possibly incorrect) plan and then tries to
fix it up.

2, In SIPS, an abstract action has several possible alternate instantia-
tions, but in ABSTRIPS, only one instantiation is possible. Thus in
ABSTRIPS, the notion of considering alternate instantiations of an

action and choosing the one of least estimated cost does not make
Sense,

Another type of abstraction which is quite close to that used in SIPS
is proposed by Tenenberg (1986). This approach is similar to SIPS in
the sense that each abstract action may have more than one possible
instantiation. It is potentially more general than that used in SIPS, in
the sense that the effects of actions are represented hierarchically, as
well as their preconditions—but this approach has not yet been imple-
mented on any problem.

Several systems for diagnostic problem solving make use of certain
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kinds of taxonomic hierarchies. Both MDX (Mittal, Chandrasekaran, &
Smith, 1979) and Centaur (Jackson, 1986} use taxonomies of various
diagnostic problems, in which knowledge about each class of problems
is located at the node in the hierarchy that represents that class. These
approaches yield sc%:me of the same benefits as SIPS in terms of repre-
sentational clarity and efficiency of problem solving. However, the de-
tails of how they represent and manipulate their knowledge are rather
different from what SIPS does. '

7. Concluding Remarks

7.1 Current Status

A predecessor to SIPS was implemented using Prolog (Nau & Chang,
1985, 1986). SIPS, which is implemented in Lisp, incorporates a
number of refinements and improvements—particularly in the opera-
tion of the frame system. SIPS is currently being integrated into the
AMRF {Automated Manufacturing Research Facility) project at the Na-
tional Bureau of Standards, where it will be used in producing process
“plans for an automated machine shop; and plans are under way for
integrating it with software being developed at General Motors Re-
-search Laboratories.

SIPS is currently up and running in Franz Lisp. It can either read
prepared data from a file, or (if some of this data are omitted) run
interactively, asking the user for any needed information. Various user
features have been implemented in SIPS. For examptle, if SIPS pro-
duces a plan for preducing some feature, the user can later teli SIPS to
go back and find other alternative plans for producing this feature.

7.2 Computational Considerations

It is well known that rule-based systems having large rule bases can
require substantiah computational overhead. Suppose a rule-based sys-
“tem is trying to solve a problem in some problem domain D, and sup-
‘pose R is the set of rules for D. Each time the system applies a rule, this
changes the system’s current state S—-and in order to decide what rule
to apply next, the system must determine which rules in R match S. If
the system searched through all the rules in R to find the ones matching
8, the computational overhead would be tremendous.
Several approaches have been tried for alleviating this problem. One
approach, whichiis used in KEE (Fikes & Kehler, 1985), is to provide
facilities whereby the user can divide a set of rules into smaller subsets

P e

B, e

HIERARCHICAL KNOWLEDGE CLUSTERING 85

R,.R,,...,R,, such that each subset is relevant for a different problem
domain.? Given a problem to solve, the system starts out by determin-
ing which problem domain the problem is in. It then selects the rule set
R, for that domain, and then uses R, exclusively from that point on,
ignoring all the other rules. Since R, is smaller than R, the problems
with efficiency are alleviated.

Although hierarchical knowledge clustering was developed without
any knowledge of the approach used in KEE, it can be thought of as an
extension of that approach. Hierarchical knowledge clustering pro-
vides a way to tell, directly from the current state R, that only some
subset R of the rules in R is relevant to 8.2 Thus, all rules not in Rg can
temporarily be ignored. Since Rg is normally quite small, this provides
improved efficiency.

Another approach to reducing the computational overhead of com-
puting rule matches is the rete match algorithm used in OPS5 (Forgy,
1980) and YAPS (Alien, 1982). This algorithm provides a way to store
partial rule matches in a network so that the system can determine
whether a rule matches the current state without having to re-evaluate
all of its preconditions each time the current state changes. This makes
the complexity of computing matches dependent not on the size of D,
but instead on the size of the set Pg of rules whose preconditions
partiaily match S. If Pg is small, then the rete match procedure is
efficient, but if Pg is large, significant computational overhead will
occur in the elaboration of partial matches. '

Hierarchical knowledge clustering can be thought of as a way to
control the elaboration of partial matches, by distributing the precondi-
tions of a rule throughout the levels of a hierarchical structure and
elaborating a partial match only if it looks promising. Thus, the ap-
proach used in SIPS may potentially be useful in increasing the effi-
ciency of the rete match procedure.

7.3 Interface Cnnsideratibns

For the process planning problem domain, hierarchical knowledge
clustering appears to be more natural to use than a “flat” set of produc-
tion rules. It yields many of the same advantages as hierarchical repre-
sentation of static information. For example, in the frame representing

1 By “problem domain,” we simply mean some class of problems.

2 In particular, finding Ag corresponds either to retrieving the children of some arche-
type or (in the case of the subgoal function) retrieving all archetypes relevant to the
creation of a feature. In sach case, only a few of SIPS's process frames are relevant—and
which frames are relevant is determined easily from the frame system.
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rough face milling, one can concentrate on describing the restrictions
and capabilities that distinguish it from other kinds of face milling
processes, rather than having to distinguish it from every other kind of
machining operation. This experience has been borne out in the experi-
ence of a manufacturing engineer who is currently implementing a

SIPS knowledge base for the task of selecting cutting tools once the
machining processes are known (Luce, work in progress).

" An even more sophisticated interface for SIPS is currently being
developed. Work done by the author and others General Motors Re-
gearch Laboratories has resulted in an interface between SIPS and a
solid modeling system, so that the user can build up an object to he

" created by giving graphical specifications of its machinable features,
and have SIPS select sequences of machining processes capable of
creating those features. This work will be described in more detail in a
subsequent paper|(Nau & Sinha, in preparation).

There are certainly some problem domains for which hierarchical
knowledge clustering is not appropriate—but for some problem do-
mains it appears to provide a way to represent knowledge more natu-
rally than with production rules, and a way to reduce some of ‘the
computational overhead that can occur with rule-based systems.
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