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ABSTRACT

In most frame-based rea.eonmg systems, the data manipulated _'
by the system is represented using frames, and the problem—so]vxng "
knowledge used to mampulate this data consists of rules. However,
" rules are not alwa.ys the best way to represent problem—soivmg .
. knowledge.
' This paper describes an alternative way to represent problem-
solving knowledge called hierarchical knowledge clustering. Hier- .
" archical knowledge clustering has been imiplemented in a system
called SIPS (Semi-Intelligent Process Selector), which plans what
machining processes to use in manufacturing metal parts. The
paper describes the approach to knowledge representation ‘and =
problem solving used in SIPS, and compa.res a.nd contrasts this
approach to- other work. B : '

1. INTRC':)'D-IJC_TI-ON )

In most fra.me-based reasonmg systems, the mforma.tlon bemg manipu-
lated is represented using frames, and ‘the problem-solvmg knowledge that
manipulates the frames consists of rules. But for some problem domains,
rules may not be the most natural way to represent knowledge-—and in ad-
dition, rule-based systems can require large amounts of computation durmg_
problem solvmg if the rule base is large.
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This paper describes a way to address these problems using hierarchi-
cal knowledge clustering, a technique for hierarchical abstraction of problem-
solving information. For some problem domains, this approach can be more
natural and more efficient than rule-based problem solving.

Hierarchical knowledge clustering has been implemented in a system called
SIPS (Semi-Intelligent Process Selector) [18]. SIPS was developed to produce
plans of action for the creation of metal parts using metal removal operations
such as milling, drilling, reaming, etc. Each of these operations or machining
processes creates a feature on the metal part, such as a hole, siot, pockes, etc.
Given the specification for'the final part, the task of deciding what sequence
or sequences of machining processes to use in creating the part is known as
procesa selection. To do process selection, SIPS starts with the specification of
the part to be produced, and reasons about the intrinsic capabilities of each
machining process. :

SIPS has recently been interfaced to a solid modeling system at General

+ Motors Research Laboratories. This interface allows the user to create part
descriptions graphically, and have SIPS select suitable machining processes
to create these parts. Also, SIPS has recently been extended to do not just
process selection, but also tool selection and the determination of process
parameters. The latest version of SIPS is being integrated into the Automated
Manufacturing Research Facility (AMRF) project (2] at the National Bureau
of Standards, where it will be used to do part of the procesa planning for an
automated machine shop.

This paper gives an overview of SIPS. Section 2 explams the motivation for-
the hierarchical knowledge clustering technique, and Section 3 explains how
this technique has been implemented in SIPS. Section 4 discusses the relation-
ships between SIPS and work by others, and" Section 5 contams concludmg
remarks. -

2. MOTIVATION

In most knowledge-based problem-solving systems, problem-solving knowl-

- edge consists of rules of the form “IF conditions THEN action”. Even in frame

systems, where the data (and possibly the knowledge base) are represented
using frames, the knowledge base still usually consists of rules. However, there
are several problems with using this approach for process selection.

Consider the problem of creating a hole h. There are many machining’
processes capable of creating holes, but to keep the example simple, suppose
we consider only three processes: twist drilling, rough boring, and finish bor-
ing. Each of these processes has different restrictions how good a hole it can -
produce. If the restrictions for twist drilling are satisfied, twist drilling can
produce h without requiring that anything else be done. However, rough bor-

ing (if its restrictions are satisfied) produces A by modifying a hole ¢ which

must already be present. Finish boring is similar to rough boring, except that
it can satisfy stricter machining tolerances for h. One way to describe these .
processes would be rules similar to those shown in Figure 1. : :



Ry: IF goal(h) & A(R) & B(h)
THEN assert twist~drilling(h)

Rg: IF goal(h) & A(h) & C(h) & D{h)
THEN remove goal(h); assert rough-boring(h); g = fi(h); assert goal(g)

Rs: IF goal(h) & A(h) & C(h) & E(h)
THEN remove goal(h); assert finish-boring(h); g.= f3(h); assert goal(yg)

Figure 1: A simple set of rules. A, B, C, D, and E are different sets of
restrictions. :

Ry: TF goal(h) & A(h)
THEN remove goal(h); assert hole-process(h)

Rg: IF hole-process (k) & B(h)
THEN remove goal(h); assert twist- dr:.ll:l.ng(h)

Reg: IF hole-procaas(h) & C(h)
THEN remove goal(h), assert hola-improvo-proceas(h)

Rq: IF hola-lmprove-procesa(h} & D(h) :
THEN remove goal (h); assert rough- bor:.ng(h), g = f;(h) aaseri'. goal(g)

Rs: IF hole-:.mprove-process(h) & B(R) ' : :
THEN remove goal (h); assert finish-boring(h); g = fz(h); assert g_oal(g)

Figure 2: A better set of rules.

One problem with these rules is the repititiousness of their preconditions:
each rule tells what distinguishes some machining process from every other
machining process in the entire knowledge base. It would be more natural
and (depending on-the control strategy) probably more efficient to set up
context in which: hole :processes are: the only processes being- considered, and
then describe each hole process: only in terms of what-distinguishes it from the
other hole processes. ‘This approach would lead to rules such as those shown
in Figure 2.

Another problem is how to select the appropriate rule when more than one
rule is applicable.” For example, suppose both twist-drilling and hole- -
improve-process are capable of creating h. Since twist- drilling is less
costly, one would want to use Rjs instead of Rg, but the rules include no way .
to assure that this will happen.

This problem could be handled if one could attach priorities to the rules
corresponding tg the costs of the machining processes—and rule-based systems
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Figure 3: A tree corresponding to the rules in Figure 2

sometimes include ways to do this. But in this case, it is not so easy: the
priorities are not available beforehand to put into the rules, but instead are
functions of the various machining processes. For example, the cost of a hole
improvement process should be computed as the minimum of the cost of rough
boring and finish boring. :

Omne way to handle this is to notice that the rules in Figure 2 correspond to
the tree shown in Figure 3. By representing each node in the tree as a frame,
one could represent the process costs as slots whose values could be computed-
as functions of other frames. Additional slots could represent various other
relevant properties of the processes—feed rates, cutting speeds, location of
the machine in the factory, etc.

If we represent the ma.chmmg processes in this fashion, the next question
is how to represent and invoke the IF and THEN parts of the rules. Although
message passing is often used in frame systems, it would not work well here,
because it would still send messages to more costly processes even if a less
costly process were applicable. In order to make sure that only the least-
cost frames get activated, a global control strategy is needed to supervise the
activation of the frames. The combination of the hierarchical representation
with such a control strategy is called Aterarchical knowledge clusiering.

‘3. IMPLEMENTATION

Hief_'arthical knowledge clustering has been implemented in a system called
SIPS. SIPS includes a frame system which can be used to represent both static
knowledge (e.g., representations of three-dimensional objects) and problem-
solving knowledge (as discussed in Section 2). '

Figure 4 shows a frame structure corresponding to the tree shown in Figure
3. This frame structure is much simpler than the knowledge base actually used
in SIPS (which contains about seventy frames), but 1t. illustrates how SIPS
represents problem-solving knowledge _

The relevant slot in the hole-process frame specifies that a hole process
is relevant for making a hole. This information is used to start SIPS’s search
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Figure 4: A frame.s_t_ructure corresponding to the tree shown in Figure 3.
Parentheses around a slot name indicate that the slot is inherited from the

parent frame.



when SIPS is told to find plan the ¢creation of a hole.

The cost slot is intended to be a lower bound on the cost of performing
a process. In the case of hole-process, this lower bound is computed by an
attached procedure which takes the minimum of the cost slots of the child
frames. hole~improve-process inherits this procedure from hole-process,
s0 its cost will also be computed as the minimum of the costs of its children.
Since the twist-drilling, rough-boring, and finish-boring frames rep-
resent single kinds of machining processes rather than classes of machining
processes, the relative costs of these processes are put into their cost slots.

Similarly, precost is intended to be a lower bound on the cost of any other
processes which might be required before doing the hole process. For hole-
process, this bound is computed by an attached procedure which computes
the minimum of the precost slots of the children. Since twist-drilling
does not need to have any other processes occur before it, its precost slot
contains the value 0. But a hole improvement process takes an existing hole ¢
and transforms it into the desired hole—and since ¢ must be created by some
kind of hole process, the cost of creating g will be at least the minimum cost
for a hole process. Thus, the precoat slot for hole-improve-process is the
value of hole-proceas’s cost slot. Both rough-boring and finish-boring
inherit this value from hole-improve-process.

A process’s restrictions slot tells what restrictions must be satlsﬁed in
- order for that process to be a feasible way to.achieve the desired goal. For
hole-process, the restrictions are mainly geometric ones—for example, re-.
strictions on the angle between the hole and the surface in which it is to be
created. For the other processes in Figure 4, the restrictions are mainly restric-
tions on the hole dimensions and on the best machining tolerances achievable
by the process (parallelism, roundness, true position, etc.). _

The cannot-precede slots for hole-improve-process and finish-boring
state that in no sensible process plan will these processes be followed by cer-
tain other machining processes. This slot is not really necessary for correct
opération of SIPS, but it makes SIPS more efficient by decreasing the size of
the search space.

SIPS does probiem solving by searching backwards from the ultimate goal
to be achieved. Therefore, the actions slot for a machining process must
specify what SIPS needs to do before it can perform the machining process. For
twist-drilling, nothing need be done beforehand—so twist-drilling’s
actions slot states that twist drilling succeeds immediately. However, rough
boring and finish boring produce a better hole from an existing hole—and
SIPS needs to figure out how to make this hole. The actions statements
for rough-boring and finish-boring set up the creation of this hole as a
subgoal for SIPS.

Figure 5 shows part of the state space which can be generated from the
set of frames shown in Figure 4. Each state in the state space is a (partial)
plan for creating a hole hl. Whether or not this plan is feasible will depend
on the nature of hl—except that the plans marked “infeasible” in Figure 5
can never be feasible, because of the cannot-precede slots in the knowledge
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Figure 5: Part of a search space for creating a hole hl. Plan P is labeled for
reference in the text. . : . . S
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base. When a plan is infeasible, its children will never be generated.

SIPS searches the state space using an adaptation of Branch and Bound.
The lower bound function LB which guides this search is computed from the
cost and precost slots of the machining processes. For example, for the plan
labeled P in Figure 4,

LB(P) = precost(hole-process) + cost (hole~process)
+ cost(finish-boring).

So that SIPS will avoid generating expensive plans when cheaper ones can be
used, SIPS’s search strategy is best-first.2 Thus, the first solution found by
SIPS is guaranteed to be the least costly one. '

4. RELATION TO OTHER WORK

This section discusses the relationships between SIPS and other work in
three areas: automated process planning, planning with abstraction, and com-
putational approaches for knowledge-based systems.

4.1. Process Planning

A number of computer systems exist which provide partial automation
of process planning. In most existing systems, process planning is done by
retrieving from a data base a process plan for another part similar to the
desired part, and modifying this plan by hand to produce a process plan for
the desired part. Examples of such systems are CAPP (12] and MIPLAN [24].
For more detailed descriptions of such systems, the reader is referred to (4]
and [19]. L '

Devising a complete process plan automatically using a part’s specifica-
tions (e.g., a full technical drawing) is a very difficult problem. There are
several systems which attempt to produce a process plan for the exact part
desired—but most such systems are experimental and have limited capabil-
ities. A few of the better-known systems include CPPP (8], APPAS [2¢],
CADCAM (3,6], TIPPS (5], GARI [7] and TOM [13], and SIPP [16,17] (a
predecessor to SIPS, implemented in Prolog). Except for SIPP, these systems
use problem-solving approaches rather different from what is used in SIPS.

4.2. Planning with Abstraction

Hierarchical knowledge clustering can be viewed as a way to do planning
based on abstraction. For example, the hole-process frame in Figure 4 rep-
resents an abstract machining process which has two possible instantiations:
twist-drilling and hole-improve-process. -

Several types of abstraction have been explored in the literature on plan-
ning. One type of abstraction is that used in NOAY [23], in which an action

*Thus, SIPS’s search procedure may also be thought of a3 an adaptation of A* (20}, with
LB as the heuristic function.



A is an abstraction of actions A; and Aj if A; and A, are each steps in the
performance of A. This is rather different from the abstraction used in SIPS:
in SIPS, A is an abstraction of actions A; and A; if A; and A; are alternate
instantiations of A.

Another type of abstraction is that used in ABSTRIPS [20], in which a
complete plan is constructed ignoring some of the preconditions of each action
and the plan is then modified to meet the preconditions which were ignored..
This type of abstraction is related to that used in SIPS in the following sense:
an instantiation of an action A is an action A; which must satisfy the pre-
conditions of A and also some additional preconditions, and both SIPS and
ABSTRIPS refine a plan containing A by checking those preconditions of Ay
which differ from the preconditions of A. However, there are several important
differences:

1. SIPS completely instantiates the last action in a plan before considering
what actions should precede this action, whereas ABSTRIPS generates
a complete (but possibly incorrect) plan and then tries to fix it up.

2. In SIPS, an abstract action has several possible alternate instantiations,
but in ABSTRIPS, only one instantiation is possible. Thus in AB-
STRIPS, the notion of considering alternate msta.ntla.t:ons of an action
and choosing the one of l_ea_.st estimated cost doe_s not make sense.

Ancther type of abstraction which is quite close to° ‘that used in SIPS is
proposed by Tenenberg [22} This a.pproach is sumla.r to SIPS in the sense
" that each abstract action may have more than one possible instantiation. It is

potentially more general than that used in SIPS, in the sense that the effects
of actions are represented hierarchically, as well as their precondztlons—but
so far, Tenenberg’s approach has not yet been implemented.
Several systems for diagnoestic problem-solving make use of certain kinds
_of taxonomic hierarchies. Both MDX [14] and Centaur’ [10] use taxonomies of
various dlagnostlc problems in whlch knowledge about each class of problems
is located at the node in the hlerarchy whlch represents that class. These
approaches yield some of the same benefits as SIPS in terms of representatmnal
clarity and efficiency of problem-solving. However, the details of how they
represent and manipulate their knowledge are rather different from what SIPS
does, T

4.3. Computational Approaches

It is well known that rule-based systems having large rule bases can require
substantial computational overhead. Suppose a rule-based system is trying to
solve a problem in some problem domain D. Each time the system applies a
rule, this changes the system’s current state S—and in order to decide what
rule to apply next, the system must determine which rules match S. If the
system searched through its entire set of rules to find the ones matching S,
the computational overhead would be tremendous. -



Several approaches have been tried for alleviating this problem. One ap-
proach, which is used in KEE [9], is to provide facilities whereby the user
can divide a set of rules R into smaller subsets Ry, Rs, ..., Rn, such that each
subset is relevant for a different problem domain. Given a problem to solve,
the system starts out by determining which problem domain the problem is
in. Tt then selects the rule set R; for that domain, and then uses Ry exclusively
from that point on, ignoring all the other rules. Since R; is smaller than R,
the problems with efficiency are lessened.

Hierarchical knowledge clustering can be thought of as as an extension of
the above approach. It provides a way to tell, directly from the current state
S’ that only some subset Rg of the rules in R is relevant to 5. 3 Thus, all rules
not in Rg can temporarily be ignored. Since Rg is normally quite small, this
provides improved efficiency.

Another approach to reducing the computational overhead of computing
rule matches is the rete match algorithm used in OPS5 {11] and YAPS [1].
This algorithm provides a way to store partial rule matches in a network
so that the system can determine whether a rule matches the current state
without having to re-evaluate all of the rule’s preconditions each time the
current state changes. This makes the complexity of computing rule matches
depend not on the size of R, but instead on the size of the set Ps of rules
whose preconditions partially match S. If Pg is small, then the rete match
procedure is efficient, but if Ps is large, the elaboration of partial matches .
may incur significant overhead.

Hierarchical knowledge clustering can be thought of as a way to control
the elaboration of partial matches, by distributing the preconditions of a rule
throughout the levels of a hierarchical structure and elaborating a partial
match only if it looks promising. Thus, the approach used in SIPS may ha.ve
potential for increasing the efficiency of the rete match procedure. '

5. CONCLUDING REMARKS

SIPS currently runs in Franz Lisp on a Sun, and in Zeta Lisp on a Symbol-
ics Lisp Machine and a TI Explorer. The current knowledge base consists of
about seventy frames describing various machining processes and machinable
features. SIPS can either read prepared data from a file, or (if some of this -
data is omitted) run interactively, asking the user for any needed information.
Various user features have been implemented in SIPS. For example, if SIPS
produces a plan for producing some feature, the user can later tell SIPS to go
back and find other alternative plans for producing this feature.

For the process planning problem domain, hierarchical knowledge cluster-
ing appears to be more natural to use than a “flat” set of production rules. In
the experience of a manufacturing engineer who has worked on SIPS3’s knowl-
edge base, SIPS’s style of knowledge representation has been easy to under-

*In particular, finding Rs corresponds either to retrieving the children of some frame or
(when STPS creates a subgoal) retrieving all frames relevant to the creation of a {eature.
In each case, only a few of SIPS’s process frames are reievant—and which frames are
relevant ia determined easily from the frame system.



stand and use. Trying to represent SIPS’s knowledge base as a rule-based
system would make the rules very cumbersome.

A more sophisticated interface for SIPS is currently being developed. SIPS
has been interfaced to a solid modeling systemn at General Motors Research
Laboratories, so that the user can build up an object to be created by giv-
ing graphical specifications of its machinable features, and have SIPS select
sequences of machining processes capable of creating those features. Further
work on sclid modeling for SIPS is currently underway [25].

SIPS is being extended to do not just process selection, but also tool
selection and the determination of process parameters. This is being done by
giving SIPS a knowledge base for tooling in addition to its knowledge base for
procesa selection. Thus, the current knowledge base for SIPS consists of three -
hierarchies: a taxonomy of machinable features, a taxonomy of machining
processes, and a taxonomy of cutting tools. Once SIPS finds a successful
sequence of machining processes for a given machinable surface, it uses its
knowledge about the characteristics of each cutting tool to decide, for each
machining process, what cutting tool to use and what process parameters
to use. The latest version of SIPS is being integrated into the Automated
Manufacturing Research Facility (AMRF) project [2] at the National Bureau
of Standards, where it will be used as part of the process ‘planning system in

an automated ma.chme shop.
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