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ABSTRACT

To achieve the goals of concurrent engineering in the design and manufacture of machinable
parts will require extensive communication between CAD systems such as solid modelers,
and CAM systemns such as generative process planning systems. One of the key steps in
communicating between a process planning system and a solid modeler is the derivation of
machinable features from the solid model. Regardless of whether the features are derived
using feature extraction, design by features, or some other approach, geometric interactions
among the features can create situations where there are several possible feature representa-
tions for the same part. This presents a problem for generative process planning, since some
_of these representations may lead to feasible process plans and some may not. To address
this issue, we are developing an algebra of feature interactions. The algebra is used as the
basis of a feature transformation system which is being implemented. This will be integrated
with our Protosolid solid modeler [22] with our SIPS process planning system [14].

" NOMENCLATURE

u* Regularized Union
N* - Regularized Intersection
—*  Regularized Subtraction
¢*  Regularized Complement
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I, Infinite Extension
Z;  Face Infinite Extension
M, Maximal Extension
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Introduction

Many of the problems faced by modern industry are related to a lack of coordination between
design and manufacturing. Typical problems include inconsistencies among process plans for
similar designs, large discrepancies from optimal shop utilization, poor product quality, and
non-competitive costs. Recently, there has been increasing awareness of the importance of
taking manufacturing considerations into account during the design of the part, rather than
afterwards. This concept is known by a variety of terms, such as “concurrent engineering”,
“concurrent design and manufacturing,” and “design for manufacturability.”

Design for manufacturability requires that the part designer should not confine himself to
the traditional role of just developing products to meet specified functional requirements, but
should also actively consider the associated manufacturing implications. Thus, as the part
design is being developed, issues such as availability of resources including machine tools,
cutting tools, jigs and fixtures, and labor, as well as their particular capabilities and costs
should be considered. Also, required manufacturing, assembly and inspection operations
should all be considered at the design level. This calls for a detailed knowledge of the
capabilities of the manufacturing shop, which normally resides with the process planning
department.

If design for manufacturability is to be achieved, CAD systems of the future must incorpo-
rate interfaces to modules such as process planning systems, to evaluate the manufactura-
bility of the design. Furthermore, it will be necessary for such process planning systems to
reason about geometric relationships among the various parts of an object while the design
is underway. To carry out such reasoning automatically will require extensive interaction
between the process planning system and the CAD system (presumably a solid modeler)
during design and process planning.

~ One of the primary problems in communicating between a solid modeler and a process
planning system is the derivation of machinable features from the solid model. Regardless
of whether the features are derived using feature extraction, design by features, or some
other approach, geometric interactions among the features can create situations where there
are several possible feature representations for the same part. This presents a problem
for generative process planning, since some of these representations may be feasible for
manufacturing and some may not.

To address this issue, we have developed an algebra of feature interactions. Given one
valid interpretation of a machinable part as a collection of machinable features, all other
~ valid interpretations of it as other collections of machinable features-can be derived through
operations in the feature algebra. We intend to use this algebra as the basis of a feature
transformation system (currently being implemented), which will be capable of examining
the feature descriptions, computing alternate feature representations for an object, and pre-
senting them to a process planning system. Once the implementation has been completed,
it will be used as the communication interface between our Protosolid solid modeling system
{22] and our SIPS process planning system [14], in the development of an mtegrated system
for design and process planning.



Feature-Based Design and Analysis

CAD-generated objects can be defined in terms of the complete geometry of the part. The
descriptions contain solids, faces, edges and vertices making up the part. For CAM descrip-
tions of the objects, the geometry and topology are the same, but the meaning associated
with this geometric structure is different, and dictates a change in the description. A form
feature which the designer may think of as a tab sticking out of a block of metal will be
considered by the manufacturing engineer to be the material Jeft after some shoulders have
been cut out of a larger block of metal.

There have been various solutions proposed to solve this incompatibility; several of them
are discussed below.

1. Automatic feature extraction consists of automating (algorithmically?) the task of
determining the manufacturing features of a part from existing CAD databases such
as IGES files, BReps, etc. The general algorithms developed are of the recognise-
feature/extract-feature genre. Prominent among these are the ones by Henderson [5],
Kyprianou [12], De Floriani (3], and Srinivasan [20].

Some of the more significant problems with feature extraction are as follows:

{a) Some attributes of a machined part cannot be made without reference to a partic-
ular {eature (for example, the surface finish, corner radius, and machining toler-
ances of a pocket). When an object is designed without making reference to these
features explicitly, it is unclear how to associate the machining specifications with
the proper features. '

(b) It is difficult to extract a feature which intersects or otherwise interacts with other
features, without disturbing those other features. For example, in Henderson’s
feature extraction system, once a feature volume has been recognized it is sub-
tracted from the overall cavity volume—making it impossible to obtain multiple
feature interpretations for the same cavity volume.

2. In design by features, the user builds a solid model of an object by specifying directly
various form features which translate directly into the relevant manufacturing features.
Systems for this purpose have been built for designing injection-molded parts [21],
aluminum castings, [13], and machined parts [10, 6, 1, 11].

In the case of machined parts, one problem with design by features is that it requires
a significant change in the way a feature is designed. Traditionally, a designer de-
signs a designs a part for functionality, and a process engineer determines what the
‘manufacturable features are. However, design by features places the designer under
the constraints of not merely having to design for functionality, but at the same time .
specify all of the manufacturable features as part of the geometry—a task which the
designer is not normally qualified to do. Another problem—that of alternate feature
 interpretations—is described in the next paragraph.

3. Human-supervised feature extraction overcomes one of the problems of design by fea-
 tures, by allowing the designer to design the part in whatever way is most convenient,
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Figure 1: Several possible interpretations of a hole in an object.

~and then requiring the process engineer to identify the machinable features of the part.
A system for this purpose was built at' General Motors Research Laboratories, and
another is being built at the National Bureau of Standards [2] using Unicad/Romulus
[19].

Human-supervised feature extraction provides a way for a qualified manufacturing
engineer to identify the machinable features-but it still does not handle the problem
of alternate feature interperetations. Sometimes a machinable part can be specified
as a set of machinable features in more than one way—and unless one is very careful
to identify all such possible interpretations, this can lead to significant problems in
process planning.

Consideration of the above approaches makes it evident that no matter what approach is
used for designing a part, a major problem to be solved is how to handle feature interactions.
Geometric interactions among two or more features may lead to several alternative interpre-
tations as to the identity and dimensions of those features—and these interpretations will
dictate restrictions on the order in which the features are to be made.

Geometric Interactions and Planning

Due to geometric interactions among the features, there may be several equally valid sets
of features describing the same part. To produce a good process plan—or, in some cases,
even to produce a process plan at all—it may be necessary to use a different interpretation
of the part than the one obtained from the CAD model. The problem is how to find these
alternate interpretations. A machinist solves this problem because of the human ability to
‘visualize an object in three dimensions and by doing geometric reasoning to figure out the
interactions. : '

To illustrate the role of feature interactions, consider the part depicted in Fig. 1. In this
example, the part has been described as the part resulting from subtracting a hole A1, a slot
51 and a slot sy, in that order, from a rectangular stock. Because of the interaction of A,



with s) and s,, we get hy = h; —* 8y, ha = hy —" 59, and hy = hgy —* 53 = h3 —* 5;. The final
set of features used for machining would be s;, 55 and one of k;, ks, k3 and hy. Which hole
to use depends on issues such as cost criteria (whether it is cheaper to make a deep hole or
a small hole), feasibility (availability of proper tools to make a deep hole), fixturing criteria
(can the part be properly fixtured to make hy after s, and s, have been made, or will it
vibrate). Thus, one can see that there can be several possible interpretations for the same
part, such as {hy, 31,82}, {ho, 51,52}, {Pa, 51,52} and {hy4,s1,5:}. Having only one of them
can be a serious limitation in process planning.

The Algebra of Features

Barlier we illustrated the importance of having alternative feature interpretations through
Figure. 1. This means one needs to be able to translate from one set of features that describe a
part to equivalent sets that describe the same part. We have developed an algebraic approach
to do this, which is described below.

An algebraic structure [16] in its simplest form is a set, with a rule (or rules) for combining
its elements. Let A be any set. An operation * on A is a rule which assigns to each ordered
pair {z,y) of eléments of A exactly one element z * y in A.

In particular, the feature algebra is characterized by a set of features (denoted by D), and
binary operations on the features. Since these operations give meaningful values only for
certain pairs of features, we include an element called INVALID in the set of features, to be
used in cases where the operations do not produce meaningful values. By definition, for any
operation *,

Vz, z+ INVALID = INVALID % z = INVALID

The essential features of the algebra are the operations on features and the algebraic prop-
~ erties of the operations. Originally, we developed the algebra for a small set of features [8, 9]
and we have subsequently generalized it to cover practically all features of interest to man-
ufacturing. The generalized feature algebra is described briefly in this paper. The reader
is referred to [15] for a detailed treatment of the material and underlying mathematical
concepts.

Feature Definition

A feature (other than INVALID) is given by a pair ¢ = {ps, blnfo) Where the two entries in
the pair satisfy the following conditions:

1. The first entry (ps(z)) is the set of all points in a feature and is a subset of E® that is
compact, regular and serni-analytic.

2. The second entry (binfo(x)) is a partition of the boundary of ps(z) into regular semi-
analytic components, each of which is labeled as BLOCKED or UNBLOCKED.

- It is worthwhile now to examine the scope and significance of the above definition. Reg-

ularity restricts a feature to be homogeneously three dimensional. Even parts with sheet
‘metal components have a finite thickness, so this appears to be a very reasonable restriction.
- Since the leatures that are considered are of finite dimensions, they are bounded and hence
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compact. The domain of semi-analyic sets covers practically all the shapes of interest to
manufacturing. The reader may note that all planar polyhedra, cylinders, cones, spheres,
tori and a variety of sculptured surfaces are encompassed by this set. It also includes concave
features such as T-slots, counter-bores and counter-sinks (see Figure 3).

A paich is a regular, semi-analytic subset of the boundary of a feature. Figure 2 illustrates
some examples of patches. Thus, binfo(x) is a partition of the boundary of ps(z) into a
collection of patches each of which labeled BLOCKED or UNBLOCKED. Henceforth, the
boundary and the patches of ps(z) will be referred to as the boundary and patches of z. For
any feature z, we denote a set of patches of z by patches(z). For any patch p, we denote the
label of the patch by label(p).

The labeling of patches of a feature as BLOCKED or UNBLOCKED is an aid to the
process planning system in determining the faces of a feature that are reachable by a cutting
tool. Let S; be the part after a feature z; has been created. The patches of z; that belong
to the boundary of S; are labeled BLOCKED. The rest of the patches of z; are labeled
UNBLOCKED.

Given a feature z and a patch p of z, the regularized complement of p is defined as c(p,z) =

b(ps(z)) —* p.

‘Proposition 1 The set of all patches of a feature is closed under regulamzed union, inter-
section, complement and difference.

Proof: It can be shown that the interior, boundary, and closure of a semi-analytic set is also
semi-analytic, and that class of compact, regular, semi-analytic sets is closed under
regularized set operations (see [15]). This proposition a direct consequence of the
closure properties of compact, regular, semi-analytic sets.

Operations on Features

This section describes the operations on features. In order to describe the propagation of
patch labels we need to define additional concepts related to classification of a patch with
respect to a solid. Due to lack of space, we describe only the first component: the set of all
points of a feature.

Shortened

Given two features = and y, the operation shortened (S} is defined as follows: z = zSy =
{u,v), where u = ps(z) —* ps(y). The second component is omitted from the discussion.

. Infinite Extension

In this section the infinite extension of a feature with respect to a patch will be defined. This
1s used subsequently in defining an operation called mazimal extension. For simplicity we
will present here the definiton of infinite extension only for convex solids. Figure 4 illustrates
some examples of infinite extension. .
Given a patch p on a feature z, let the tangent plane (if the tangent plane is defined) at a

~point p; € ¢*(p,z) be given by the equation 7 (p;,z) = 0. T(p;,x) = 0 divides E® into two
half-spaces, one of which includes ps(z). We will denote this half-space by H (p:;,z). The
infinite extension of z with respect to the patch p denoted by Z,(z) is defined as follows:
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= ﬂH(p,-, z
P
where p; € ¢*(p,z) and 7 (p;,z) = 0 (and hence H(p;, )) is defined at p;.

Maximal Extension

Given two features & and y, and a patch p on z, the maximal extension of z in y with
respect to a patch p (denoted by zM,y) is defined as follows:

Moy = 1 (@0 if Z,(z) # INVALID
MY INVALID otherwise

where u = Z,(z) N* (ps(z) U* ps(y)).

Properties of the Algebra of Features

The goal is to generate new features from the features one already has, using the operators
discussed earlier. During this process, one would not like to generate a feature anew if it
can be shown that a feature equivalent to it has already been generated. To compute new
features from existing ones, one must perform set operations on solids. Existing algorithms
for performing set operations have an average case complexity of O(nlogn), where n is
the number of topological entities in a solid (such as vertices, edges and faces). Thus, set
operations on solids are expensive computations and should be minimized or substituted by
cheaper operations. We have proved several properties of the operations on features. Below,
we illustrate two of our results:

 Proposition 2 For any three features z, y and z, the following result holds:

(ps(z) =" ps(y)) =" ps(z) = (ps(z) =~ ps(2)) — ps(y)-
Proposition 3 Given a feature z and a patch p of z, if T,(z) = ps(z), then ps(zM,y) =
ps(z), for any feature y.

 Restricted Feature Algebras

- The previous section described an algebra of features, viz. the domain, the operations

and the properties. The domain includes almost any feature of interest to manufacturing.
A crucial question regarding the operations in the feature algebra is their computability;
whether they can be computed and if so, the efficiency. As defined, the operation M,
involves intersecting an infinite number of half-spaces. This definition 1tse1f does not spec1fy
~ any algorithm, and algorithms for computing M,, for features and patches of various shapes
must be developed. One must also identify the subset of the patches are of interest in
computing infinite extension and maximal extension. ,

We have addressed these issues for a restricted domain consisting of rectangular solids and
cylinders that have their planar faces parallel to the faces of the stock *. Rectangular solids

~ *This scheme will be implemented with rectangular solids modeled with rounded corners. In this paper,
the corners are taken to be pointed, as it simplifies the chscuss;on
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occur as manufacturing features known by a variety of names, such as a slot (which in turn
could be single-ended or through), a shoulder, a pocket, a cut-out, a notch etc. The common
manufacturing feature that is cylindrical in shape is a hole.

For the this domain, the patches whose 7, is computed are chosen to be the the planar faces
of a feature. Let us call this restricted form of infinte extension as face infinite extension
(Zy) and the corresponding maximal extension as face mazimal extension (M;). Since there
are six planar faces in a rectangular solid and two in a cylinder, there are six possible face
infinite extensions for a rectangular solid and two for a cylinder. Let us denote the set of all
possible face infinite extensions by %; and the set of all possible face maximal extensions by
Y- The procedures for computing the operations are described in [13].

The Features Algorithm

Given a set of features that describe a part, one would like to generate alternate sets of
features that describe the part. Any set of features describing the part under consideration is
called a feature set. This section describes an algorithm for generating alternate feature sets

_given one feature set. In this algorithm, F is the set of features generated at any stage, and
'F is the union of all the features in #'. Initially, F is the starting set of features and F' = {F}.
There are two additional variables called CURRENT and NEW used in this algorithm. Let
2. be the set of applicable binary operations. Thus, £ = {S} U E),.

In the algorithm shown in Figure 5 the function new-ps-member (z,y) returns trueif Vz € y
ps{z) # ps(z) and false otherwise. In this algorithm we have to determine if if zny is a valid
feature and if so, whether new-ps-member(zny, F) is true or false. The properties of the
teature algebra are used in these two steps. If it is possible to determine if zny is INVALID
or if new-ps-member(zny, F') is true using the properties of the feature algebra, then one need
not do any further computations. Otherwise, one has to compute zny using the procedures
described in [15] and then determine if it is a new feature.

At first glance, the worst case complexity of the algorithm might appear to be exponential,
because of the possibility of combinatorial explosion if there are several mutually-interacting
features. However, geometric locality dictates that each feature will interact with only a few
of its neighbors, so there is no reason to believe that significant exponential blowup would
ever occur.

Tllustrative Example

- This section illustrates the working of the algebra of features (and the features algorithm),
through the example shown in Figure. 1. The starting features are Ay, s; and s;. In this
section, the example is illustrated, by showing only the changes that occur from one iteration
to the next of the outermost while loop (without tracing every step of the algorithm). A
complete trace of the algorithm for this example is left as an exercise to the reader.

At the start of the features algorithm the values of the variables are:

F = {h],Sl,Sg} H

'CURRENT = {hy, 51,82} ;
NEW =0 ;
F= {{h1,51,82}} .
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F' = Starting set of features;
F = {F};
CURRENT = F;
NEW = §
for each z in CURRENT for each Z; € E; compute Z;(z) ;
while CURRENT # ¢ do
for each FS in F do
for each {(z,y): 2 € FSand y € FS and z # y do
if {z € CURRENT) or (y € CURRENT) then
for each n € ¥ do
if zny = z then
if new-ps-member(z, F') then
for each Z; € ¥; compute Z4(2) ;

F=Fu{z};
NEW = NEW U {z};
end if ;

if ((FS—{z})U{z}) & F then
F = FU((FS - {2}) U {z});
end if ;
end if ;
if zny = {21, 2;} then
for each u € {z,2} do
if new-ps-member(u, F') then

for each Iy € ¥y compute Z;{u);

F=FuU{u};
NEW = NEW U {u};
end if ;
end for ;

if (FS— {z})U{z1,20}) & F then
F=FU((FS = {2})U {1, 22});
end if ;
end if ;
end for ; -
end if ;
end for ;
end for ;
CURRENT = NEW;
NEW = §;
~end while .

Figure 5: The Features Algorithm
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The value of NEW is § each time before the outermost loop is entered. After the first

iteration:
F= {h1,315325 h23h3} ;

CURRENT = {hg,hg} ;
F={{h1531332},{hzs51,-‘32},{hs,Sl,Sz}} .

In this iteration, hy and h; were generated using the S operation, where hy = h;Ss; and
h3 = h18 S2.
After the second iteration:
F= {hl, 51,82, ho, ha, h4} 3

CURRENT = {h4} ;
F= {{hhslaSZ}a{h2531)52}?{h3a51132}3{h4131a52}} .

" In this iteration, let us say h2Ss; was considered before considering h3Ss;. Let us denote
h3Ssy by hy. Later on, when h3Ssy is considered, using Proposition 2 we infer ps(haSs;) =
ps(h2Ss2) = ps(hs). Therefore, new-ps-member((h3Ss;), F) = false. So, hsSs; is not
considered as a new feature. Several other algebraic properties are applied at various stages.
After the third iteration : '
F = {h1, 81,82, ka, b3, ha} ;

CURRENT =0 ;

F = {{hh 51, 52}: {h21 51, 32}3 {h3: 31, 32}7 {h4, 81, 32}} .
At this point the loop terminates, because CURRENT = §.

Related Work

The popular approaches to CAD/CAM integration are automatic feature extraction and
design by features. Most of the research in feature extraction has not addressed the issue
of feature interactions. Some of the recent work such as that of Srinivasan and Liu[20] and
Joshi and Chang [7] accounts for certain kinds of feature interactions. Elaborate systems
([10, 1]) based on the design by features paradigm have been built for process planning
that can translate from manufacturing features to NC code. But this paradigm requires
the designer to account for all the interactions among the features. The next paragraph
sumrmarizes research that has specifically addressed the issue of feature interactions.

Hayes [4] has addressed the problem of feature interactions in her Master’s thesis. Her
program uses feature interactions to determine precedence relations among features. The
system is written in OPS5 and uses rules to detect feature interactions of interest. Requicha
and Vanderbrande [18] are building a system known as the AI/SM test bed, which performs
certain kinds of geometric reasoning, combining the principles of solid modeling, computa-
tional geometry and rule-based systems. This system, however, is not complete as of this
writing; so we do not know of its capabilities in detail. Michael Pratt[17] has addressed
- several issues pertaining to feature interactions. He has developed the notions of effective
volume of interaction and actual volume of interaction which are equivalent to the shortened
operation. He has developed a graph showing the relationships among features. His work
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addresses interactions among protrusions and depressions. There are no equivalents of the
maximal extension and infinite extension in his frame work.

Conclusions

The primary issue addressed in this paper is the development of a way to reason about
‘geometric interactions among features, via an algebra of feature interactions. We believe
this algebra will have utility for a number of different approaches to design, including auto-
mated feature extraction, design-by-features, and human-supervised feature extraction. The
feature algebra is being implented on Texas Instruments Explorer, and it will serve as the
communication between the Protosolid [22] solid modeler and SIPS process planner [14].

This work is being done with two long-term goals in mind: the development of a practical
integrated system for designing metal parts and planning their manufacture, and the investi-
gation of fundamental issues in representing and reasoning about three-dimensional objects.
We believe this work will have utility not only for automated manufacturing, but also for
other problems in geometric modeling and geometric reasoning.
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