
D. S. Nau. Enabling condition interactions and finding good plans.
In AAAI Spring Symposium, April 1993.

Enabling-Condition Interactions and Finding Good Plans∗

Dana S. Nau†

University of Maryland
College Park, Maryland 20742

nau@cs.umd.edu

Overview

In AI planning research, the best-known goal interac-
tion is the deleted-condition interaction, in which the
side-effect of achieving one condition is to delete some
other condition that will be needed later. Enabling-
condition interactions—in which the side-effect of
achieving one condition is to make it easier to achieve
some other condition—are not as well known. In
this paper, I argue that enabling-condition interac-
tions merit more attention than they have heretofore
received.

This paper is organized as follows:

1. A definition of enabling-condition interactions.

2. The importance of finding “good” plans (rather than
simply being satisfied with any plan we find), with
examples from several planning domains.

3. How a number of planning strategies take advantage
of enabling-condition interactions to produce better
plans.

4. Some of the effects of enabling-condition interactions
on the complexity of planning.

5. Concluding remarks.

Definition

An enabling-condition interaction is a situation in
which some action invoked to achieve one goal G1 also
makes it easier to achieve another goal G2. For exam-
ple, in Figure 1, the action move(a, c, b) achieves the
goal on(a, b), but it also has the side-effect of clearing
c, making it easier to achieve the goal on(c, d). As an-
other example, consider the following situation (based
on (Wilensky, 1983)):

John lives two miles from a bakery and two miles
from a dairy. The two stores are one mile apart.
John has two goals: to buy bread and to buy milk.

∗This work was supported in part by NSF Grants IRI-
8907890 and NSFD CDR-88003012.

†Department of Computer Science, Systems Research
Center, and Institute for Advanced Computer Studies.

Initial state: I =
{clear(b), on(b,table),
clear(d), on(d,table),
clear(a), on(a, c),
on(c,table)}

a

b d c

Goal formula: G =
{on(a, b), on(c, d)}

a c

b d

Figure 1: In this problem, moving a to b enables us to
move c to d.

If John goes to the bakery to buy bread, then this puts
him closer to the dairy, making it easier for him to buy
milk.

Finding “Good” Plans
Perhaps the most obvious case in which enabling-
condition interactions affect planning is if we want to
find a “good” plan (i.e., one whose length or cost is
small, or whose efficiency is high) rather than being
satisfied with any plan (no matter how inefficient) that
achieves the goal.1 Until recently, the objective of find-
ing “good” or “optimal” plans does not appear to have
received much explicit discussion in the AI planning
literature. However, it appears to have been an under-
lying motivation behind a number of existing planning
strategies.

For example, Fig. 2 shows the well known “Suss-
man anomaly” of blocks-world planning (Waldinger,
1990, p. 127) (Sussman, 1975). The primary reason
why this problem generated so much interest was that
the best plan that previously existing planning proce-
dures could generate for this problem was

move(b,table, c), move(b, c,table),
move(c, a,table), move(b,table, c),
move(a,table, b).

1Actually, enabling-condition interactions affect plan-
ning even if we are not concerned with the goodness of
a plan. I hope to discuss this more fully in a subsequent
paper.

Initial state: I =
{clear(c), clear(b),
on(a,table), on(c, a),
on(b,table)}

c

a b

Goal formula: G =
{on(a, b), on(b, c)}

a

b

c

Figure 2: The Sussman anomaly.

This plan does achieve the desired goal, but it does so
inefficiently. If we did not care about the goodness of
the plan, then the Sussman anomaly would be of no
concern.

In addition, there are a number of practical planning
situations in which it is important to find good plans.
Below are several examples.

Machining-Operation Sequencing
Consider the problem of using machining operations
to make holes in a metal block. Several different kinds
of hole-creation operations are available (twist-drilling,
spade-drilling, gun-drilling, etc.), as well as several dif-
ferent kinds of hole-improvement operations (reaming,
boring, grinding, etc.). Each time one switches to a
different kind of operation or to a hole of a different
diameter, one must mount a different cutting tool on
the machine tool. If the same machining operation is
to be performed on two different holes of the same di-
ameter, then these two operations can be merged by
omitting the task of changing the cutting tool. Thus,
by performing the two operations at the same time,
both are made easier. This and several other sim-
ilar manufacturing problems are of practical signifi-
cance (Chang and Wysk, 1985; Hayes, 1987; Nau, 1987;
Nau et al., 1988; Mantyla and Opas, 1988).

Logistics Planning
Different plans containing deliveries to the same place
may be combined into a single trip, saving considerable
expense. In addition, an inexpensive delivery tech-
nique needed for one delivery can be subsumed by one
with a greater cost in a second plan, while still allow-
ing for an overall savings. For example, if a cargo of
food could be delivered to a location via a parachute
drop, but some other piece of equipment going to the
same site requires a landing, then both items can be
delivered on the same plane (the one that lands) and
the extra steps required for the parachute drop can be
deleted.

Scheduling
Consider the problem of finding a schedule for satis-
fying some set of orders for products that can be pro-
duced in a machine shop. For each order, there may

be a set of alternative schedules for producing it, and
each such schedule consists of a set of operations to
be performed on various machines. An operation in a
schedule is usually associated with a machine for carry-
ing it out. If two or more operations require the same
type of set-up, then doing them on the same machine
may reduce the total time required—and thus reduce
the total time required to complete all the schedules.

Multiple Database-Query Optimization

Let Q = {Q1, Q2, . . . , Qn} be a set of database queries.
Associated with each query Qi is a set of alternate
access plans {Pi1, Pi2, . . . , Piki

}. Each plan is a set of
partially ordered tasks that produces the answer to Q.
For example, one task might be to find all employees
in some department whose ages are less than 30, and
whose salaries are over $50,000. Each task has a cost,
and the cost of a plan is the sum of the costs of its tasks.
Enabling-condition interactions occur if plans for two
different tasks contain the same query, or if the result of
evaluating one task reduces the cost of evaluating the
other. A better overall plan can be produced by taking
advantage of these interactions, and several research
papers have been written on this topic (Sellis, 1988;
Shim et al., 1991).

Planning Strategies

A number of planning strategies have been formulated
to exploit enabling-condition interactions in order to
produce better plans. Below are two examples.

Studies of human planning behavior show that peo-
ple look for enabling-condition interactions when they
are formulating plans, in order to make the plans
more efficient. For example, consider the following ex-
cerpt from Hayes-Roth and Hayes-Roth’s transcript of
someone “thinking aloud” while planning a hypothet-
ical day’s errands (Hayes-Roth and Hayes-Roth, 1990,
p. 254):

In section 6, the subject asks, “What is going to
be the closest one?” This question indicates a
strategic decision to plan to perform the closest
errand next in the procedural sequence . . .

This planning strategy is one that Pollack (Pollack,
1992) has referred to as overloading: if you notice that
an action you have selected in order to accomplish one
goal also makes it easier to accomplish another goal,
then use that action for both of these purposes.

The same basic idea has been incorporated into
nonlinear planning systems, where it is sometimes
called phantomization: SIPE (Wilkins, 1988), Nonlin
(Tate, 1977), and Kambhampati’s plan reuse frame-
work (Kambhampati, 1990) are capable of recognizing
an operator in the current plan satisfies another goal
in addition to the one it was originally intended to
achieve, and imposing constraints on the plan so that
this operator will be used to achieve both goals.

a a d

b d ⇒ ...
...

c e c e

a d a

d e ⇒ ...
...

c b c e

a is in d’s way and d is in a’s way, so {a, d} is deadlocked.

a a

b d ⇒ ...
c e b

a a

d e ⇒ ...
c b b

a is in its own way, so {a} is deadlocked.

Initial state: I = {clear(a), on(a, b), on(b, c),
on(c,table), clear(d), on(d, e), on(e,table)}

Goal formula: G =
{on(a, e), on(e, b), on(d, c)}

Figure 3: A problem in which two sets of blocks are deadlocked: {a, d} and {a}.

A different but related strategy is action merging
(Yang et al., 1990; Foulser et al., 1992; Yang et al.,
1993). In this case, rather than simply recognizing that
an existing action accomplishes an additional goal, the
planner replaces an action that doesn’t accomplish an
additional goal with one that does (provided that this
produces a lower total cost than would be incurred
by using a separate action to achieve the additional
goal). NOAH’s “eliminate redundant precondition”
critic (Sacerdoti, 1977) is a special case of this strategy.

Effects on Complexity

If a problem contains more than one enabling-condition
interaction, then it can be difficult to determine which
set of actions will produce the best plan. For exam-
ple, if actions A and B both achieve goal G1, and A
also aids in achieving goal G2, then we might prefer
action A to action B—but if B also aids in achiev-
ing goal G3, then it may no longer be clear which of
A and B we should prefer. The difficulty of resolv-
ing such tradeoffs is illustrated in some of the repeated
revisions that Hayes-Roth and Hayes-Roth’s subject
makes to his plan (Hayes-Roth and Hayes-Roth, 1990,
p. 246–247). Below, I discuss several other cases where
enabling-condition interactions increase the difficulty
of planning.

Blocks World (The Usual Formulation)
The effect of enabling-condition interactions on blocks-
world planning was analyzed formally in (Gupta and
Nau, 1992). This paper showed that in the blocks
world, finding an optimal plan is NP-hard—and that
the NP-hardness is not due to deleted-condition inter-
actions such as the Sussman anomaly, but instead due
to a particular kind of enabling-condition interaction
called a deadlock. For problems that do not contain
deadlocks, there is a simple hill-climbing strategy that

can easily find an optimal plan, regardless of whether
or not the problem contains any deleted-condition in-
teractions.

To see that deadlocks are a special case of enabling-
condition interactions, consider the definition of a
deadlock given in (Gupta and Nau, 1992). The set
of blocks {b1, b2, . . . , bp} is deadlocked in the state S if
there is a set of blocks {d1, d2, . . . , dp} such that the
following three conditions hold:
1. In S, bi is above di for i = 1, 2, . . . , p.
2. In G, bi is above di+1 for i = 1, 2, . . . , p − 1, and bp

is above d1.
3. In S, none of b1, b2, . . . , bp are in their final positions

(if p > 1, then the other two conditions entail this
condition).

For example, in Figure 3, in the initial state I there
are two deadlocked sets of blocks:
1. In I, a is above c and d is above e. In G, a is above

e and d is above c. Thus {a, d} is deadlocked.
2. a is above b in both I and G, and a is not in its final

position in I. Thus {a} is deadlocked.
Suppose some set of blocks D1 = {a, b} is dead-

locked. Then before we can move a and b to their final
positions, we must resolve the deadlock by moving ei-
ther a or b out of the way. Now, suppose that a is
also in some other deadlocked set D2, and b is also
in some other deadlocked set D3. Then there are two
enabling-condition interactions: moving a out of the
way will also resolve the deadlock D2, and moving b
out of the way will also resolve deadlock D3. Since
these two possible moves will have side-effects of mak-
ing different sets of goals easier to achieve later on, it
is unclear which of of the two moves we should prefer.
As shown in (Gupta and Nau, 1992), in the general
case of this problem it is NP-hard to find an optimal
plan.

Table 1: Complexity of domain-independent planning. These results are independent
of whether or not conditional operators are allowed.

Lang. How the Allow Allow ne- Telling Telling whether
restric- operators delete gated pre- whether a there is a plan Line
tions are given lists? conditions? plan exists of length ≤ k number
no given yes yes/no expspace-comp. nexptime-comp. (1)
function in the yes nexptime-comp. nexptime-comp. (2)
sym- input no no exptime-comp. nexptime-comp. (3)
bols; noα pspace-complete pspace-comp. (4)
finitely yes yes/no pspace γ pspace γ (5)
many fixed in yes np γ np γ (6)
constant advance no no p np γ (7)
symbols noα nlogspace np (8)
all pre- given yes yes/no pspace-comp.δ pspace-comp. (9)
dicates in the yes np-completeδ np-complete (10)
are 0-ary input no no p δ np-complete (11)
(propo noα/noβ nlogspace-comp. np-complete (12)
sitions) fixed yes/no yes/no constant time constant time (13)
αNo operator has more than one precondition.
βEvery operator with > 1 precondition is the composition of other operators.
γWith pspace- or np-completeness for some sets of operators.
δResults from (Bylander, 1991).

Blocks World (Another Formulation)
(Chenoweth, 1991) describes a more complicated ver-
sion of blocks world planning, in which more than
one block can have the same name. It is an open
question how difficult deleted-condition interactions
are in Chenoweth’s version of the blocks world—but
Chenoweth’s NP-hardness proof for his domain again
shows that enabling-condition interactions make the
problem NP-hard.

Chenoweth’s proof of NP-hardness is by reduction
from 3SAT. Given a 3SAT problem with m clauses and
n variables, he generates an MPBW problem in which
L = 3n + 5m + 1. For each i (i = 1, . . . , n), there are
two blocks named ui, at the tops of two large stacks.
For each i, one of the two ui’s must be moved to the
top of a block named vi, and the question is which ui to
move. If we move the wrong one, then later in the plan,
we will have to move one or more blocks temporarily
to the table rather than moving them directly to their
final positions, whence the resulting plan will be longer
than L.

The above problem is similar to the problem of re-
solving multiple deadlocks in the more usual formula-
tion of the blocks world. In both problems, if we make
the wrong choice, then too many blocks must be moved
temporarily to the table rather than directly to their
final positions. However, the two problems are not
identical. If no two blocks have the same name, then
for a wrong choice to force us to move extra blocks to
the table, we must have blocks which mutually block
each others’ progress—and this led to our definition of
deadlock. But if more than one block can have the
same name, then one can find other ways for a wrong

choice to force us to move extra blocks to the table—
and that is what Chenoweth did.

Domain-Independent Planning
Enabling-condition interactions are important not only
in the blocks world, but in domain-independent plan-
ning in general. As an example, consider Table 1,
which was taken from (Erol et al., 1991; Erol et al.,
1992). This table shows how the complexity of domain-
independent planning with STRIPS-style operators de-
pends on the nature of those operators.

In lines (11) and (12) of Table 1, plan existence can
be determined in polynomial time, but the problem of
finding an optimal plan is NP-complete. The reason
for this is as follows. In these cases, if we are simply
interested in finding a plan but do not care how good
a plan it is, the restrictions allow us to plan for each
subgoal separately, using backwards chaining. But if
we are interested in a short plan (i.e., one of length ≤ k
for some k) rather than just any plan, then we need
to pay attention to enabling-condition interactions, be-
cause they make it possible to produce a shorter plan.
It is not possible to detect and reason about these in-
teractions if we plan for the subgoals independently; in-
stead, we have to consider all possible operator choices
and orderings, making it np-hard to tell whether there
is a plan of length ≤ k.

Note also that throughout Table 1, whether or not
negated preconditions are allowed does not affect the
complexity of telling whether there is a plan of length
≤ k. Again, what makes these particular problems
difficult is how to handle multiple enabling-condition
interactions—more specifically, how to choose opera-

tors that achieve several subgoals in order to minimize
the overall length of the plan. For these problems,
this task remains equally hard regardless of whether
negated preconditions are allowed.

Conclusion
In AI planning research, the best-known goal interac-
tion is the deleted-condition interaction, in which the
side-effect of achieving one condition is to delete some
other condition that will be needed later. Enabling-
condition interactions are not as well known. In this
paper, I have argued that enabling-condition interac-
tions merit more attention, for the following reasons:

The goal of finding good plans (rather than simply
being satisfied with any plan we find) is important
in many planning situations, and has been an im-
plicit motivation behind several existing planning
strategies. But if we are interested in finding good
plans rather than poor plans, enabling-condition
interactions can dramatically increase the diffi-
culty of planning.

In addition, preliminary results suggest that even if
we don’t care about the quality of the plan we find,
enabling-condition interactions can still dramatically
increase the difficulty of planning. If this result is
correct, then it suggests that enabling-condition inter-
actions are just as important in planning as deleted-
condition interactions. I hope to investigate this issue
more fully in the future.

References
Bylander, Tom 1991. Complexity results for planning.
In IJCAI-91.
Chang, T.C. and Wysk, R. A. 1985. Integrating cad
and cam through automated process planning. Inter-
national Journal of Production Research 22(5).
Chenoweth, Stephen V. 1991. On the NP-hardness
of blocks world. In AAAI-91: Proc. Ninth National
Conf. Artificial Intelligence. 623–628.
Erol, K.; Nau, D.; and Subrahmanian, V. S. 1991.
Complexity, decidability and undecidability results
for domain-independent planning. Submitted for pub-
lication.
Erol, K.; Nau, D.; and Subrahmanian, V. S. 1992. On
the complexity of domain-independent planning. In
Proc. AAAI-92. 381–386.
Foulser, David; Li, Ming; and Yang, Qiang 1992. The-
ory and algorithms for plan merging. Artificial Intel-
ligence 57(2-3):143–182.
Gupta, Naresh and Nau, Dana S. 1992. On the com-
plexity of blocks-world planning. Artificial Intelli-
gence 56(2-3):223–254.
Hayes-Roth, B. and Hayes-Roth, F. 1990. A cognitive
method of planning. In Allen, James; Hendler, James;
and Tate, Austin, editors 1990, Readings in Planning.

Morgan Kaufman. 245–262. Originally appeared in
Cognitive Science 3(4), 1979.
Hayes, Caroline 1987. Planning in the machining
domain: Using goal interactions to guide search.
Master’s thesis, Carnegie-Mellon University, The
Robotics Institute, Pittsburgh, PA.
Kambhampati, Subbarao 1990. A theory of plan mod-
ification. In AAAI-90.
Mantyla, Martti and Opas, Jussi 1988. Hutcapp—a
machining operations planner. In Proc. Second Inter-
national Symposium on Robotics and Manufacturing
Systems.
Nau, D. S.; Karinthi, R.; Vanecek, G.; and Yang,
Q. 1988. Integrating AI and solid modeling for design
and process planning. In Second IFIP Working Group
5.2 Workshop on Intelligent CAD, Cambridge, UK.
University of Cambridge.
Nau, D. S. 1987. Automated process planning using
hierarchical abstraction. TI Technical Journal 39–
46. Award winner, Texas Instruments 1987 Call for
Papers on AI for Industrial Automation.
Pollack, Martha 1992. The uses of plans. Artificial
Intelligence 57(1):43–68.
Sacerdoti, E. D. 1977. A Structure for Plans and
Behavior. American Elsevier Publishing Company.
Sellis, T. 1988. Multiple-query optimization. ACM
Transactions on Database Systems 13(1):23–52.
Shim, K.; Sellis, T.; and Nau, D. 1991. Improvements
on a heuristic algorithm for multiple-query optimiza-
tion. Submitted for publication.
Sussman, G.J. 1975. A Computational Model of Skill
Acquisition. American Elsevier, New York.
Tate, Austin 1977. Generating project networks. In
Proc. 5th International Joint Conf. Artificial Intelli-
gence.
Waldinger, R. 1990. Achieving several goals simulta-
neously. In Allen, James; Hendler, James; and Tate,
Austin, editors 1990, Readings in Planning. Morgan
Kaufman. 118–139. Originally appeared in Machine
Intelligence 8, 1977.
Wilensky, R. 1983. Planning and Understanding.
Addison-Wesley.
Wilkins, David E. 1988. Practical Planning: Extend-
ing the Classical AI Planning Paradigm. Morgan-
Kaufmann Publishers, Inc., San Mateo, CA.
Yang, Q.; Nau, D. S.; and Hendler, J. 1990. Optimiza-
tion of multiple-goal plans with limited interaction. In
Proc. DARPA Workshop on Innovative Approaches to
Planning, Scheduling and Control.
Yang, Q.; Nau, D. S.; and Hendler, J. 1993. Merg-
ing separately generated plans with restricted inter-
actions. Computational Intelligence 9(1). To appear.

