~ award for Dr.

" Abstract

Mérging Plans Efficiently*

Dana S. Nau, University of Maryland?
James Hendler, University of Maryland*
Qiang Yang, University of Waterloo®

Generating action sequences to achieve a set of goals is'a computationally difficult task. However, this paper demon-
strates that for cases where separate plans can be individually generated, we can define a set of limitations on the
allowable interactions between goals that allow efficient plan merging to occur. We propose a set of restrictions that
arte satisfied across a significant class of planning domains. We present algorithms that are efficient for special cases
- of multiple plan merging, propose a heuristic search algorithm that performs well in a more general case (where alter-
native partially-ordered plans have been generated for each goa.l) and describe an empirical study that demonstrates

"~ the eﬂimency of this search a.lgonthm

1 Intrbduction

* Recent work has proved that the so-called “classical Al
planning problem” — generating an action sequence to
achieve some conjunction of goals — is computationally
intractable [5, 4, 9, 10, 11].

. a set of goals needing to be jointly solved. Most domain-
. specific planners ar¢ too brittle to handle the numerous
interactions that may .arise between the actions in'the
goal conjunction, and thus an assumption of indepen-
" -dence is needed to generate a set of plans from a sin-

- gle domain-specific system. While much of modern plan-
“ning research hes focused on the issues of dealing with

such interactions in domain-independent ways (for exam-
ple {5, 32, 37, 40, 42]"), little work has focused on how the’
outcomes of either separate doma.im'dependent planners,
" or multiple runs of the same pla.nnex, could be combmed
.. into a smgle global plan.

"This work was supported in part by an NSERC operating

" .- grant to Dr. Yang, by an NSF Presidential Young Investigator
_ Nau, NSF Equiprent grant CDA-8811952 for.
Dr. Nau, NSF Grant NSFD CDR-8800301.2 to the University of

" Maryland Systems Research Center, NSF grant IRI-8907890 for
Dr. Nau and Dr. Hendler, and ONR grant N00014-91-J-1451
for Dr. Hendler. ‘

tComputer Science Department, Systems Research Center,
- and Institute for’ Advanced Computer Studies. College Park,
MD. 20742, USA. Email: nau@cs.umd.edu. Tel: 301-405-2684,
t('.?oz:uput:er Science Department, Systems Research Center,
. and Institute for Advanced Computer Studies. College Park,
MD. 20742, USA. Email: hendler@cs.umd.edu. Tel 301-454-

4148,

. ¥Computer Science, Waterloo, Ont. N2L 3G1, Canada.
" Email: qyang@watdragon.waterloo.edu. Tel: 519-888-4716.
1A review of this work is presented in [20].

The inefficiency of plan--
' ning becomes even more problematic in the presence of

If the individual goals do not interact, ther Korf [24]
has shown that solving each one in turn (and essentially
concatenating the results) will save an exponential amount
of work. However, for most planning problems the goals
are not independent {the most famous example of this is-
the “Sussman anomaly” [36], in which solving one goal
undoes the independently derived solution to the other).

-Unfortunately, it appears impossible to achieve both ef-
ficiency -and generality in handling goal/subgoal interac- -
tions. Domain-independent planners attempt to handle in-
teractions that can occur in many possible forms, and thus
they sacrifice the gains in efficiency that might possibly be
achieved if some of these forms were disallowed. Domain-

dependent planrers can often ‘do better at dealing with

goal/subgoal interactions by imposing domain-dependent
restrictions on the kinds of interactions that are allowed—
but the restrictions they use are often too restrictive for
the planners to be applicable to other domains,

In this paper we discuss an approach to multiple-goal

" planning that falls somewhere in the middle of this trade-

off. The approach is to generate plans for each goal in-
dividually, ignoring how each plan might affect: the other
goals—and then merge the individual plans, handling in-

-teractions while this merging is performed. We show that

where certain restrictions hold, these plans can be merged
in an optimal manper. We investigate a set of restric-
tions less severe than either independence or linearity as-
sumptions, although they are not as general as the sorts
of interactions handled in the larger class of “non-linear”
planners. These restrictions allow us to develop relatively
efficient techniques for solving multiple-goal planning prob-
lems by developing separate plans for the individual geals,
combining these plans to produce a naive plan for the con-
joined gosl, and perforn‘ung opt1m12at1ons to yleld a better
combmed plan.

For example, consider the following situation {based on
[41]):
John lives one mile from a bakery and one mile

from a dairy. The two stores are 1.5 miles apart.
Jobn has two goals: buy bread and buy milk,

The uvsual approach is to conjoin this into the single goal
(GOAL JOHN (AND (HAVE BREAD) (HAVE MILK)))

and to solve the conjunction taking interactions into ac-
count. However, supposing that we have some sort of sim-
ple, possibly domain-specific, “txip” planner that can effi-
"ciently generate plans for the individual goals. This plan-
ner would develop separate plans for the two individual
goals (drive to the dairy, buy milk, and come home; and
drive to the bakery, buy bread, and come home). If con-
catenated together, these plans would solve the conjoined
goal, but they’d be inefficient — we’d make two separate
trips. However, the two trips can be merged into a single
trip by replacing the “come home” subaction of the first
trip and the “drive to the dairy” subaction of the second
trip with “drive from the dairy to the bakery.”

As mentioned above, the restrictions required for our
approach to be applicable are limiting, but less so than
some of the restrictions proposed in the literature. Our

. goal has been to develop restrictions with the following
properties:

1. ‘the restrictions are statable in a clear and precise way
(rather than simply referring to general knowledge
~about a particular domain of application); - -

- 2. the resulfing classes of planning problems are large

- enough to be useful and interesting, but are “well-

behaved” enough that planning may be done with a
reasona,ble degree of efficiency.

In tIus pa,per, weé identify a set of restnctmns satisfy-
. ing the above criteria. We also discuss the complexity of

" the resultant planning problems, and demonstrate that the -

. merging of multiple plans can be performed efficiently un-
der these restrictions.

‘2 Related Work

- Ore of the major problems with planning is how to handle
“interactions among.goals or subgoals. One way to circum-
vent this problem is the condition of linearsty, which is sat-

- isfied if the individual goals can be achieved sequentially

in any arbitrary order.? Eazly planners, such as STRIPS

[12], typically generated plans for the goals as if the plan-

" ning problem were linear. Unfortunately, this often led to

redundant- actions in the plans generated by STRIPS, and

could occasionally get the planner into an endless cycle of

re-introducing and trying io satisfy the same goal over and
over again.

Later planners typically were based on the assumptmn is

. that it is better not to order operators than to order them

- arbitrarily. This results in the leasi-commitment sirategy,

2The literature sometimes nses the term “linear” to describe
the situation where “some” rather than “any” ordering will
work. A discussion of planning terminology is provided in [38].

in which an order between two operators is not assigned
unless absolutely necessary (for example, this could occur
if an action for one goal deletes a precondition of another
goal or subgoal), The plan thus developed is a partially
ordered set of actions. Most of the best-known planning

-systems (for example, [5, 27, 32, 37, 40, 42]) generate plans

using this technique. Although these “least commitment”
planners are more efficient in handling conflicts than their
linear counterparts, there is still usually too much compu-
tation involved; the problem requires exponential time in
most interesting cases [5)],

One way to tackle this problem is to use explicit domain
knowledge to lessen the computational burden of detect-
ing and resolving the goal interactions in planning. Such
domain-dependent planning systems have been built for
many practical problems. Some examples include military
command and control planning applications [1, 16, 3], route
planning [15], autonomous vehicle navigation [2, 25], and
automated manufacturing [6, 7, 19, 29].

In domazin-dependent planning, the issue of integrating
the outputs of several planners has been considered impor-
tant. Two major DARPA initiatives, the AirLand Battle
Management program (cf. {1, 17]) and the Pilots’ Associate
program (cf. {35, 23]), for example, were centered around
the notion of a set of different domain-specific planners
generating separate plans for aspects of a mission with a
central coordinator (generally viewed as itself some sort
of domain-dependent expert system) that could integrate
the ontputs, More recently, a similar approach was pro-
posed by Kambhampati and Tenenbaum [21] for dealing

‘with concurrent engineering systems.

A separate approach for handling multiple goals focuses

-on placing restrictions on goal and subgoal interactions..

Perhaps the best known example of this is Vere's DE-
VISER [40] system which approached the problem by using
temporal scopings associated with goals and actions. Much
of the planning behavior in the DEVISER system involved
setting up temporal constraints and comparing them to the

‘durations of requisite actions. Witkins’ SIPE system [42]

provided a general mechanism for handling multiple goals,
but also allowed for the integration of specific rules for
limiting the set of interactions to be considered at varions
times in the planning, and to allow human operator inter-
action in eliminating possibilities and making decisions.

3 Problem Statement

A goal (G is a collection of predicates descnblng some de-
sired state of the world. A plan P for @ is a sef of ac-
tions A(P), together with a partial ordering on the order
in which these actions must be performed,® such that if
the actions are performed in any order consistent with the
ordering constraints, G will be achieved.

Each action @ has a cost, cost(a). If S is a plan or a
set of actions, then cost(S) is the sum of the costs of the
md1v1dua.1 actions.

®In addition to the usual kind of partial ordering constraint
having the form “action o must precede action b,” we also allow
constraints specifying that two actions mmust be performed at
the same time.

Suppose G is the conjunct of a number of other goals
G1,Gy,..., G, and suppose that for each individual goal
G;, we are given a set of plans P; such that each plan in P;
can achieve Gy. For example, in Section 1, (HAVE BREAD)
and (HAVE MILK) are both goals for the conjunctive goal
(AND (HAVE BREAD) (HAVE MILK)}; and we might be able

" to achieve (HAVE BREAD) cither by going to the bakery or
by going to the supermarket. One way to try to achieve G

would be to select 2 plan P; from each set P;, and try to -

"combine the plans Py, Pz, ..., Pm into 2 “global plan” for
6. Depending on what kinds of interactions occur among
‘the actions in these plans, it might or miglit not be possible
-"to combine them successfully. '
- The interactions among the individual goals in G typ-
ically are of two main types: precedence interactions, in
which the specific order between the two goals is critical,
-and merging interactions, in which resources or actions may
be shared between the goals. Although much of the work
in the planning field has discussed the former, the latter
are also important. We consider the follomng kinds of
merging and precedence interactions:

1. An gction-precedencei interaction is an interaction that
requires that an action ¢ in some plan P; must occur

~ before an action. b in some other plan P;. This can -

occur, for example, if there is a delefed-condition in-
teraction in which ¥ removes one of the preconditions
necessary for e, and if in addition, no other action can
be inserted after b to restore this precondition.

Much previous work in planning has dealt with
deleted-condition interactions.
condition interactions are more difficult to deal with

~ than action-precedence interactions—but it appears -

that there are significant classes of problems where
_ action-precedence interactions are the omly form of
. deleted-condition interactions that occur.* Examples
" appear later in this seciion.

2. Plans for different goals may sometimes contain some

of the same actions. An identical-action interaction

occurs when an action in one plan must be identical
to an action in one of the other plans.

8. Let 4 be a set of actions {e1,a2,...,as}. Then there

may be a merged action M(A) capable of accomplish- .

‘ing the uwseful effects of all actions in A, such that
- cost(M(A)) < cost(A). In this case we say that an
action-merging interaction occurs.

' Action-merging interactions are a special case of the

enabling-condition interactions, in which the actions ™
- For each i, the least costly plan in P: is not necessarily

- performed to achieve one goal also make it easier to
‘achieve other goals. Although enabling-condition in-
ieractions have been largely unexplored in the Al
planning literature until recently, recent studies [18, 9]
show that they can greatly affect the difficulty of plan-
ning. Later in this section we describe several exam-
-ples of situations in which action-merging interactions

"are important.

Even though a set of actions may be mergeable, it may
not always be possible to merge them in a given plaxn.

In fact, the classic “Blocks World” can be reformulated in
- this way; see [18].

In general, deleted-.

For example, sappose @ and a’ are mergeable, but in
the plan P, a must precede b and b must precede a’.
Then a and a’ cannot be merged in P, because this
would require b to precede itself.

4, Sometimes, two different actions miust occur at
the same time. We call sach an interaction a
simultaneous-action interaction. An example would

- be two robotic hands working together in order to
pick up an object. This is different from an action-
merging interaction, because it says that two actions
must be merged to result in a correct plan, whereas in
action-merging inferactiohs, the actions do not have
to be merged. It is also different from an identical-
action interaction, because these simultaneous actions
are not identical. '

How to construct a list of interactions for 2 given set of
plans is a problem-dependent task. For the purpose of this
paper, we will assume that the list of interactions can be
constructed using a combination of the domain knowledge
expressed in the operators, and the plans generated for the
goals

Depending on what 1nteract1ons appear in a given plan-
ning problem, it may or may not be possible to find plans

-for the individual goals that can be combined into a global

plan. For example, if P, is the sequence of actions (a1, a2),
Py is the sequence of actions {b1,b;), and if a2 must pre-
cede & and b, must precede a;, then there is no way to

. combine P; and P;. We define the merged plan ea:zstence

problem to be the following problem:

Do there exist plans Py € P1, P € P;,..., P €
Py that can be merged into a “global plan” for
the conjoined goal G7

If there is a global plan, then there may be more than .

one global plan, and different global plans may have dif-
ferent costs, For example, in the shopping example given

in Section 1, we discussed two global plans:

1. drive to the dairy, buy milk, come home, drive to the
bakery, buy bread, and come home; -

2. drive to the dairy, buy milk, drive from the dairy to
the bakery, buy bread, and come home.

We define the opiimal merged plan problem to be the fol-

- lowing problem:

What is the optimal (i.e. least-cost) pla.:n P that

can be found by- selectmg plans P, € P1, P €

Pay...y P € P and merging them into gIoba.l
. plans for the conjoined goal G?

part of the optimal plan P, because a more costly plan in
P; may be mergeable in a better way with the plans for
the other goals. For example, suppose we are given the
fo].lovnng pla.ns, and that each action’s cost is 2:

Pi: Al— Bl {cost=4)
P: Cl—=D1 {cost=4)
Pj: A2 B2— D2 (cost=6)

Then the result of merging P, with P is’

Al — B1

Cl—-In {cost=8)

If each of the sets {A1, A2} and {Bl B2} is mergeable and
the cost of each merged action is 3, ther merging Py and
P produces a less costly plan:

M({A1, A2}) — M({B1,B2}) — D2 (cost=7)

Problems involving the optimization of multiple-goal
plans occur in a number of problem domains. The general
class of all such problems clearly will not fit within the

" confines of the restrictions specified in this paper (for ex-
ample, we have not yet extended our approach to deal with
scheduling deadlines), but significant and useful classes of

. ‘problems can be found that do satisfy our restrictions. -

" Here are some examples:

- Example 1: Machining-Operation Sequencing.
Consider the problem of using machining operations to
make holes in a metal block. Several different kinds of hole-
creation operations are available (twist-drilling, spade-
drilling, gun-drilling, etc.), as well as several different kinds
of hole-improverent operations (reaming, boring, grind-
ing, etc.). Each time one switches to a different kind of
operation or to a hole of a different diameter, one must
mount a different cutting tool on the machine tool. If the

- same machining operation is to be performed on two dif-
"~ ferent holes of the same diameter, then these two opera-

tions can be merged by omitting the task of changing the

- cutting tool. This and several other similar manufactur-

. ing problems are of practical significance (see [6, 19])—and
-~ one motivation for the current paper has been our work on
'such problems {29, 30].

" Example 2: Logistics Planning. Different plans

containing deliveries to the same place may be combined
into a single trip, saving considerable expense. In addition,
.~ an inexpensive delivery techrique needed for one delivery
.can be subsumed by one with a greater cost in a second
- plan, while still allowing for an overall savings. For exam-
-'ple, if a cargo of food could be delivered to a location via a

L _parachute drop, but some other piece of equipment going

to the same site requires a landing, then both items can be
delivered on the same plane (the one that lands) and the
- extra steps required for the parachute drop can be deleted.

- Example 3: Scheduling. Consider the problem of
" finding a minimum-time schedule for satisfying some set

- of orders for products that can be produced in a machine

_shop. For each order, there may be a set of alternative

' schedules for producing it, and each such schedule consists:

. of a set of operations to be performed on various machines.

~ An operation in a schedule is usually associated with a

machine for carrying it out. If two or more operations
- require the same type of set-up, then doing them on the
.. same machine may reduce the total time required—and
. -thus reduce the total time required to complete all the
schedules. We consider such operations as mergeable,

Example 4: Multiple Database-Query Opti-
mization. Let Q {G1,Q2,-..,@n} be a set of
database queries. Associated with each query ; is a set of
alternate access plans {Pi, Piz,..., Pir;}. Each plan is a

set of partially ordered tasks that produces the answer to
Q. For example, one task might be to find all employees in
some department whose ages are less than 30, and whose
salaries are over $50,000. Each task has a cost, and the cost
of a plan is the sum of the costs of its tasks. Two tasks
can be merged if they are the same, or if the result of eval-
uating one task reduces the cost of evalnating the other.

. The multiple-query optimization problem [33] is to find a

global access plan by selecting and merging the individual

plans so that the cost of the glebal plan is minimized. As

described in [34], the plan merging techniques described in
this paper provide significantly improved performance in
solving this problem.

In this paper we consider two different cases of the op-
timal merged plan problem, The first case, discussed in
Section 4, is where a single plan is generated for each goal
(i.e., each P\ contains exactly one plan). In this case, there
is a restriction that defines a class of problems that is rea-
sonably large and interesting, but that can be solved in
low-order polynomial time.

- The second case is where more than one plan may be
generated for each goal (i.e., each P; may contain more
than one plan}. This necessitates choosing among the plans
available for each goal in order to find ar optimal global
plan. As discussed in [45], this case is NP-hard, but we

“define a heuristic search technique that works quite well in

practice.

4 .One Plan for Each Goal

Most planning systems, both domain-independent and
domain-dependent, plar only until they find some set of ac- .
tions that are expected to satisfy the goal when applied in
the initial situation. Since planning is often extremely dif-
ficult or inefficient, most planning systems stop once they
have found a single plan for each goal, without trying to
find other plans as well. In this section we examine the

“merging of plans that are created by such planners,

4.1 Plan Existence |

Suppose we are gwen the following:

1. A set of plans § = {P1, Ps,..., Pn} containing one
_plan F; for each goal G;. Let n be the total number

of actions in 5.

2. A set I of interactions among the actions (these could
be statements such as “action @ in plan F; must pre-
cede action b in plan P;”). Let ¢ be the total number
of interactions in I {note that i = O(n?)).

In Section 3, we pointed cut that whether or not there ex-
ists a global plan is independent of whether there are any
action-merging interactions, Thus, for the merged plan
existence problem we can ignore afl action-merging inter-

" actions in . Unless the remaining interactions prevent

the plans in S from being merged into a global plan, the
global plan is just the union of the individual plans in S,
with additional ordering constraints imposed wpon the ac-
tions in these plans in order to handle the interactions..

This combined plan is called combine(S), and the follow-
- ing algorithm will produce it.

' Algdrithm 1.

1. For each plan P in S, create a graph representing P as
a Hasse diagram.® Also, create a sorted linear index,
L, of the actions in the plans. This step can be done
in time O(n?).

b

For each action-precedence interaction in I, modify
the graph by creating a precedence arc between the
two actions. For each simultaneous-action interaction

in I, create a simultanéous-action arc between the

two actions. For each identical-action interaction in
I, combine the two actions into a single action. This
step can be done in time O{ilog i+ (i+n)n) = O(n®).

3. Check to see whether the graph still represents. a

consistent partial ordering (this can be done in time

O(n?)). Ifit does not, then exit with failure (no global
plan exists for this problem)

Algorithm 1 produces the combined plan combine(S) if
it exists, in the case where there is one plan for each goal
G;. The total time required is O{n®), where = is the total
number of actions in the plans. Note that combine(S),
if it exists, is unique, but is only partially ordered rather
. than totally ordered. Of course, every valid embedding of

" combine(S} within a total ordering is gnaranteed to be a
valid plan, and Step 3 of Algorithm 1 can easily be modified
" to produce all of these embeddings if so desired.

4.2 Finding Near-Optimal Plans

. In Section 4.1, we showed that if there is just one plan per

. goal, it is easy to find a merged plan if one exists. However,
if we want instead to find the optimal merged plan, the
- problem becomes NP-hard. A proof of this appears in [45].
- Two standard ways to address an NP-hard problem are (1)
. tolook for restricted versions of the problem that are easier

_ to solve, and (2) to look for near-optimal solutions rather

than solutions that are strictly optimal. In this section,
" we employ both of these techniques: we place a restriction
on the problem, and with this restriction we present an
algorithm that finds near-optimal merged plans,

Mergeability Restriction. - If S is a set of plans, then

* the set of all actions in S may be partitioned into equiva-
lence classes of actions Ey, By, ...,
_ if they are in the same equivalence class. We call these
equivalence classes mergeability classes.’

5This is a standard representation of a partially ordered set
- (e.g., see [31]). We actually need a slight generalization of &
Hasse diagram here, since we also have the case where two non-
identical actions are constrained to occur at the same time.

SPreviously [43, 44, 22], we discussed how to get optimal
_solutions for problems satisfying both this restriction and an-
.other, more limiting, restriction. The current paper generalizes
this earlier work, by obtaining near-optimal results even without
the second restriction. For details, see [45].

Ey, such that for every .
set of actions A, the actions in A are mergeable if and only

We believe that this restriction holds for many inter-
esting problems in domains of interest to Al planning re-
searchers. For example, iz most of the examples discussed

‘In Section 3, there are large subclasses that easily satisfy

this restriction (for further discussion of this, see [45]).

In {13], an algorithm is presented to find merged plans in
the case where the only allowable interactions are action-
merging interactions. Results presented. in [13] show that
this algorithm is gnaranteed to find near-optimal plans. Al-
gorithm 2, shown below, generalizes this algorithm to han-
dle the case where there can be not only action-merging in-
teractions, but also simultanecus action interactions, iden-
tical action interactions, and -action-precedence interac-
tions. Algorithm 2 makes use of the following functions:

1. Given a set of plans S, one can find a set of actions _
with no other actions before them. This set of actions
is only preceded by the initial state. We denote this
set by Start(S).

2. If £ is a set of actions in 5, then remove(X, 5) is the

plan with all actiors in ¥ removed, and all precedence
relaiions relevant to actions in ¥ removed.

3. From the mergeability restriction, the actions in P can

"' be partitioned into k mergeability classes. If action o
is in mergeability class i, we define Type(a) =i. °

Algorithm 2 first invokes Algorithm 1 to handle all the
simultaneous action interactions, identical action interac-
tions and action-precedence interactions. If the plans can
be combined, then it merges the actions in the resultant
plans from start to end. In each iteration of the merging
process, actions in Start(S) that belong to the same merge-
ability class are merged into a final plan. The a.lgonthm
appears below.

Algorxthm 2.

1. Use Algorithm 1 to produce a digraph representing
the combined plan combine(5). This can be done in
time O(n®). If Algorithm 1 succeeds, then continue;
otherwise, exit with failure.

2. Z:=Start(S); R:=8 T:=
- 3. Until T is empty, do

{Type(e) |2 € T}

(a) Partition ¥ into k classes, such that cach class
.I; contains actions that are mergeable. Let
be the subclass with merged action g, such that
cost() — cost(merge(Th)) is mammal

(b) § :=remove(5h,S); R:= RU =}
T:=T — Type(p). '
(¢) T :={e| e € Start(S) and Type(a) € T}.
4. If 5 is not empty, goto 2. '
5. In the set of original plans S, merge the actions in
each set as given by R.

If there are = actions in the plans, with k mergeability
classes and m plans, then step 1 of this algorithm takes
time O(n®), and steps 2 through 5 take time O(kn/m).
Step 6 redirects all of the arcs in the digraph representing

-8, which can be done in time O(n?) in the worst case.

Therefore, the total time complexity is O((kn/m) +).

Consider the “bread and milk” example of Section 1.
The two plans for the goals (HAVE BREAD) and (HAVE
MILK) are listed below:

Py (go Home Bakery) —
{go Bakery Home);

(buy Bread) —

Ps: (go Home Dairy) —
{go Dairy Home).

(buy Milk) -—

The action (go Home Bakery) of P; can be merged with
" the action {go Dairy Home) of Py, producing a merged ac-
" tion (go Dairy Bakery). Likewise, the action {(go Bakery

Home) of P can be merged with (go Home Dairy) of P,

.yield.ing a merged action {(go Bakery Dairy). Thus, the

number of mergeability classes is k = 2.
Applying Algorithm 2 to tlus problem, we obtain the
following trace:

1. Injtially, T = {1, 2}, and

Start(S) = {(go Home Bakery), (go Home Dairy)},

Since the two actions belong to different merge-
ability classes, the algorithm arbitrarily chooses
an action and put it in set R. Thus R =
{{(go Home Bakery)}}. After this step, T == {2}.”

2. With the first action of P1 removed, the algorithm
" then recomputes Start(S):

_Sta.rt(S) = {(go Bakery Home}, (go Home Dairy)}

Since both actions belong to the same mergeability
class, they are merged, yielding

R = {{(go Home Bakery)},.

{(go Bakery Home}, (go Home DaJ.r)r)}}

and T'= .

3. The last iteration of Algorithm 2 picks up the second
_action in P, with an increment

R :=RuU{{(go Dairy Home)}}.

- 4. Step 6 of the algorithm merges all action sets in R
" resulting in a merged plan:

(buy Bread) —

: (go Home B_akery) -)
(buy Milk) — -

~ (go Bakery Dairy) —
. (go Dairy Home).

In this case, this plan is the optimal merged plan.

4.3 Analysis (One Plan per Goal)

Korf [24] has pointed out that given certain assumptions,
one can reduce exponentially the time required to solve
a conjoined-goal planning problem if the individual goals
are independent. Below, we generalize Korf’s result. In-
stead of requiring that the individnal goals be completely
independent, we relax this requirement by allowing the in-

téractions defined in Section 3—provided, of course, that.

~they do not prevent plans for the individunal goals from be-
-ing combirned into a plan for the conjoined goal. We show

- that in this case, one can still reduce the time required for

. planning exponentially.

In our conjunctive goal G = {G1,Gy,...,

4.3.1 Independent Goals

Gm}, suppose
that for each i, the set of actions A; relevant for achieving
the goal G is completely separate from the set of actions
A; relevant for achieving any other goal G;. Then if we-
decompose the initial state I into substates I, Iz,..., I,

and plan for each individual goal G; separately using only

the actions in A;, we can concaténate the plans for all the
Gi’s to produce a plen for the conjoined goal G. In [24],
Korf discusses this approach in the context of a particular
example, namely the 8-puzzle. Below, we restate Kor{’s
‘assamptions and resultsin a more general abstract manner,
allowing us (in Section 4.3.2) o use them to derive a similar
result for the case of (restricted) dependent goals. '

One way to try to find a plan for G; is by doing a state-

space search, starting af J; and performing actions in A;
as they become applicable. Let b; be the average branch-
ing factor for the state space (i.e., the average number of
actions applicable at each node in the space), and d; be
the length of the shortest plan for G;. For the analysis
in this section, we make the following assumptions: (1) in
order to find 2 plan for Gi, our planner takes worst-case
time O(b%), (2) the planner finds a plan of length O(d;),
and (3) thereisa b > 1 such that by = by = ... =bm =
Then Korf’s reasoning gives us the following results:

1. Suppose that in order to find 2 plan for G, we plan for
the individual goals separately and concatenate the
resulting plans. The time needed by our planner to
find a plan for G; is O(b¢), and the number of actions
in the resulting plan for Gy is d;. Concatenating the

. plans for all the Gi’s can be done in time O{ds + dz -+
..+.dp). Thus, the time required to plan for & in
this way is as follows, where dmax = max; di:

O(F 448 o AV Fdy o doh o d) = OB,

2. If we do not decompose the goal into the individual
- goals, then each state s in the state space for @ rep-
resents a combination of problem states $1,82,...,8m
for the individual goals G1,Gz,...,Gm. Thus, the
operators applicable to s include all the operators ap-
plicable to s1,82,...,8m. Therefore, the branching
. factor for this space is by +b2 +. . .+bm = mb. Further-
more, since the conjoined goal can be achieved only
by ‘achieving all of the individual goals, the length
of the shortest plan for G is O(d1 +da % ... + dm).
‘Thus, if we assume {as Korf did) that assumptions
(1) and (2) also apply to the conjoined problem, then
‘the time required to find a plan for G without goal-
decomposition will be O((mb)%+dzt--+dm)
From the above analysis, it follows that in the worst case,
planning for G by decomposing it into the individral goals
will achieve an exponential amount of reduction in the time -
required to solve the problem, provided that the individual
goals are independent (the same result that Korf derived
for the 8-puzzle in [24]).

4.3.2 Dependent Goals

In Section 4.3.1, we assumed that all goals were indepen-

‘dent. Now we generalize this result. Instead of requiring

that the operators for each goal (i be completely inde-
pendent of the operators for any other goal &;, suppose
instead that we allow the kinds of interactions described

in Section 3, provided that these interactions do not pre-

vent us from corbining the plans for the individual goals
into a plan for G. Let us leave Korf’s other assumptions
unchanged. Then we get the following results:

‘1. Suppose that to find a plan for G, we plan for the
individual goals separately and combine the resultlng
‘plans. 'As before, the time needed to plan for a sin-
gle individual goal G; is O(b"), and the length of the

. resulting plan is O(d;). We can no longer simply con-
catenate the resulting plans, but we can combine them

* using Algorithm 2, in time O({d1 +dz + ... 4 dm)?).
-“Thus, the time required to plan for G in this way is

OB 4037 4. Abar +(di+da+. . Adm)’) = O(p%mx),

which is the same as before.

2. If we do not decompose the goal & into the indi-
vidual goals, then each state s in the state space
for G represents a combination of problem states
$1,%2,...,9m for the individual goals Gy, Gz, ..., Gm.

Because of the interactions, not necessarily all of the |
,3m will be applica- _

" ‘operators applicable to g1, 82,...
ble to s, but in the worst case, the branching factor
will still be O(mb). Furthermore, since we have as-
sumed that the interactions do not prevent us from

. combining the plans for the individual goals into a
plan for G, the length of the shortest plan for @ is
O(ds +da+ ... + dm). Thus, as before, the time re-
quired to ﬁnd a plan for G without goal decomposition
will be O((mb)d1+d2+ +dm)

L Thls analysis shows that in the worst case, pla.nmng for G
- by decomposing it into-the individual goals will achieve an

L exponential amount of reduction in the time required to

" solve the problem even i the individual goals are not in-
" dependent, provided that the dependencies do not prevent
" the plans for the individual goeals from being combined.

4.4 Summary (One Plan per Goal)

So far, we have examined the case in which a single plan”
1s generated for each goal, and these plans are then merged
into a single plan for the conjoined goal. In this case, there

- is an efficient. algorithm to find out whether a consistent

- merged plan exists—but the problem of generating the op-
timal such plan is NP-hard.

Under our mergeability restriction, we are able to de-
velop an efficient algorithm for producing a near-optimal
merged plan. We have argued that several domains cur-
zently being explored by planning researchers admit intes-

esting cases for which this restriction holds.
- Finally, we have shown 2 mathematical aralysis of the
. .situation in which separately generated plans are merged
into a conjoined plan.” We derive a result identical to Korf’s
for multiple goal plans in which the separate plans are com-
. pletely independent—an exponential improvement is. pos-
. sible. However, we also show that this same exponential

TWhich, we remind the reader, may be a partial orc‘ler No
assu.mptmn of total ordermg was made .

improvement is possible even without the assumption of
independence, provided that the kinds of interactions that
occur are only those described in Section 3.

5 Multiple Plans per Goal

When generating plans, it is often possible within ore run
of the planner to find several possible methods for achiev-
ing a goal. As possibilities are explored and a plan is gener-
ated, adding extra backtracking (i.e. treating goal success
as failure) may allow other possible action sequences to be

_iound.

For example; one idea currently being explored is to let a
planner continue working to improve a plan as long as time
permits [8], The planner can successively generate different
(usually improving) plans until some time threshold is ex-
ceeded. A similar idea, although less time-dependent, ap-
pears in the SIPS process selection system, which generates
sequences of machining operations for producing machin-
able parts (cf. Example 2 of Section 3). SIPS finds multi-
ple plans for each part to be manufactured [29]). Although
this system finds the lowest-cost plans first (thus additional
pIa.ns may require more extensive maclumng) and although
finding more than one plan for each goal is more complex
computationally than finding just one plan for each goal,
SIPS generates alternative plans precisely because they can
lead to better overall plans using the merging techniques
described in this paper. o

To understand why génerating multiple plans may lead

“to better results even if the least costly plan is generated

first, consider once again the planning situation described
in Section 1: :

. John lives one mile from a bakery and one mile
" from a dairy. The two stores are 1.5 miles apart.
John has two goals: buy bread and buy milk,

This time, however, let us add the fact {(based on [41]} that

John lives 1.25 miles from a large grocery store

that sells both bread and milk.

The best plans for the individual goals involve two separate
trips: cne to the store and one to the dairy. However, this
would require making two 2-mile tripsfor 4 total of 4 miles.
The approach described in the previous section would allow
them to be merged so that John could go' directly from
one store to the other (for a total trip of 1+ 1.5+1 =
3.5 miles). A better plan, however, is to use the second-

~best plan for each goal (going to the grocery store). Even

though taken separately these would generate a worse plan
(two 2.5-mile trips for a total of 5 miles), they permit more

significant merging when combined together (a single trip

of 1.25 + 1.25 = 2.5 miles). Thus, if the planners for the
individual trips delivered more than one solution for each
goal, this better plan could be found.

5.1 Plan Existence

. If more than oune plan is available for each G;, then there

may be several different possible identities for the set S
discussed in Section 4.1, and it may be necessary to try
several different possibilities for .S in order to find one for

which combine(S) exists. This problem is the merged plan

. existence problem—and if there is more than one plan for

each goal, it is NP-hard (2 proof appears in [45]).

5.2 Finding Near-Optimal Plans

Since the nierged plan existence problem with more than
one plan per goal is NP-hard even when the mergeability
restriction holds, the same is true for finding optimal and

near-optimal merged plans. However, there is 2 heuristic

- approach that performs well in practice when the merge-
- ability restriction holds. As we describe below, this ap-
proach involves formulating the problem as a state-space
search problem, and solving it using a best-first branch-
and-bound algorithm.)
Suppose that we are given the following:

1. for each goal Gy, a set of plans P; containing one or
more plans for G;;

2. a list of the interactions among the actions in all of

the plans.

Our state space is a tree in which each state at the #th
level is a plan for the goals Gy,G2,...,Gi. This tree is
_ defined as follows (an example is shown in Figure ¢): .

1. the initial state is the empty set;

2. for each state S at level { of the tree, the children of S
consist of all plans of the form merge(combine($, P))
-such that P € Pyy1 is a plan for Gita.

- Every state at level m is a goal state, for these states are
plans for the conjoined goal G = {Gy, Gz,...,Gm}.
.. 'To search the state space, we use the best-first branch-
. and-bound algorithm shown below. This algorithm main-
tains an active (or open) set A that contains all states
eligible for expansion. To choose which member of 4 to
- expand next, the algorithm makes use of a fanction L(S)
- that returns a lower bound on the costs of all descendants
- of § that are goal states. It always chooses for expansion
the state 5 € A for which L(S) is smallest.®

' Algorithm 3.
= {0}

loop

(A is the branch-and-bound active set)

remove from A the state S for which L{5) is smaliest

if S is a goal state then return §
else A:= AU {the children of 5}
repeat

- H L(S) is a lower bound on the costs of all descendants
of S that are goal states, then L is admissible, in the sense
- that Algorithm 3 will be gnaranteed to return the optimal
“solution.

. Let S be any state at level i in the state space, T' be any
~child of §, and N(P,5) be the set of all actions in P that

. cannot be merged with actions in 5. Let 5,k > i. We say
that P; and Pj are S-connected if either of the following

. conditions holds: (1) there are plans P € P; and Q € Pi.

.~ SThe relationship hetween best-first branch and bound and

the A* algorithm is well known [28]. The quantities L(s),
cost(S), and L{S) — cost(S) used above are a.nalogous to the
R quantltxes 1(5), _q(S), and h{S) used in A*.

such that N(PF, S) and N(Q, S) contain some actions that

.are mergeable, or (2) there is a set P, that is S-connected

to both P; and Pi. S-connectedness is an equivalence rela-
tion, so we let C1(S), C2(9), . . ., be the equivalence classes
(thus each class Cx(S) contains one or more of the P;’s).
We refer to these equivalence classes as $-connectedness

“closses. Having done this, we can now define a particular

function to use for L, namely the following fanction La:

L3(S) = cost(S) + E max mm cost(IV (P, S))

PuEC; (s) FEP

In [45], we show that L is a lower bound on the cost of
any descendant of 5 that is a goal state.

There are two kinds of cases that arise in computing
La(S). We discuss them in detail in [45], but here is a
brief summary:

1. In some cases, we can quick]y compute exact values
for L3(5). In these cases, if we use Algorithm 3 with
L = La, we will be guaranteed to find an optimal goal.

. 2. In other cases it is difficult to compute cost(N (P, 5))
quickly, but we can quickly compute a good approxi-
mation of it using Algorithm 2, and use this approx-
imation to compute approximate values for Ls(S).
Since this approximation may be greater than La(3),
it will not always be a lower bound on the costs of the

" descendants of 5 that are goals—and thus if we use
this approximation, then the solutions returned by
Algorithm 3 will not always be optimal. However, as

_discussed in [45], they are near-optimal, and we can
give a bound on how far they are from the optimal
solutions.

We now demonstrate Algorithm 3 on the -“bread and
milk” example given in the beginning of Section 5. The

- plans for the goal (HAVE BREAD) are

Pr1: (go Home Bakery) — (buy Bread) —

(go Bakery Home); -
Pi2: (go Home Grocery) — (buy Bread) —
(go Grocery Home).

__The plans for the go&l.(HAVE MILK) are

Py1: (go Home Dairy) — (buy lﬁ_.lk).—*
(go Dairy Home); .

P (go Home Grocery) —» (buy Milk) —

(go Grocery Home).

We now trace the operation of Algorithm 3. At level 1,

‘there are two states,

S ={Pu}

Ta.king the distance between any two locations as the cost
of gomg from one to the other, we have

Sz = {Pi2}.

cost(Sl) =2; ‘ cost(52) = 2.5.

“The heuristic function values are

- La{($1} = 2 + min{eost ({ (buy Hilk).}), cost(Faz)} = 2;

Pll

Py

P‘.l.l ,-P21

P11, P

_P1 1,Ps

Py, Py Pyz, Pas

Figure 1: An examplé state space. Here Fj; is the j’th alternate plan for goal G;.

L3(82) = 2.5 + min{cost(Py), cost({ (buy Milk)})} = 2.5.

Thus, Algorithm 3 will expand S1 next. S; has two sne-
cessors:

Ty = { P11, Par}; -

" As a result of applying Algorithm 2, the merged plan T3
corresponds to going to the dairy to buy milk, going from
the dairy to the bakery to buy bread, and finally going
. home from the bakery. The cost of this plan is cost(T3) =
‘14154 1=23.5. T; corresponds to going to the bakery
“and the grocery store on separate trips, giving rise to a
cost of 4.5, Since both are more costly than S», 52 will be
-expanded next. One successor of S2' combines and merges

i P12 with P22, yleld.mg the plan :

Ty = {Pia, sz}-

_ (go Home Grocery) —
{go Grocery Home).

(buy Hllk a.nd Bread)

-"cost of 2.5. However, as we mentioned previously, in other
‘.cases the merged plan found by the algonthm may not
_ always be the optimal one.

5.3 Analysis (Multiple Plans perAGo'a'l)

In the wa_;rst.ca.se, Algorithm 3 takes exponential time.
Since the optimal merged plan problem is NP-hard, this
".:is not surprising. ‘A better analysis would be to describe

. how well the search algorithm does in the average case. - '
. However, the structure of the optimal merged plan prob-

lem is complicated enough that it is not clear how to char-
- acterize what an “average case” should be. Furthermore,
. the “average case” may be different in different applica-
‘tion areas. Therefore, the best analysis we can offer is
an empirical study of Algorithm 3’s performance on prob-
lems that appear to be typical of the class of problems in
which plan merging looks to be most interesting: those

where the mergeability restrictior holds, but isn’t overly -

constraining.

" As an example of such a domain, we have conducted
experiments with the algorithm wsing the EFHA process
selection system [39], 2 domain-dependent planner based
" on the earlier SIPS process selection system [29]. The deci-
sion to use EFH A was made for a largely pragmatic reason:

as the developers of the code, we had complete access and
could implement the algorithms in precise detail. In ad-

-dition, we could vary the parameters involved in the gen-

eration of alternate plans, to make sure they would not
be overly uniform. We attempted to design a problem for

“EFHA to solve that would be typical of the class of prob-
“lems we would expect the merging techniques to solve, buit

that wouldn’t be overly simple. _ B
. The problem we chose was to find a'least-cost sequence
of machining operations for making several holes in a piece

" of metal stock (similar te the problem described in Exam-

ple 2 of Section 3). As we discuss in {45], this is'a problem
for which Algonthm 2 is guaranteed to find the least costly

_pla,n-—-a.nd thus, so is Algorithm 3.

We generated specifications for 100 machined holes, ran-

domly varying various hele characteristics such as depth,

diameter, surface finish, locational tolerance, etc. We used

‘ * these holes as 1nput to the EFHA system, allowing it to
. In this case, this pla.n is the optimal merged pla.n, with a-

produce at most 3 plans for each hole. EFHA found plans
for 81 of the holes (for the other 19 the machining re-
quirements were so stringent that EFHA could not produce

. any plans using the machnnng techniques in its knowledge

base).

The dlstnbutxons of the hole characteristics were chosen
so that the plans generated for the holes would have the
following cha.ra.ctenstlcs '

1. a wide selectmn of pla.ns, rather than lots of duphcate
plans for differeat holes;

- 2. not very many holes having an “obviously best” plan .

. (i.e., a plan that is a sub-plan of all the. other pla.ns
for tha.t hole};

3. many opportunities to merge actions in different
- plans;

. 4. a large number of “mergeability tradeoffs”’ in choos-
ing which plan to use for a goal. For example, the
plan P for the goal G; may merge well with the ac-
tions in some set of plans P for the other goals, and

. the plan ¢ may merge well with the actions in some
set of plans ¢ for the other goals—but if neither P nor
Q are subsets of each other, then it is unclear {with-

- out lots of searching) which of P a.nd Q will result in
the best set of mezges.

Table 1: Results for Algorithm 3 using Ls.

Number Nades in the Nodes
of holes, n search space expanded
1 2 1
2 10 2
3 34 3
4 .98 4
5 284 6
6 852 g
7 2372 12
8 6620 16
9 19480 22
10 54679 28
11 153467 38
12 437460 51
13 1268443 61
4 3555297 . 86
15 9655279 110
16 29600354 170
iT. 80748443 223
250

18 250592571

- This test problem is significantly more difficult than the
kind of problem that would arise in real-world process se-

Iection. In designing a real part containing a large number

of holes, a designer would normally specify the holes in
a much more regular manner than our random choice of
" holes. In particular, there would usually be only a few
- diffexent sizes, shapes, and tolerance specifications for the
hoIes, making the merging task much easier. -
.- The results of the experiments are shown in Table 1.
- Each entry in the table represents an average resulf over
- 450 trials. Fach trial was generated by randomly chioosing
n of the 81 holes (duplicate choices were allowed), invoking
- Algorithm 3 on the plans for these holes using the lower
" bounding function L3, and recording how many nodes it

o expanded in the search space. The total cost of each plan

was taken to be the sum of the costs of the machining
operations in the plan and the costs for changing tools.
" We regard the performance of the algorithm as quite

.. good—especially since the test problem was chosen to be
- significantly more difficult than tlhe kind of problem that '
;. would arise in real-world process selection. In real designs,

E -designers would normally specify holes in a much more
" regular manner than our random choice of holes, making
the merging task much easier. For example, when merging

. real-world process sequences, we doubt that there would be -

many of the mergeability tradeoffs mentioned earlier; and

without such tradeoffs, the complexity of the algorithm is

_ polynomxa.l rather than exponential.

" 5.4 Summary (Multlple Plans per

- Goal)
'Sectmn 5 has dea.lt with the case m which t.h.ere may be

more than one plan for each goal. In this case, tke problem
" of generating the lowest-cost conjoined plam is NP-hard,

even when the mergeability restriction holds. However, we
have developed a heuristic search algorithm to find near-
optimal solutions when this restriction holds. In some cases
{such as the machining example illustrated above), the al-
gorithm is guaranteed to find optimal merged plans,
Since the problem is NP-hard, the worst-case time com-
plexity of the search algorithm is exponential in the worst
case, However, our empirical results show that the algo-
rithm performs quite well for a relatively complex problem.

| 6 Future Work

One major limitation of the work described in this pa-

per is that it only concentrates on how to combine plans
that have already been developed for individual goals. In
the application domains in which we have been working,
particularly process planning, we have developed domain-
dependent techniques for developing plans for the indi-
vidual goals—but an obvious question is whether there
is a natural extension of our approach for creating plans

- rather than just optimizing existing plans. One way to cre-
_‘ate plans is to partition a multiple goal into several sub-
goals to solve, apply an algorithm for solving each.subgoal -

currently, and then apply Algorithm 2 for combining and
merging the individual plans into a global plan.

Although it is clear that this approach will work, we
classify this phase of our research as future work, since it
is not clear as to either how general the result and how
the approach would perform in practice. The key issues,

- which we plan to address in the future, are to character-

ize domains where these restrictions hold for plan creation,
and to analyze the worst case and average case behavior
of plan generation procedure in these domains. In addi-
tion, it may be possible to develop similar techniques for
use in planning or plan eptimization in cases where the in-
teractions satisfy other kinds of limitations instead of the
specific ones described in this paper.

Another problem is how to generalize the kind of in--
teractions allowed. For example, if one allows arbitrary
deleted-condition interactions, then a similar search algo-
rithm could be used, except that the resulting search tree -
would have a greater branching factor. Thus, it wounld ap-
pear that in domains where the number of such conflicts is

- Himited, our approach is still viable. -

Finally, we believe that a parallel can be drawn between
the optimal merged plan problems and constraint satisfac- .

tion problems (CSP’s) [14, 26]. In CSP, there is a set of
“variables, each with a set of possible values to be assigned

to it, and a set of consistency relations between the vari-
ables. A solution fo a problem using constraint propaga-

tion is to find one or all consistent variable assignments. In

optimal merged plan problems, each goal can be considered
as a variable, and the set of alternate plans for a goal as
values for that variable. The consistency relations between
the variables are defined in terms of the action-precedence,
identical-action and simultaneous-action interactions.
However, there are also major differences between CSP
and optimal merged plan problems. A solution for an opti-
mal merged plan problem has to be minimal in cost, while
most well-lmown algorithms for CSP are based on back-

tracking algorithms that do not guarantee optimality—and
action-merging interactions, which make it possible to re-
_ duce costs of combined plans in optimal merged plan prob-
lems, are not considered at all in existing CS¥P research.
Thus, our approach can be considered as an extension of
CSP research to include the task of achieving optimality.
We are exploring whether this relationship between CSP
and plan merging can be exploited either for generating
faster solutions to merging problems (using variants of the
CSP techniques) or for guaranteeing optimal solutions to

- - CB8P problems that admit merging interactions.

7 Conclusion

In this paper we have been exploring a technique for merg-
ing together sets of plans generated either by a single plan-
ner (used separately for each goal) or by a set of special
purpose planners. Such a techrique has been explored in
the Literature either in the context of search problems re-
lating to planning [24] or using complex mechanisms for
integrating the outputs of a set of planuers {as discussed
in Section 2).

The approach taken in the paper has _Bee_n to explore .

~ the merging of these plans in the context of a set of limita-
tions on the interactions between plans. The interactions
proposed, although by no means fully general, are less re-
strictive than those of “independence,” “serializability,” or
+ “linearity” previously proposed in the literature.

We have explored two different variants of this problem.

. Where a single plan is generated for each goal the primary

results include:
" _' 1. Finding the optimal merged plan is NP-hard. -

2. An.efficient algorithm is presented to generate a com-
bined plan from the individual goals.

- 3. Under a furiher restriction (the mergeability restric-
tion} that appears reasonable for many realistic prob-
lem domains, an efficient algorithm for generating the
near-optimal combined plan is presented.

4. An analysis is providing éhowing that where the in-
° - teractions are limited as described, an exponential
- amonunt of savings over solvmg a conjoined goal is pos-

- gible.

Where more than one pla.n may be generated for each goal, -

‘the best conjoined plan is often not simply the conjunct of

" the least-cost individual plans, because higher-cost plans

_may allow more merging. Where multiple plans are gener-
ated, the primary results include:

1. Even determining whether a merged plan exists is NP-
hard.

2. A branch-and-bound heuristic search algorithm is
demonstrated for finding optimal and near-optimal
conjoined pla.ns

3. Empirical results are shown demonstrating that in an

interesting class of automated manufacturing prob-

. lems, the heuristic algorithm performs quite well, still
-growing exponentially but by a very small factor.

[13)

We regard this work as a first step, which demonstrates
the potential improvements to planning that can be found
by exploiting restrictions on allowable interactions. In the
previous section, we have outlined several possible exten-
sions of this work—but even without these, this approach
is currently being used successfully in at least one appli-
cation domain [29, 30]. As we continne our research into

- more general forms of limited-interaction planning, we are

convinced that this approach has potential for significantly
improving the performance of planning systems across a
number of additional domains.

References

[I] T.C. Baker, J.R. Greenwood “Star: an environ-
ment for development and execution of knowledge-.
based planning applications® Proceedings DARPA
Enowledge-based Planning Workshop, Dec. 1987,

[2] Beslin, M., Bogdanowicz, J. and Diamond, W. “Plan-
ning and control aspects of the scorpius vision system
architecture® Proceedings DARPA Knowledge-based
Planning Workshop, Dec. 1987.

[3]-A. ‘Brown -and Gaucus, D.
Assessment® Proceedings DARFPA Knowledge- based
Planning Workshop, Dec. 1987.

[4] T. Bylander, “Complexity Results for Planning,”
Proc. IJCAI-91, 1991, pp. 274-279.

[5] D. Chapman, “Planning for Conjunctive Goals,” Ar-
tificial Intelligence (32), 1987, 333-377.

[6] T. C. Chang and R: A. Wysk, An Introduction to
- Automated Process Planning Systems, Prentice-Hall,
. Englewood Cliffs, NJ, 1985.

{7] M. R. Cutkoski and J. M. Tenenbaum, “CAD/CAM
Integration Through Concurrent Process and Product
Design,” Proc. Symposium on Integrated and Intelli-
gent Manufacturing at ASME Winter Annual Meet-
ing, 1987, pp. 1-10.

{8] M. Drummeond and J. Bresina, “Anytime Synthetic
Projection: Maximizing the Probability of Goal Sat-

" isfaction,” Proc. AAAI 90, 1990, 138-144.

- [9] K. Erol, D. Nam, and V. S. Subrahmanian. “Com-

~ plexity, Decidability and Undecidability Results for
Domain-Independent Planning,” submitted for pubh—
cation, 1991.

K. Erol, D). Nau, and V. S. Subra.hmama.n. When 1s
pla.nmng decidable? In Proc. First Internat. Conf AI
Planning Systems, pages 222-227, June 1992,

K. Erdl, D. Nau, and V. S. Subrahmanian. On the
complexity of domain-independent planning. In Proc.
AAAI 22, pages 381-386, July 1992, _

R. E. Fikes and N. J. Nilsson, “STRIPS: A New
Approack to the Application of Theorem Proving
to Problem Solving,” Artificial Intelligence (2:3/4),
1971, 189-208.

D.E. Foulser, M. Li and'Q. Yang, “Theory and Al-
gorithms. for Plan Merging,” to appear in Artificial

(10]

[11]

[12]

“Prosective Situation - -

Intelligence, 1992. Also available as Research Repost,
- C5-90-40, University of Waterloo, Waterloo, Ont..
Canada. §

' [14] E.C. Preuder, “ A sufficient condition of backtrack-
free search.” Journal of the ACM, 29{1):23-32, 1982,

[15] Garvey, T. and Wesley, L. “Knowledge-based
Helicopter Route Planning” Proceedings DARPA
Knowledge-based Planning Workshop, Dec. 1987.

D.P. Glasson, and J.L. Pomarede, “Navigation Sensor
Planning for Future Tactical Fighter Missions” Pro-
- ceedings DARPA Knowledge-based Planning Work-
shop, Dec. 1987.

[17] J. Greenwood, G. Stachmick and H. Kay ®A Proce

. dural Reasoning System for Army Maneuver Plan-

ning,” Proceedings DARPA - Knowledge-based Plan-
ning Workshop, Dec. 1987,

Naresh Gupta and Dana S. Nau. On the complexity
of blocks-world planning. Artificial Intelligence, 56(2-
3):223-254, Angust 1992,

f19] C. Hayes, “Using Goal Interactions to Guide Plan-
ning,” Proc. AAAIL-87, 1987, 224-228.

{20] J. Hendler, A. Tate, and M. Drummond “A]l Planning:
" Systems and Techmques AT Magazme, 11(2), May,
1990, 61-77.

[16}

[18]

[21]
' Concurrent Domains,” Proc. of the DARPA Work-

shop on Innovative Approaches to Planning, Schedul-

ing, and Conirol, Nov. 1990.

R. Karinthi, D. Nau, and Q. Yang. “Handling feature
interactions in process planning,” Applied Artificial
Intelligence, special issue on Al for ma.nufacturmg,
1992, to appear.

e

o
. ciate,”
ning Workshop, Dec. 1987,

- [24] Korf, R.E., “Planning as Sea.rch A Qua.nutatwe Ap-
: . proach,” Artzﬁczal Intelligence (33), 1987, 65-88.

{25] Llnden, T., and Owre, 8. “Transformational Synthe-
o sis Apphed to ALV Mission Planning® Proceedings
DARPA Knowledge-based Planning Workshop, Dec.
1987.

AK. Mackworth, “ Consistency in networks of I_e-
lations,” In Webber and Nilsson, editors, Readings

in Artificial Intelligence, pages 69-T8. Morga.n Kaui-
mann Publishers Inc., 1981.

C. Key “Cooperative Planning in the Pilot’s Asso-
Proceedings DARPA Knowledge—based Plan-

g ._:.[26]

[27]
puter Program for Designing Circuyits, Al Laboratory,
‘Massachusetts Institute of Technology, Technical Re-
port AI-TR-402, 1977.

D.S. Nau, V. Kumar and L. Karal, “General Branch
and Bound, and Its Relation to A* and AO*” Artifi-
cial Intelligence, (23), 1984, 29-58,

[29] D. 8. Nau, “Automated Process Planning Using Hi-
: erarchical Abstraction,” Award winner, Texas Instru-
ments 1987 Call for Papers on Industrial Automation,
Tezas Instruments Techmcal Journal, Wmter 1987,
-39-46. :

[28]

S. Kambhampati and J.M. Tenenbaum, “Planning in .

[41]

'[43] Q. Yang, D. Nau, and J. Hendler

[30] D.S. Nau, R. Karinthi, G. Vanecek, and Q. Yang, “In-
tegrating Al and Solid Modeling for Design and Pro-
cess Planning,” Proc. Second IFIP Working Group 5.2
Workshop on Intelligent CAD, Cambridge, England,
Sept. 1988.

F. P. Preparata and R. T. Yeh, Introduction to Dis-
crete Structures, Addison-Wesley, Reading, Mass.,
1973. '

E. D. Sacerdoti, “A Structure of Plans and Behavior,”
American Elsevier, New York, 1977,

[33] T. Sellis, “Multiple-Query Optimization,” ACM
Transactions on Database Systems (13:1), March
1988, 23-52.

K. Shim, T. Sellis, and D. Nau, “Improvements of
a Heuristic Algorithm for Multiple-Query Optimiza-
tion,” submitted for journal publication, 1991.

[31]

[32]

[34]

[35] Smith, “Plan Coordination in Support of Expert Sys-
tems Integration,” Proceedings DARPA Knowledge-

based Flanning Workshop, Dec. 1987.

G. Sussman, “A Computer Model of Skill Acquisi-
tion,” American Elsevier, New York, 1982.

A. Tate; “Generating Project Networks,”
CAI 1977, 888-893.

A. Tate,]. Hendler, and M. Drummond, “A Review
of Al Planning Techniques” Readings in Planning,
Allen, J., Hendler, J., and Tate, A. (eds.) Morgan-
Kaufma.nn Palo Alto, California, 1990.

S. Thompson, “Environment for Hierarchical Abstrac-
tion: A User Guide,” Tech. Report, Computer Science
Department, University of Maryland, College Park,
1989,

S. A. Vere, “Planning in Time: Windows a.nd Du-

rations for Activities and Goals,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI- _
5:3), 1983, 246-247.

R. Wilensky, Planning and Understanding, Addison-

Wesley: Reading, Massachusetts, 1983.

[42] D. Willdns, “Domain-independent Planning: Repre-

sentation and Plan Generation,” Arttﬁc:alfntelhgence
“(22), 1984. :

[36]
t37} Proc. 1J--

[38]
[39]

o)

An approach to
multiple-goal planning with limited interactions. In
AAAT Spring Symposium, Sta.nford 1989,

_ "[44] Q. Yang, D. 8. Naz, and J. Hendler Optimization of
D. McDermott Flezibility and Eﬂi‘ciency in @ Com-

multiple-goal plans with limited interaction. In Proc,
DARPA Workshop on Innovative Approaches to Plan-
ning, Scheduling and Control, 1990,

[45] Q. Yang, D. S. Nau, and J. Hendler. Merging sep-
arately generated plans with restricted interactions.
Computatwnal Intelligence, 9(1), February 1993. To
appear.

