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M sHoP is a hierarchical task network planning algo-
rithm that is provably sound and complete across
a large class of planning domains. It plans for tasks
in the same order that they will later be executed,
and thus, it knows the current world state at each
step of the planning process. sHOP takes advantage
of this knowledge by allowing a high degree of
expressive power in its knowledge bases. For exam-

~ Ple, sHor's preconditions can include logical infer-
ences, complex numeric computations, and calls
to external programs. sHor is powerful enough that
an implementation of it is being used as an embed-
ded planner in the Naval Research Laboratory’s
HICAP systein,

is a domain-independent generalization of
a planning technique that we originally
- developed for use in several domain-specific
planning systems, including the Epars system
. for manufacturing planning (Smith et al. 1997)
and the BRIDGE BARON program for declarer play
in the game of bridge (Smith, Nau, and Throop
1998). The sHor algorithm is a hierarchical task
network (HTN) planning algorithm, but it dif-
-fers from other HTN planning algorithms in
that sHOP plans for tasks in the same order that
they will be executed. Thus, sHor always knows
‘the current state of the world at each step of
the planning process, and sHop takes advantage
of this knowledge by incorporating a high
degree of expressive power into its domain rep-

- resentations. For example, sHoP's preconditions
can include Horn-clause inferencing, numeric
computations, and calls to external programs.
"~ sHOP’s expressive power can be used to create
domain representations for complex applica-
tion domains. For example, an implementa-
tion of sHOP is being used as the generative
planning module for Hicar (Mufioz-Avila et al.

SHOP (simple hierarchical ordered planner)

2001a, 1999), a plan-authoring system for
noncombatant evacuation operations (NEQs).

The SHOP Planning Algorithm

Here, we summarize the suor algorithm'’s pri-
mary features. For more details, see Nau et al.
(1999).1

Because sHOP is an HTN planning algorithm,
it creates plans by recursively decomposing
tasks (activities that need to be performed) into
smaller and smaller subtasks, until primitive
tasks are reached (tasks that can be accom-
plished directly). sHor uses methods and oper-
ators as in HTN planning. An operator (similar
to a STRIPS operator) specifies a way to perform
a primitive task, and a method specifies a way to
decompose a nonprimitive task into a set of
subtasks.

Unlike most HTN planners, sHOP requires
the decomposition produced by each method
{o be a totally ordered set of subtasks. Using
this restriction, sHop plans for the tasks in the
same order that they will iater be executed,

which makes sHop simpler than HEN planners

such as NONLIN (Tate 1977), sipE-2 (Wilkins
1990), 0-pLAN (Currie and Tate 1991), and umce
(Erol, Hendler, and Nau 1994) and makes it
easier to prove soundness and completeness
results for sHop.

The sHoP algorithm is shown in figure 1. As

.an example of how it works, figure 2 shows

two methods for traveling from one location

to another: (1) traveling by airplane and (2)

traveling by taxi. Note that each method pro-
duces a totally ordered list of subtasks. Suppose
that all these subtasks are primitive except for
the travel subtasks. If we asked sHOP to use
these methods to find a plan for the task of
traveling from the University of Maryland to
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procedure SHOP (5, T, D)

1. if T=nil then return nil endif

2. t=thefirsttaskin T

3. U=theremaining tasksin T

4. if tis primitive (i.e., there is an operator for t) then

5. nondeterministically choose an operator o for t

6. P =SHOP (o(8), U, D)

7 if P = FAIL then return FAIL endif

8 return cons(p, P)

9. else if there is a method applicable to t whose
preconditions can all be inferred from § then

10. nondeterministically let » be such a metliod

11. return SHOP(S, append(m(t,5), 1), D)

12. else :

13. return FAIL

14. endif

end SHHOP

Figure 1. The sHop Planning Algorithm,

§ is a state, T is a list of tasks, and D is the knowledge base (methods, operators,
and Horn-clause axioms).

travel(x,y)
Travel by air: Travel by taxi:
Preconditions: Preconditions:
-e distancefx,y) > 100  distance(x,y) < 50

e local-airport(x,a)
* local-airport(y,b)

Decomposition: Decomposition:
- buy-ticket{a,b) s get-taxi(x)

s travel(x,a) * ride-taxi(x,y)

* fly(a,b) . * pay-driver(x,y)

* travel(b,y)

" Figure 2. Two Different Methods for Traveling from One Location to Another.

the Massachusetts Institute of Technology, stor
would expand the tasks and subtasks. in the
order shown in figure 3. '

As long as the procedure for inferring m’s
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preconditions from § is a sound and complete
inference procedure {such as Horn-clause theo-
rem proving), the sHop algorithm itself will also
be sound and complete.

In implementations of smor? the inference
procedure is a Horn-clause theorem prover
with several extensions. For example, the Horn
clauses can include calls to attached procedures
for numeric computations (for example, “dis-
tance(UofMD,BWI)<50" in the previous exam-
ple), or (in some of the implementations) any
other procedure calls defined by the user.

Experimental Results

In our experiments (Nau et al. 1999), suor gen-
erated plans several orders of magnitude more
quickly than Bracxsox (Kautz and Selman
1999), wp (Koehler et al. 1997), and umce (Erod,
Hendler, and Nau 1994). We believe the prima-
ry reason it outperformed these planners was
because sHOP's higher level of expressivity made
it possible to formulate highly expressive
domain algorithms in sHOP.

In our experiments, SHOP also performed sev-
eral times as fast as TLrLaN {(Bacchus and
Kabanza 2000). TLrLAN, which does a forward
search guided by pruning rules written in
modal logic, has expressivity similar to that of
sHop, and in fact, we believe that the big-O
compiexity of TLrLAN and SHOP was not too dif-
ferent.

In the Fifth International Conference on
Artificial Intelligence Planning and Scheduling
(AIPS"00) planning competition, sHOP was out-
performed by TALPLANNER (Doherty and Kvarn-

" strom 1999). TALPLANNER is based on TLrran

but achieves substantial speedups compared to
TLriaN through the use of preprocessing tech-
niques and fast data structures. We have started
to make changes to sHop's data structures to
make them faster; for example, we found that
a simple change to the data structure sHOP uses
to represent its world states would speed sHOP
up by about an order of magnitude on large
problems. We intend to make more optimiza-
tions in the near future.

An Application of SHoP

One of our implementations of sHOP is used as
an embedded planning module in the Naval

- Research Laboratory’s HICAP plan-authoring sys-

tem for noncombatant evacuation operations
(NEOs) (Mufioz-Avila et al. 2001a, 1999). The
architecture of HICAP is shown in figure 4. HICAP
dynamically elaborates plans, derived from
military doctrine on NEQOs and represented as

‘HTNs, using interactive case-based inferenicing




(Aha and Breslow 1997). Hicap assists users with
dynamic plan elaboration by providing the fol-
lowing functions: (1) manual editing of plans
represented using HTNs using a hierarchical
task editor, (2) interactive plan expansion
using a case-based reasoning module called
NACODAE (Aha and Breslow 1997), (3) auto-
- mated plan expansion using sHop, and (4) a
lessons delivery module that monitors HICAP's
plan to notify the user when lessons become
applicable and recommend corresponding
plan-elaboration operations.

We are currently extending the capabilities
of Hicar and sHor as part of the Defense
Advanced Research Project Agency’s Active
Templates Program.

Discussion and Conclusions

sHOP illustrates the synergy that can result from
the interplay between planning applications
and planning theory. The stop algorithm is a
domain-independent formalization of our pre-
* vious domain-specific work on domain-specific
planners for applications in manufacturing
planning and the game of bridge. Conversely,
an implementation of the suop algorithm is
being used as an embedded planning system in
the nHICAP application program.

Our ongoing and future work on SHOP is as
follows:

We have developed an algorithm called
sHOPZ (Nau et al. 2001), which still generates
the steps of a plan in the same order that they
will later be executed but does not require the
subtasks of a method to be partially ordered. In
some cases, it is much easier to write knowl-
edge bases for sHoP2 than for sHOP.

We are integrating sHOP with the mvpact (Eiter
and Subrahmanian 1999; Eiter et al. 1999) mul-
tiagent architecture to provide planning in a
multiagent environment. We have developed
the theoretical foundations for this integration
(Dix, Miinoz-Avila, and Nau 2001, 2000) and
are developing an implementation.

We are making optimizations to saoe's data

-structures, as mentioned earlier. We believe
that these optimizations will speed up ssop by
several orders of magnitude,

We are extending stop to incorporate ways

- toreason about time and uncertainty, generate
and evaluate contingency plans, and react to
new information from external programs. We
believe these extensions wiil be useful in sever-
al problem domains, such as the NEO domain
- mentioned earlier.

Because of the similarity between HTN plan-

- ning and the work breakdown structures

“(WBSs) used in commercial project manage-
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1. travel(U of MD, MIT)
2. buy-ticket(BWI, Logan)
3. travel(U of MD, BWI)
4. get-taxi(U of MD)
5. ride-taxi(U of MD, BWT)
- 6. pay-driver
7. fly(BWI, Logan)
8. travel(Logan, MIT)
9. get-taxi(Logan)
10. ride-taxi(Logan, MIT)
11. pay-driver(Logan, MIT)

Figure 3. The Order in Which sHop Would Decompose
Tasks While Planning How to Travel from the University of
Maryland to the Massachusetts Institute of Technology.

Tasks 1, 3, and 8 are nonprimitive; all the other tasks are primitive.

User
Requests T Elicited plan
' ) Lessons
/ Deliverer
Hierarchical Y SHOP DecTS
Task Editor | | NaCoDAE/HTN | | Generative | | Decision
(HTE) CCBR Tool Planner Tracker

Figure 4. Architecture of Hicar, a System for Authoring Noncombatant Evacu-
ation Operation (NEQ) Plans.

ment packages (Mufioz-Avila et al. 2001b), we
hope to develop HIN planning techniques to
assist human project planners in creating
WHESs, S
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2. Implementations of sHop are available at
www.cs. umd.edu/projects/shop.
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