004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool

@2 Rough side-mill pocket at (-0.25, 1.25)
length 0.40, width 0.30, depth 0.50

@3 Finish side-mill pocket at (-0.25, 1.25)
loanath A A0 width @ 20 denth 0 5@

May All Your Plans Succeed!
(or have a high expected utility)

Dana S. Nau

m"ii:ﬁ LINITNERS LT-Y  GOF
‘Q;';b

W MARYLAND

o> U k(L1 50.00 Z0.0W0 Y1 Setup

Q2 Etchin%,of copEer
005 T EC1 90.00 54.77 @1 Total Time on EC1

006 A MC1 30.00 4.57 Q1 Setup _
02 Prepare board for soldering

000 B MC1 30.00 0.29 01 Setup

@2 Screenprint solder stop on board
AR MC1 200 A 7 B M1 Ca+iin



plan |plan|

noun

1 a detailed proposal for doing or achieving something : the UN peace plan.
e [with adj. | a scheme for the regular payment of contributions toward a pension,
savings account, or insurance policy : a personal pension plan.

2 (usu. plans) an intention or decision about what one 1s going to do :  have no plans
to reture.

3 a detailed diagram, drawing, or program, in particular
e a fairly large-scale map of a town or district : a street plan.
e a drawing or diagram made by projection on a horizontal plane, esp. one
showing the layout of a building or one floor of a building. Compare with
ELEVATION (sense 3 ).
e a diagram showing how something will be arranged : look at the seating plan.

Oxford American Dictionary

verb ( planned , plasnning ) | trans. |

1 decide on and arrange in advance : they were planming a trip to Egypt | [with infinitive
| ke plans to fly on Wednesday | | intrans. | we plan on getting married in the near future.
See note at INTEND .
e [ intrans. | make preparations for an anticipated event or time : we have to plan

Jor the future.
2 design or make a plan of (something to be made or built) : they were planning a garden.



plan |plan|

noun
1 a detailed proposal for doing or achieving something : the UN peace plan.
02 ClamB board )
03 Establish datum point at bullseye (0.25, 1

004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool

. @2 Rough side-mill pocket at (-0.25, 1.25)

. 03 Finish side-mill pocket at (-0.25, 1.25
behavior ... usually a set of tnish side-mill pocket at ( )
length 0.40, width 0.30, depth_0.50

actions, with temporal and 04 Rough side-mill pocket at (-0.25, 3.00)
other constraints on them, length 0.40, width 0.30, depth 0.50

. 05 Finish side-mill Rocket at (-0.25, 3.00)
for execution by some agent length 0.40, width 0.30, depth 0.50
or agents. - Austin Tate 1.54 01 Install 0.08-diameter end-milling tool

[MIT Encyclopedia of the 4.87 i Total time on WMCL

COgnitiVe Sciences, 1999] 32.29 @1 Pre-clean board (scrub and wash)

@2 Dry board in oven at 85 deg. F

005 B EC1 30.00 0.48 Q1 Setup , ,
02 Spread photoresist from 18000 RPM spinner

005 C EC1 30.00 2.00 01 Setup

PR @ 02 Photoliﬁh%ggap?y,of"pho‘lcoresig,t
manufacturing using phototool”in "real.iges

005 D EC1 30.00 20.00 01 Set
process plan erup

Q2 Etchin%,of copEer
‘ 05 T EC1 90.00 54.77 @1 Total Time on EC1



Generating Plans of Action

@ Computer programs to aid human planners

» Project management (consumer software)

» Plan storage and retrieval
* e.g., variant process planning in manufacturing |- -
» Automatic schedule generation

e various OR and Al techniques

((((((
\\\\\

® For some problems, we would like generate
plans (or pieces of plans) automatically

» Much more difficult
» Automated-planning research 1s starting to pay off

® Here are some examples ...




Space Exploration

e

r

e

/0 Mars rovers

» Autonomous planning,
scheduling, control

» NASA (JPL and Ames)

~

/




Manufacturing

i 4t}

® Sheet-metal

bending =]l T
machines a =5 =
» Amada

Corporation

» Software to plan the
sequence of bends
[Gupta and Bourne,
Jour. Manufacturing Sci. and Engr., 1999]

Nau: Plans, 2006 6



Games

® Bridge Baron - Great Game Products

» Won 1997 world championship of computer bridge by using HTN planning to
generate game trees [Smith et al.: AAAI 1998, AI Magazine 1998]

® Current version of Bridge Baron is still one of

the best bridge programs

Finesse(Py; S)

S,

LeadLow(P; S)

Us:East declarer, West dummy

Opponents:defenders, South & North
Contract:East — 3NT
On lead:West at trick 3 | East: AKJ74

P

FinesseTwo(P,; S)

-

P

West: &A2
Out: &QT98653

P

PlayCard(P; S, R))

EasyFinesse(P,; S)

StandardFinesse(P,; S)

BustedFinesse(P,; S)

West— A2

(North— AQ)

/CD\

StandardFinesseTwo(P,; S)

>

(North— &3)

StandardFinesseThree(P5; S)

FinesseFour(P,; S)

- - < o
PlayCard(P,; S, R,) | | PlayCard(P5; S, R;) | | PlayCard(P,; S, R,) | | PlayCard(P,; S, R,’)
Nau: Plans, 2006 North— A3 East— &J South— A5 South— AQ




Outline

» Conceptual model for planning
» Example planning algorithms
» What’s bad, what’s good

» Directions and trends

® This talk is deliberately non-technical
® For technical details:

» Ghallab, Nau, and Traverso
Automated Planning: Theory and Practice
Morgan Kaufmann, May 2004
» First comprehensive
textbook & reference book
on automated planning

» http://www.laas.fr/planning

AUTOMATED

Nau: Plans, 2006




Conceptual Model
1. Environment

l Description of X
Initial state(s

>

~| Planner

Objectives

Execution status

SRR RN o

l Plans

Controller

Observations T l Actions

System = ﬁ State transition system

Events

Nau: Plans, 2006




State Transition
System

2=(S,4,E)

® S = {states}
® A = {actions}
® £ = {exogenous events}

® Yy = state-transition
function

® Example:
» 8= {Sp ---5 S5}
» A = {put, take, load, ...}
»E=0
» v: see the arrows

Nau: Plans, 2006

S So
ut
put
a | [T
e o (11—
location 1 location 2 location 1 location 2
movezT lmove1 moveZT lmove1
S3 S
put
.
47
location 1 location 2 location 1 location 2
unIoadT lload
S4 S5
move2
.
<7
| S el =
location 1 location 2 location 1 location 2

10




Conceptual Model
2. Controller

l Description of X
Initial state(s

>

~| Planner

Objectives

Execution status

ERERNEN =

l Plans

Controller Given observation

O ion f ' o in O, produces
h_bgervagon unction FObservations T l Actions |actionain A

System X

S3

T Events

c =

location 1 location 2

Nau: Plans, 2006 y




Conceptual Model
3. Planner’s Input

Planning problem
l Description of X
Initial state(s

Planner

Omit unless Objectives i \
planning is online gExecution status l Plans
C;)ntroller
Observations T lActions
System X

T Events

Nau: Plans, 2006
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Planning
Problem

® Description of X
® Initial state or set of
states
» Initial state = s,

® Objective
» Goal state, set of goal
states, set of tasks,
“trajectory” of states,

objective function, ...

» Goal state = s

Nau: Plans, 2006

S So
ut
put
a | [0
e o (11—
location 1 location 2 location 1 location 2
movezT lmove1 moveZT lmove1
S3 S
put
.
47
location 1 location 2 location 1 location 2
unIoadT lload
S4 S5
move2
.
<7
[ S Nl =
location 1 location 2 location 1 location 2

UNIVERSITY OF MARYLAND
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Conceptual Model
4. Planner’s Output

l Description of
Initial state(s

>

Obioct ~ Planner Instructions to
jectives 4 the controller
Execution status Plans

Controller

Observations T l Actions

System X

T Events

14




Plans

® (Classical plan: a
sequence of actions

(take, movel, load, move2)

® Policy: partial function
from § into 4

{(s,, take),
(s;, movel),
(55, load),
(s4, move2)}

Nau: Plans, 2006

Sl SO
ut
put
o h take - H
location 1 location 2 location 1 location 2
moveZT #move1 moveZT lmove1
S3 S
put
.
47
location 1 location 2 location 1 location 2
unIoadT Joad
S4 S5
move2
#
<7
[ S Nl =
location 1 location 2 location 1 location 2

UNIVERSITY OF MARYLAND
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Planning Versus Scheduling

® Scheduling l Description of £

Initial state(s
» When and how to perform ~| Planner

a given set of actions Objectives 73
: : Scheduler
* Time constraints | 7
e Resource constraints Controller
e Objective functions T lActions
» Typically NP-complete System
T Events

® Planning
» Decide what actions to use to achieve some set of objectives

» Can be much worse than NP-complete; worst case 1s
undecidable

Nau: Plans, 2006




Three Main Types of Planners

1. Domain-specific
2. Domain-independent

3. Configurable

® I’ll briefly discuss each

Nau: Plans, 2006
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Types of Planners:
1. Domain-Specific

® Made or tuned for a specific domain

e Won’t work well (if at all) in any other
domain

® Most successful real-world planning
systems work this way

Us:East declarer, West dummy
Finesse(P,; S) Opponents:defenders, South & North
y Contract:East — 3NT Fast-#K174
é\ R On lead:West at trick 3 West-#A2
‘ LeadLow(P,; S) | FinesseTwo(P,; S) ‘ QoS Y BIE
< “

| PlayCard(P;; S, R,) | | EasyFinesse(Py; S) | | StandardFinesse(P,; S) | | BustedFinesse(P;; S) |
| 1

I
West— #2 v /é\ v

(North— #Q) > (North— #3)
| StandardFinesseTwo(P,; S) | | StandardFinesseThree(P; ) | | FinesseFour(P,; S) |
] ]

| PlayCard(P,; S, R,) | | PlayCard(Py; S, Ry) | | PlayCard(P,; S, R,) | | PlayCard(P,; S, R, |
North— #3 East— #J South— #5 South— #Q
Nau: Plans, 2006 18




Types of Planners: 2. Domain-Independent

e In principle: Oppenns e, St & Nort
» Works in any planning domain B, |ontetWesaias | Bk
» Only domain-specific knowledge is (Lealon®;;9) | }“‘““T-W“P* s)‘\ S
the definitions of the basic actions |P1ayCmd(Ple) | ‘Easyﬁie(},z; S)Hs,midmse(pz; S ‘Etemmsge@z; 9]
® In practice: e (Nm;_?',@ B, (Nm};i'n)
» Not feasible to develop domain- =TT e D

independent planners that work ,
. y i | PlayCard(P;; S, R,) | | PlayCard(Ps; S, Ry) | | PlayCard(P; S, R,) | | PlayCard(Py; S, R,") |
in every possible domain Norlh— #3 w— Sout— 45 South— 40

e Could you to use a bridge
program to explore Mars?

» Restrictive assumptions to
simplify the set of domains

e Classical planning

e Historical focus of
most research on
automated planning

Nauplan32006 UNIVERSITY OF MARYLAND




Restrictive Assumptions

AQ: Finite system:
» finitely many states, actions, events

A1l: Fully observable: l Description of X

Initial state
» controller always knows X’s current state > Planner
A2: Deterministic: Objectives ]
» One initial state, Exéeutionsiaius : l Plans
one outcome for each action .
A3: Static (no exogenous events): Controller

» no changes but the controller’s actions Observations T l Actions
A4: Attainment goals:
» aset of goal states S, System X
AS: Sequential plans: j:E):emsi
» linear sequence of actions (a,, a,, ... a,)
A6: Implicit time:

» no time durations; linear sequence of instantaneous states
A7: Off-line planning:
» planner doesn’t know the execution status

Nau: Plans, 2006 20




Classical Planning

® (Classical planning requires all eight restrictive assumptions

» Offline generation of action sequences for a deterministic,
static, finite system, with complete knowledge, attainment
goals, and implicit time

® Reduces to the following problem:
» Given (Z, sy, S,)

» Find a sequence of actions (a,, a,, ... a,) that produces
a sequence of state transitions (s, $,, ..., S,)
such that s, 1s 1n S,

® This 1s just path-searching 1n a graph
» Nodes = states
» Edges = actions

® Is this trivial?

Nau: Plans, 2006 21




Classical Planning

® Generalize the earlier example:

put

take

» F1ve locations, three robot carts,
100 containers, three piles L -l'

location 1 location 2
 Then there are 10%77 states ocation 1 cocation
moveZT lmove1

® Number of particles in the universe
is only about 1037

» The example is more than 10”0 times as large!

® Automated-planning research has been heavily dominated by
classical planning

» Dozens (hundreds?) of different algorithms

» I’ll briefly mention a few of the best-known ones

Nau: Plans, 2006 22




ear(x), with x=a

unstack(x,a)

o Partial-Order Planning

stack(b,c)

® In classical planning,
not used much any more

® The Mars rovers use temporal-planning
extensions of 1t

Nau: Plans, 2006

® Plan for them separately
» Bookkeeping info to detect

ar(a) and resolve interactions
oty putdown(x)
handempty
pickup(b) pickup(a)

® Decompose sets of goals into the
individual goals

stack(a,b)

Goal:

on(a,b) & on(b,c)

23




Level 0 Level 1 Level 2
Literals in s, ! | All actions || All effects All actions || All effects
| applicable | of those applicable || of those
J-| | tos, actions to subsets | actions
C of Level 1

b

Graphplan

® Planning graph: problem relaxation

: |unstack(c,a)

pickup(b)

no-op

» Apply all applicable actions
simultaneously

» Next “level” =
{effects of all of those actions}

® Restrict the planner to search within
the planning graph

® Graphplan’s many children

» IPP, CGP, DGP, LGP, PGP,

SGP, TGP, ...

Nau: Plans, 2006
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RRRRRRRRRRR

Running out

no-op
of names N

unstack(c,a)

pickup(b)

pickup(a)
stack(b,c)

stack(b,a)

putdown(b)

stack(c,b)

stack(c,a)

putdown(c)




Heuristic Search

® Do an A*-style heuristic search guided by a heuristic
function that estimates the distance to a goal

» Can use problem relaxations to compute the heuristic
function

® Problem: A* quickly runs out of memory

» So do a greedy search

® Greedy search can get trapped 1n local minima

» Greedy search plus local search at local minima

e HSP, HSP2 [Bonet & Geffner]
® FastForward [Hoffmann]

Nau: Plans, 2006
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Translation to Other Domains

® Translate the planning problem or the planning graph
into another kind of problem for which there are
efficient solvers

» Find a solution to that problem

» Translate the solution back into a plan

@ Satisfiability solvers, especially those that use local
search

» Blackbox, Satplan [Kautz & Selman]

® Integer programming solvers such as Cplex
» [Vossen et al.]

Nau: Plans, 2006
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Types of Planners: 3. Configurable

® Domain-independent planners are quite slow compared with
domain-specific planners

» Blocks world 1n linear time [Slaney and Thiébaux, 4.7., 2001]
» Can get analogous results in many other domains

® But we don’t want to write a whole new planner for every
domain!

® Configurable planners
» Domain-independent planning engine

» Input includes info about how to
solve problems 1n the domain

e Hierarchical Task Network (HTN) planning

e Planning with control formulas

Nau: Plans, 2006 27




Task: | travel(x,y)

-

4 Method: taxi-travel(x,y) Method: air-travel(x,y) A
) ) e get-ticket(a(x),a(y))
get-taxi® ride(x,y) | |pay-driver /\:‘ fly(a(x),a()) | travel(a(y),y)
- J \_ | travel(x,a(x))
travel(UMD, LAAS)
] get-ticket(BWI, TLS)| /4 \ |get-ticket(IAD, TLS)
H T N P I annin g go-to-Orbitz K k go-to-Orbitz
find-flights(BWI, TLS // find-flights(IAD,TLS)
— .’ buy-ticket(IAD, TLS)

® Problem reduction

BACKTRACK |-

» Tasks (activities) rather than goals

» Methods to decompose tasks into subtasks

» Enforce constraints, backtrack if necessary

® Rcal-world applications

® Noah, Nonlin, O-Plan, SIPE, SIPE-2,
SHOP, SHOP2

Nau: Plans, 2006

travel(UMD, IAD)

k get-taxi

ride(UMD, IAD)
pay-driver

fly(BWI, TLS)
travel(TLS, LAAS)

k get-taxi

ride(TLS,LAAS)
pay-driver

28




Example

® SHOP2
» My group’s HTN planning system

» Won one of the top four awards in the
2002 International Planning Competition

» Freeware, open source
e http://www.cs.umd.edu/projects/shop
e Several thousand downloads - I stopped keeping track

» Used 1n hundreds of projects worldwide
[IEEE Intelligent Systems, 2003]

Nau: Plans, 2006
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Planning with Control Formulas

~ |~

a, = pickup(b M s, doesn’t satisfy f, a3
N
So, T b
allb 0 0
E— s,, T, < Ce

a, = pickup(c)

goal

® Forward search

® At each state s; we have a control formula f; in temporal logic

ontable(x) A ~J[y:GOAL(on(z,y))] = O(—holding(z))

“never pick up x from table unless x needs to be on another block”
® For each successor of s, derive a control formula using logical progression
® Prune any successor state in which the progressed formula is false

» TLPlan [Bacchus & Kabanza]

» TALplanner [Kvarnstrom & Doherty]

Nau: Plans, 2006 30




Comparisons

® Domain-specific
@ Configurable performance

® Domain-independent

up-front
human effort

® Domain-specific planner

» Write an entire computer program - lots of work

» Lots of domain-specific performance improvements
® Domain-independent planner

» Just give it the basic actions - not much effort

» Not very efficient

Nau: Plans, 2006 31




Comparisons

2 ) ® Configurable

coverage ® Domain-independent

® Domain-specific

® A domain-specific planner only works in one domain

@ In principle, configurable and domain-independent planners
should both be able to work 1n any domain

® In practice, configurable planners work 1n a larger variety of
domains

» Partly due to efficiency

» Partly due to expressive power

Nau: Plans, 2006




AIPS 1998
Exam ple Planning

Competition

he planni » ATPS 2000
® The planning competitions Planning

» All of them included domain-independent Competition
planners o
® In addition, AIPS 2000 and /PC 2002 » | 22 J

included configurable planners DNNND

® The configurable planners
» Solved the most problems
» Solved them the fastest i oot o
» Usually found better solutions ’

» Worked in many non-classical planning
domains that were beyond the scope of the
domain-independent planners

Nau: Plans, 2006 33




But Wait ...

® /PC 2004 and IPC 2006 included no configurable
planners.

» Why not?

Nau: Plans, 2006

AIPS 1998
Planning
Competition

AIPS 2000
Planning
Competition




But Wait ...

® /PC 2004 and IPC 2006 included no configurable
planners.

» Why not?
® Hard to enter them in the competition
» Must write all the domain knowledge yourself

» Too much trouble except to make a point

» The authors of TLPlan, TALplanner, and SHOP2
felt they had already made their point

Nau: Plans, 2006

AIPS 1998
Planning
Competition

AIPS 2000
Planning
Competition
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But Wait ...

® /PC 2004 and IPC 2006 included no configurable
planners.

» Why not?
® Hard to enter them in the competition
» Must write all the domain knowledge yourself

» Too much trouble except to make a point

» The authors of TLPlan, TALplanner, and SHOP2
felt they had already made their point

® Why not provide the domain knowledge?

Nau: Plans, 2006

AIPS 1998
Planning
Competition

AIPS 2000
Planning
Competition
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But Wait ...

® /PC 2004 and IPC 2006 included no configurable
planners.

» Why not?
® Hard to enter them in the competition
» Must write all the domain knowledge yourself

» Too much trouble except to make a point

» The authors of TLPlan, TALplanner, and SHOP2
felt they had already made their point

® Why not provide the domain knowledge?
» Drew McDermott proposed this at /[CAPS-05
» Many people didn’t like this 1dea

e Cultural bias against it

Nau: Plans, 2006

AIPS 1998
Planning
Competition

AIPS 2000
Planning
Competition
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Cultural Bias

® Most automated-planning researchers feel that using domain
knowledge 1s “cheating”

® Researchers in other fields have trouble comprehending this
» Operations research, control theory, engineering, ...

» Why would anyone not want to use the knowledge they
have about a problem they’re trying to solve?

® In the past, the bias has been very useful

» Without 1t, automated planning wouldn’t have grown
into a separate field from its potential application areas

® But 1t’s not useful any more
» The field has matured

» The bias 1s too restrictive

Nau: Plans, 2006
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e A
Elctromechanica Design And lanning System ||~ St e Oersnion
Example
® Typical characteristics
of application domains o
» Dynamic world q
» Multiple agents — .
» Imperfect/uncertain info . . §§ §
» External info sources _% = HHHHH "1|T§ S 7
* users, sensors, databases Noﬂh * 6'0_0,98&0 o (=
» Durations, time constraints, *6[‘77[ fj}]
asynchronous actions A5
» Numeric computations West East
e geometry, probability, etc. ] ’ﬂ:;ﬂ ]
® (Classical planning excludes all of these -
Nau: Plans, 2006 South ]




In Other Words ...

® We like to think classical planning
1s domain-independent planning

® Butitisn’t!

» Classical planning only includes
domains that satisfy some very
specific restrictions

» Classical planners depend
heavily on those restrictions

Nau: Plans, 2006 40




In Other Words ...

® We like to think classical planning
1s domain-independent planning

® Butitisn’t!

» Classical planning only includes
domains that satisfy some very
specific restrictions

» Classical planners depend
| heavily on those restrictions

c ® This 1s fine for “toy problems” like

3 ‘ b ‘ the blocks world

Nau: Plans, 2006 41




In Other Words ...

® We like to think classical planning
1s domain-independent planning

® But it isn’t!
» Classical planning only includes

domains that satisfy some very
specific restrictions

» Classical planners depend
heavily on those restrictions

® This is fine for “toy problems” like
the blocks world

Nau: Plans, 2006 42




Good News, Part 1

® We’'re already moving away from classical planning
® Example: the planning competitions

» AIPS 1998, AIPS 2000, /PC 2002, IPC 2004
® Increasing divergence from classical planning

» 1998, 2000: classical planning

» 2002: added elementary notions of time
durations, resources

» 2004: added inference rules, derived effects, and
a separate track for planning under uncertainty

» 2006: added soft goals, trajectory constraints,
preferences, plan metrics

Nau: Plans, 2006

AIPS 1998
Planning
Competition

AIPS 2000
Planning
Competition
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Good News, Part 2

~ D
® Success 1n high-profile applications

» A success like the Mars rovers 1s a big deal

» Creates excitement about building planners
that work in the real world

Nau: Plans, 2006




Good News, Part 3

® These successes provide opportunities for synergy between
theory and practice

» Understanding real-world planning leads to better theories
» Better theories lead to better real-world planners

~

_

-

Applications

Nau: Plans, 2006




Good News, Part 4

® (Classical planning research has produced some very powerful
techniques for reducing the size of the search space

® We can generalize these techniques to work 1n non-classical
domains

® Examples:
1. Partial order planning
e Extended to do temporal planning
» Mars rovers
2. HTN planning
e Lots of applications

3. Planning under uncertainty ...

Nau: Plans, 2006
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Digression: =
What planning under uncertainty is -
® Actions with several possible outcomes |_|_I Iantebnded
» Action failures, e.g., gripper drops its load —> c -
» Exogenous events, e.g., road closed allb
® Primary models Grasp |—I_|
» Markov Decision Processes (MDPs) box ¢ allb @
 Probabilities, costs, Unintended
rewards, optimize expected utility outcome

e Dynamic programming
» Nondeterministic planning domains
e No numbers

e Solutions:
weak, strong, strong-cyclic, ...

e Symbolic model checking

» Game-theoretic

e game-tree search (e.g., minimax)




Good News, Part 4 (continued)

3. General way to nondeterminize forward-chaining planners
» Rewrite them to work 1n nondeterministic domains
e TLPlan — ND-TLPlan
 TALplanner — ND-TALplanner
e SHOP2 — ND-SHOP2

» Big (exponential) speedups compared to previous planners
for nondeterministic domains [Kuter and Nau, A4A4/-04]

» Even bigger speedups if we use the BDD representation
used in the previous planners for nondeterministic domains

e [Kuter, Nau, Pistore, and Traverso, /[CAPS-05]
® Analogous results for MDPs [Kuter and Nau, A4A47-05]

® Possible extension to game-theoretic environments?

Nau: Plans, 2006 48




Electromechanical Design And Planning System \

Circuit Schematic and Layout (EEsof)

Design Translation

Substrate Design (MicroStation)

A

Important Trends, and
Directions for Growth

Yiew 3-Front

Process time {minutes)

75.00 Setup' time

Run time
70.00
65.00
60.00——
55.00——
50.00——

Legend for Graph

45.00 Processing Time Legend
40.00——
35.00—— Process Process

Number Name
30.00——

0 Testing
25.00—— 1 Final-Inspection

2 Screen-Printing-Solder
20.00— 3 End-Milling
15.00 4 Applying-Photoresist

’ 5 Etching
10.00—— 6 Photolithography
O 7 Flux—-Cleaning
5.00—— 8 Drilling
- 9 Hermetically-Sealing
0.00 | |
0.00 2.00 4.00 6.00 8.00




m Circuit Schematic and Layout (EEsof)

Design Translation

Electromechanical Design And Planning System \ Substrate Design (MicroStation)

== Planning in Multi-Agent Environments

® Traditional assumption: the planner is alone in the world
® In reality:
» The planner is part of a larger system
» Other agents: human or automated or both
® The planner needs to
» Recognize what those agents are trying to accomplish
» (Generate an appropriate response

® Examples A
» Mixed-initiative and embedded planning d
» Assisted cognition
» Customer service hotlines
» Surveillance applications hg-Solder
" » Games oresist
phy

- 7 TIua wleaIILIiny
‘ ‘ 500—— — — ﬂ 17 8 Drilling
- 9 Hermetically-Sealing
| | | |

0.00

0.00 2.00 4.00 6.00 8.00



EDAPS Circuit Schematic and Layout (EEsof)

Design Translation

_Electromechanical Design And Planning System \ Substrate Design (MicroStation)

— Temporal Planning

® C(lassical planning uses a trivial model of time
» Linear sequence of instantaneous states s, S, S5, .-
» Several “temporal” logics do the same thing
® Need
» Time durations, overlapping actions
» Integrated planning/scheduling (e.g., space exploration)
» Continuous change (e.g., vehicle movement)

- » Temporally extended goals - “trajectories” of states

® Growth is already occurring
» E.g., the planning competitions
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® Traditional assumption
» Information is static; planner starts with all of it

® Real-world planning

n84

* Applications: web services, many others
» What info to look for? Where to get it?

® (Candidate for a new IPC track?

mmmsss Dynamic External Information

» Acquire information during planning and execution

» How to deal with lag time and information volatility?
» What if the query itself causes change in the world? ELeend
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EDAPS Circuit Schematic and Layout (EEsof)

Design Translation

Acquiring Domain Knowledge

e How to get the domain knowledge needed to plan efficiently?
» One of the most neglected topics for planning research,

but one of the most important

» If we could do this well on real-world problems,
planners would be hundreds of times more useful

® Researchers are starting to realize this

» E.g., the “Knowledge Engineering Competition”
at [CAPS-05

@ o Overlap with HCI, ML, and CBR
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Process Plan
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Real Plans in Real Domains

» One reason: researchers can easily get real-world data

® Data mining has become an important field very quickly

» E.g., go to the web

® One reason automated-planning researchers have

concentrated on “toy” problems:

» Trouble getting access to real plans for real problems

» Need a source of real-world planning data

. ® Half-baked idea: could we data-mine plans and

domains from web sources?

» My lab is starting to look for ways to do this
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Overlap with Other Fields

Various kinds of planning are studied in many different fields

» Al planning, computer games, game theory, OR,
economics, psychology, sociology, political science,
industrial engineering, systems science, control theory

The research groups are often nearly disjoint
» Different terminology, assumptions, ideas of what’s important
» Hard to tell what the similarities and differences are

Potential for cross-pollination
» Combine ideas and approaches from different fields

Example: applications to social and behavioral sciences
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Laboratory for
Computational
Cultural Dynamics

® Cross-disciplinary research laboratory at the University of Maryland
» http://www.cs.umd.edu/projects/lccd

» Faculty from CS, Business, EE, Government & Politics, International
Development, Conflict Management

® Very ambitious goals

» Develop theory and algorithms needed for tools to support decision
making in cultural contexts.

» Help understand how/why other cultures make decisions
* More effective cross-cultural interactions
e Better governance when different cultures are involved
e Recovery from conflicts and disasters

e Improve quality of life in developing countries

e Example: research by Tsz-Chiu Au, a graduate student at UMD

Nau: Plans, 2006
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Prisoner’s Dilemma

® One of the best-known examples Payoff matrix:

of a non-zero-sum game
layer,

Player, ¢ D

® Two players, each has two
possible moves:

» Cooperate (C) with C 3,3 0,5

the other player D 5,0 ,y@

» Defect (D), 1.e., take =
advantage of the other player .
o y best move is “defect,”

Nash equilibrium strategy: (D, D) regardless of whether he

ooperates or defects

® But what if you know you will
meet the other player again?
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Iterated Prisoner’s Dilemma (IPD)
Axelrod (1984), The Evolution of Cooperation

. Payoff matrix:
Two players, finite number
of iterations of the Prisoner’s Dilemma layer, C D
Widely used to study emergence of Player
cooperative behavior among agents C 3,3 0, 5
» No optimal strategy
» Performance depends on the D 5,0 1,1

strategies of all of the players

The best strategy in Axelrod’s tournaments:
» Tit-for-Tat (TFT)
* On Ist move, cooperate. On nth move,

repeat the other player’s (n—1)-th move > >
» Could establish and maintain - - )

cooperations with many other players

» Could prevent malicious players from
taking advantage of it
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IPD with Noise

Models accidents and misinterpretations

There’s a nonzero probability (e.g., 10%)

that a “noise gremlin” will change

some of the actions

» Cooperate (C) will become
Defect (D), and vice versa

Tit-for-Tat and other strategies
fail to maintain cooperation

Tsz-Chiu Au’s DBS strategy:
Build a model of the other

»

»
»
»

Nau: Plans, 2006

player’s strategy by

observing his/her behavior

Use this model to detect noise

Use it to plan DBS’s actions

Detect when the other player’s strategy changes

e Update the model

He defected,
so I'll defect
next,time

He defected,
so I'll defect
next.time

He defected,
so I'll defect
ext,time

He defected,
so I'll defect
ext,time
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The 20th-Anniversary
Iterated Prisoner’s Dilemma Competition

http://www.prisoners-dilemma.com
@ Category 2: IPD with noise
» 165 programs participated

® DBS dominated the top 10

places

® Only two programs beat DBS

» Both used a strategy that was
dangerously close to cheating

Rank Program Avg. score

1 BWIN 433.8

IMMO1 414.1

(DBSz ) 408.0

DBSy 408.0

DBSpl 407.5

DBSx 406.6

DBSf 402.0
8 DBStft 401.8
9 DBSd ) 400.9
10 lowESTFT _classic 397.2
11 TFTIm 397.0
12 Mod 396.9
13 TFTIz 395.5
14 TFTIc 393.7
15 DBSe 393.7
16 TTFT 393.4
17 TFTIa 393.3
18 TFTIb 393.1
19 TFTIx 393.0
20 mediumESTFT _classic 392.9




How BWIN and IMMO01 worked

® Each participant could submit up to 20 programs

® Some participants submitted
20 programs that worked as a team

My strategy? I
order my goons
to beat them up

* 1 master + 19 slaves
» When slaves play with master

* they cooperate and master defects

. I order my goons
e master gets all the points

to give me all
» When slaves play with anyone not in their money

their team, they defect

® Analysis

» The average score of each
master-and-slaves team was much
lower than DBSz’s average score

» If BWIN and IMMO1 each had < 10
slaves, DBS would have placed 1st

» If BWIN and IMMO1 had no slaves,
they would have done badly
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DBS cooperates, not coerces

® Unlike BWIN and IMMO1, DBS had no
slaves

» None of the DBS programs even knew
the others were there

@ DBS worked by establishing cooperation
with many other agents

® DBS could do this despite the noise,
because it could filter out the noise

e We’re trying this idea in other games
» Joint work with Sarit Kraus

Nau: Plans, 2006
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Conclusion

® Advances in automated planning
» Historically, limited by focus on classical planning

» Scope 1s broadening to include things important for real-
world planning

» Increased use 1n practical settings
® Important areas for future growth
» multi-agent environments
e reasoning about other agents
» time durations
» dynamic external information
» acquiring domain knowledge
e data mining of plans
» cross-pollination with other fields

Nau: Plans, 2006
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Any
questions?




