
1

How do you plan
if there are other agents

and you don’t know their plans?
Dana Nau

University of Maryland
College Park, MD

2

What is a Plan?
plan n.

1.  A scheme, program, or method
worked out beforehand for
accomplishing an objective:
a plan of attack.

2.  A proposed or tentative project:
I had no plans for the evening.

3.  A program or policy stipulating a
service or benefit: a pension plan.

4.  A systematic arrangement of
elements or important parts:
a seating plan; the plan of a story.

Theater
Seating

Plan

3

Processes:

Opn A BC/WW Setup Runtime LN Description
001 A VMC1 2.00 0.00 01 Orient board

 02 Clamp board

 03 Establish datum point at bullseye (0.25, 1.00)
001 B VMC1 0.10 0.43 01 Install 0.30-diameter drill bit

 02 Rough drill at (1.25, -0.50) to depth 1.00

 03 Finish drill at (1.25, -0.50) to depth 1.00
001 C VMC1 0.10 0.77 01 Install 0.20-diameter drill bit

 02 Rough drill at (0.00, 4.88) to depth 1.00

 03 Finish drill at (0.00, 4.88) to depth 1.00
 [...]

001 T VMC1 2.20 1.20 01 Total time on VMC1
[...]

004 A VMC1 2.00 0.00 01 Orient board

 02 Clamp board
 03 Establish datum point at bullseye (0.25, 1.00)

004 B VMC1 0.10 0.34 01 Install 0.15-diameter side-milling tool

 02 Rough side-mill pocket at (-0.25, 1.25)
 length 0.40, width 0.30, depth 0.50

 03 Finish side-mill pocket at (-0.25, 1.25)

 length 0.40, width 0.30, depth 0.50
 04 Rough side-mill pocket at (-0.25, 3.00)

 length 0.40, width 0.30, depth 0.50

 05 Finish side-mill pocket at (-0.25, 3.00)
 length 0.40, width 0.30, depth 0.50

004 C VMC1 0.10 1.54 01 Install 0.08-diameter end-milling tool

 [...]
004 T VMC1 2.50 4.87 01 Total time on VMC1

005 A EC1 0.00 32.29 01 Pre-clean board (scrub and wash)

 02 Dry board in oven at 85 deg. F

005 B EC1 30.00 0.48 01 Setup
 02 Spread photoresist from 18000 RPM spinner

005 C EC1 30.00 2.00 01 Setup

 02 Photolithography of photoresist
 using phototool in "real.iges"

005 D EC1 30.00 20.00 01 Setup

 02 Etching of copper
005 T EC1 90.00 54.77 01 Total time on EC1

006 A MC1 30.00 4.57 01 Setup
 02 Prepare board for soldering

006 B MC1 30.00 0.29 01 Setup

 02 Screenprint solder stop on board
006 C MC1 30.00 7.50 01 Setup

 02 Deposit solder paste at (3.35,1.23) on board using nozzle
 [...]

 31 Deposit solder paste at (3.52,4.00) on board using nozzle

006 D MC1 0.00 5.71 01 Dry board in oven at 85 deg. F to solidify solder paste
006 T MC1 90.00 18.07 01 Total time on MC1

[...]

011 A TC1 0.00 35.00 01 Perform post-cap testing on board
011 B TC1 0.00 29.67 01 Perform final inspection of board

011 T TC1 0.00 64.67 01 Total time on TC1

999 T 319.70 403.37 01 Total time to manufacture

Part of a
manufacturing
process plan

Plans in AI
  AI planning researchers

use a more specialized
definition:

  [a representation] of
future behavior …
usually a set of actions,
with temporal and other
constraints on them, for
execution by some agent
or agents. – Austin Tate,�
MIT Encyclopedia of the
Cognitive Sciences, 1999

4

Introduction

  AI planning researchers usually assume there is just one agent
»  The plan executor
»  Nothing happens unless the executor makes it happen

  Generalizing to multiple agents
»  Two cases:

1. Team of agents with a common objective
•  How to do communication, coordination,

information-gathering, …

2. Objectives of other may differ from yours
•  How to accomplish your objectives?

 This is the focus of my talk

c
a b

5

Outline

 Abstract model of AI planning

 Classification of multi-agent planning problems

  Issues and techniques

» Ways to model the other agents

» Ways to deal with combinatorial explosion

 Open problems, important trends

6

Abstract Model of AI Planning

  Basic ingredients:
»  The planner
»  The plan executor (controller)
»  The environment (system)

(s)

Execution status

Other agents

7

Abstract Model of AI Planning

(s)

Objectives

  Classical goal: get to any state that satisfies some property, e.g., on(a,b)
  Utility: a numeric measure of a state’s desirability, e.g., the height of a stack

  Some other possibilities (e.g., tasks, extended goals)
» For now, I’ll ignore these

Other agents

e
d c

b
a

Execution status

8

  Offline:
»  no feedback from the controller (e.g., classical planning)

  Online:
»  planning and execution are interleaved
»  planner gets information about execution status

Abstract Model of AI Planning

Other agents

(s)

Execution status

9

  Full observability:
»  Controller’s observations tell it the exact state of the world (e.g., MDP)

  Partial observability:
»  Controller’s observations give partial information (e.g., POMDP)

(s)

Observations

c
a b

Abstract Model of AI Planning

Other agents

Execution status

10

  Deterministic: only one possible outcome (e.g., classical planning)
  Stochastic: probability distribution over outcomes (e.g., MDP)
  Nondeterministic: multiple possible outcomes, but no probabilities

(s)

c
a b

c

a b

a b

grab(c)

Actions

Abstract Model of AI Planning

Other agents

Execution status

11

  Most AI planning research assumes there are no other agents
»  But some multi-agent problems can be reduced to single-agent

planning problems
»  Encode the other agents’ actions as outcomes of our actions

(s)

Abstract Model of AI Planning

Other agents

Execution status

12

Classification of
Multi-Agent Planning Problems

  Can classify multi-agent planning problems according to
»  The characteristics discussed earlier
»  How the other agents are modeled

  Can use single-agent planning techniques in two of the classes

Objectives Execution Observability Agent model Planning technique
goals offline full capabilities planning as model checking
utilities offline full predictive planning on MDPs
utilities off/online full predictive game-tree search
utilities off/online partial predictive information-set search

13

Planning as Model Checking
  Nondeterministic actions

»  Multiple outcomes, any of which might happen
»  Like MDP actions, but without the probabilities

  Can use these to model the other agents’ capabilities
»  Encode the other agents’ possible actions as outcomes of our actions

You
move
right

Hallway

You Them

They
move
left

They
move
right

Hallway

You Them

Hallway

You

Them

Move Right

s0

s1

s2

14

Types of Solutions
  For planning as model checking, there are three kinds of solutions

»  weak: at least one execution will reach a goal
»  strong: every execution will reach a goal
»  strong-cyclic: every fair execution will reach a goal

•  Fair execution: doesn’t stay in a loop forever if the loop has an exit
•  Like assuming a nonzero probability for each possible outcome

s0

You Them

s1

You

Them

s2

You Them

s3

You

Them

Wait

Pass

Move
Right

15

  In classical AI planning, a plan is a linear sequence of actions
»  Can’t use that here
»  Need actions to be contingent on the state of the world

  Instead, use a policy: a function that maps states into actions

»  e.g., π0 = {(s0, MoveRight), (s1, Pass), (s2, Wait)}

You Them

You

Them

You Them

You

Them

Wait

Pass

Move
Right

Policies and Execution Structures

s0
s1

s2

s3

16

  A hunter and k prey on a n x n grid
»  Fully observable, offline planning,

hunter’s goal is to catch all of the prey
  Hunter’s possible actions: N, S, E, W, Grab

»  Grab is applicable when the hunter and
a prey are at the same location

  Each prey can move N, S, E, W, or Wait
»  Can’t have multiple prey at a single location

  Combinatorial explosion
»  k prey, 5 actions per prey => each hunter’s action has 5k possible outcomes
»  Search tree with branching factor 5k

»  Number of nodes at depth d is 5kd

  How to deal with this?

Example: Hunter and Prey

17

Planning over Sets of States
  MBP searches a state space whose nodes are sets of states rather than

individual states
»  Represents sets of states as

Binary Decision Diagrams (BDDs)
»  Actions map BDDs into other BDDs

  This can reduce the search space in two ways
»  Reduce the branching factor
»  Fold the tree into a graph

… …

…

…

…

…

Giunchiglia & Traverso.
Planning as model checking.
ECP, 1999.

Cimatti et al. Weak, strong,
and strong cyclic planning
via symbolic model checking.
Artificial Intelligence, 2003.

18

Examples of MBP’s Performance
  MBP does well with one prey,

regardless of grid size
  One prey on a 13x13 grid:

»  generate policy in about 2 seconds

  MBP does badly with multiple prey
  Six prey on a 4x4 grid

  > 35 minutes to generate policy

19

Why Multiple Prey Are a Problem
  k prey => hunter’s actions each have up to 5k outcomes

»  BDDs can’t collapse them because they aren’t independent
•  Can’t have multiple prey at a single location

  The BDDs fold the tree into a graph, but the branching factor is still 5k

 … …

 … …

5k

… …

5k

… … … … … … … … … … … …

… … … … … … … …

20

Focusing
  MBP had problems with multiple prey because it

tried to plan for all 5k combinations of their actions

  Better to focus on one prey at a time
»  Ignore the others until you’ve caught that one

  Reduces the branching factor
»  ≤ 5 outcomes per action, rather than 5k

  How to accomplish this?

5

… … … …

 … …

5k

… … … … … … … … …

… … … … … … … … … … …

?

?

?

 …

21

  Input:
»  Operators: like in classical planning
»  Tasks (activities to carry out)

rather than goals
»  Methods: tell how to accomplish a

task by decomposing it into a set of
subtasks

  Planning by problem reduction:
»  Decompose tasks recursively into

subtasks
»  Stop when all remaining tasks are

primitive (i.e., correspond to actions)

Focusing via HTN Planning
?

?

?

  Method for catch-all-prey
if number of uncaught prey ≥ 1
then subtasks:

select(p), catch(p), catch-all-prey
else subtasks: (none)

  Method for catch(p)
if hunter is at p’s location
then subtasks: grab(p)
else subtasks:

 move-toward(p), catch(p)

22

SHOP2

  SHOP2 is my lab’s HTN planning system
»  http://www.cs.umd.edu/projects/shop
»  Won award at the 2002 International

Planning Competition
»  Has been used in hundreds (thousands?)

of projects worldwide

»  SHOP2 only works in deterministic domains
»  But we can generalize it to handle nondeterminism

Nau et al. SHOP2: an
HTN Planning System.
JAIR, 2003.

Nau et al. Applications of
SHOP and SHOP2. IEEE
Intelligent Systems, 2005.

23

Generalizing to handle Nondeterminism

  ND-SHOP2: add code to
»  plan for all of the nondeterministic outcomes
»  detect cycles that have no acceptable exits

SHOP2
or any other
forward-search
planner

Planning for
all outcomes

Check for
cycles that
have no exits

Kuter & Nau. Forward-chaining
planning in nondeterministic
domains. AAAI, 2004.

24

ND-SHOP2 versus MBP on Hunter-Prey

One prey on a large grid
  MBP outperforms ND-SHOP2
  MBP can plan for large sets of

states at once, but ND-SHOP2
must plan for them separately

Many prey on a small grid
  ND-SHOP2 outperforms MBP
  ND-SHOP2 can focus on one prey

at a time, but MBP can’t

25

BDDs plus HTNs
  Yoyo:

»  Combines ND-SHOP2’s task
decomposition with MBP’s BDDs

»  Outperforms both MBP and ND-SHOP2

Kuter et al. Task decomposition
on abstract states, for planning
under nondeterminism. Artificial
Intelligence, 2009.

26

Classification of
Multi-Agent Planning Problems

  Can classify multi-agent planning problems according to
»  The characteristics discussed earlier
»  How the other agents are modeled

  Can translate two of the classes into single-agent planning problems

Objectives Execution Observability Agent model Planning technique
goals offline full capabilities planning as model checking
utilities offline full predictive planning on MDPs
utilities off/online full predictive game-tree search
utilities off/online partial predictive information-set search

27

Modeling Other Agents’ Actions
  Stochastic actions

»  Multiple outcomes, with probabilities for each outcome
»  Can use these to encode predictive models of other agents

•  Probabilities of various behaviors
  Reduce multi-agent planning to planning on MDPs

You
move
right

Hallway

You Them

They
move
left

They
move
right

Hallway

You Them

Hallway

You

Them

Move Right

s0

s1

s2
0.9

0.1

28

Combinatorial Explosion in MDPs
  Consider an MDP version of the Hunter-Prey problem

»  Give the hunter a utility function
•  E.g., amount of time to catch all prey

»  Predictive agent model
•  Probabilities for each prey’s action
•  Encode as probabilistic outcomes of the

hunter’s actions

  Same combinatorial explosion as before:
»  Branching factor = 5k

  There are some techniques analogous to the previous ones

29

Reducing the State Space in MDPs
  Can compress MDP state spaces in a manner similar to BDDs

»  Algebraic Decision Diagrams (ADDs)
•  like BDDs but with numeric formulas

»  I won’t discuss ADDs per se
•  But in one of my later examples, I’ll do an analogous

classification using an ad hoc technique

Hoey et al. SPUDD: Stochastic
Planning using Decision
Diagrams. UAI, 1999.

30

Reducing the State Space in MDPs
  Can incorporate focusing into several MDP planning algorithms

»  Basic idea:
•  Run forward-search HTN planning in parallel

with a forward-search MDP algorithm
•  Each time the MDP algorithm needs to know

a node’s successors, use HTN decomposition
to compute the ones we’re focusing on

  Open problem:
»  Is it feasible to combine ADDs with focusing,

like we did in Yoyo?
»  It should be, but I don’t think anyone has tried

Kuter et al. Using domain-
configurable search control
for probabilistic planning.
AAAI, 2005.

31

How to Build Predictive Models?
  Need accurate probabilities for predicting the agents’ actions

»  How to get them?
  One way is from previously observed behavior

»  E.g., in each state of the world, what are the
observed probabilities for the prey’s actions?

  Problem: may not have statistically
significant data for every state of the world

  One way to handle this:
»  Partition the states or histories into

equivalence classes
•  Sets of states where you think (or hope)

the prey will behave similarly
»  In each equivalence class, what are the

observed probabilities for the prey’s actions?

32

Iterated Prisoner’s Dilemma (IPD)
  Prisoner’s Dilemma

»  Dominant strategy is to Defect
  Iterated Prisoner’s Dilemma

»  Same pair of players, multiple times
»  No dominant strategy
»  Performance depends the strategies

of all the players
  Axelrod (1984),The Evolution of Cooperation

»  Best strategy in Axelrod’s tournaments was
Tit-for-Tat (TFT)
•  On 1st move, cooperate. On nth move,

repeat the other player’s (n–1)-th move
»  Could establish and maintain advantageous

cooperations with many other players
»  Could prevent malicious players from

taking advantage of it

If I defect this time,
what will he do next time?

Player2
Player1 Cooperate Defect

Cooperate 3, 3 0, 5
 Defect 5, 0 1, 1

Prisoner’s Dilemma

33

Example:
  A real-world example of the IPD, described in Axelrod’s book:

»  Trench warfare in World War I

  Incentive to cooperate:

»  If I attack the other side, then they’ll retaliate and I’ll get hurt
»  If I don’t attack, maybe they won’t either

  Result: evolution of cooperation
»  Even though the two infantries were supposed to be enemies, they

avoided attacking each other

34

IPD with Noise
  To model accidents or misinterpretations,

introduce noise
»  Nonzero probability (e.g., 10%)

that a “noise gremlin” will change
some of the actions
•  change Cooperate (C) to Defect (D)
•  and vice versa

  Noise makes it hard to maintain
cooperation
»  Consider two players who both use

Tit-for-Tat
»  One accident or misinterpretation

can cause a long string of retaliations C D

C C
C

C
C

C
C

C

. . .

. . .

C

D

C

D
D

D C

Noise

Retaliation

Retaliation

Retaliation

Retaliation

35

Example of Noise

Story from a British army
officer in World War I:

  I was having tea with A Company when we heard a lot of shouting and went out
to investigate. We found our men and the Germans standing on their respective
parapets. Suddenly a salvo arrived but did no damage. Naturally both sides
got down and our men started swearing at the Germans, when all at once
a brave German got onto his parapet and shouted out: “We are very sorry
about that; we hope no one was hurt. It is not our fault. It is that damned
Prussian artillery.”

The salvo wasn’t the German infantry’s intention
  They didn’t expect it nor desire it

36

Discussion
  The German soldier shouted:

 “We are very sorry about that; we hope no one was hurt.
 It is not our fault. It is that damned Prussian artillery.”

  This apology avoided a conflict
»  It was convincing because it was consistent with the German infantry’s

past behavior
»  The British had ample evidence that the German infantry wanted to

keep the peace

  If you can tell which actions are affected by noise, you can avoid reacting
to the noise

  IPD agents often behave deterministically
»  For others to cooperate with you it helps if you’re predictable

  This makes it feasible to build a model from observed behavior

37

The DBS Agent
  From the other player’s recent behavior,

build a behavioral model π
»  A set of four rules of the form (m,m') => p

•  m = our last move (C or D)
•  m' = their last move (C or D)
•  p = P(their next move will be C)

  Noise Filtering:
»  If π predicts p = 1 or p = 0

and the prediction is wrong
•  Defer judgment: assume it’s noise

»  If the disagreement continues
•  Assume the other player’s

behavior has changed
•  Recompute π based on

their recent behavior

  Move generation: …

Au & Nau. Accident or intention:
That is the question (in the iterated
prisoner’s dilemma). AAMAS, 2006.

Au & Nau. Is it accidental or
intentional? A symbolic approach to
the noisy iterated prisoner’s
dilemma. In G. Kendall (ed.), The
Iterated Prisoners Dilemma: 20
Years On. World Scientific, 2007.

Partition of game histories
into four equivalence
classes:
  Histories ending in (C,C)
  Histories ending in (C,D)
  Histories ending in (D,C)
  Histories ending in (D,D)

38

Move Generation
  At each iteration:

»  Generate an acyclic MDP
•  Each state s is a triple [iteration, our last move, their last move]
•  Probabilities are given by the behavioral model
•  Depth = 60 (arbitrary)

»  Solve it using dynamic programming
»  At the root node, choose the move (C or D) with higher expected utility

1,C,C 1,C,D 1,D,D

2,C,C 2,C,D 2,D,C 2,D,D

Current
iteration

Next
iteration

Iteration
after next

… … … …

C

1,D,C

D

C

D
C

D C
D C

D

39

http://www.prisoners-dilemma.com

  Category 2: IPD with noise
» 165 programs participated

  DBS dominated the top 10 places

  Two programs scored higher than DBS
» Each of them used master-and-

slaves strategies

20th-Anniversary IPD Competition

40

Master & Slaves Strategy
  Each participant could submit up to 20 programs
  Some submitted programs that could recognize each other

»  by communicating pre-arranged sequences of Cs and Ds
  The 20 programs worked as a team: 1 master, 19 slaves

  When a slave plays with its master
»  Slave cooperates, master defects
»  The master gets 5 points,

the slave gets nothing

  When a slave plays with an agent not in its team
»  The slave defects, to minimize the other

agent’s payoff

and they
beat up
everyone
else

My slaves give
me
all their
money …

41

Comparison
  Analysis

»  Average score of each master-and-slaves team was lower than DBS’s
»  If BWIN and IMM01 each had ≤ 10 slaves, DBS would have placed 1st
»  Without any slaves, BWIN and IMM01 would have done badly

  In contrast, DBS had no slaves
»  It established cooperation with many other agents
»  It did this despite the noise

•  Its predictive model of the other agents’ behavior enabled it to filter
out the noise

42

Summary
  Reducing multi-agent planning problems to single-agent planning problems

»  Model the other agents’ actions as nondeterministic outcomes of ours
  Capability model

»  Encode other agents’ possible actions as nondeterministic outcomes of
ours

»  BDDs, HTNs
»  Example: Hunter-Prey

  Predictive model
»  Encode information about probabilities of other agents’ behaviors

under various conditions
»  Building and using a predictive model
»  Example: IPD with Noise

  Next, some examples of open problems and future trends

43

Domain-Independent Focusing?
  In the Hunter-Prey domain, we wrote HTN methods to enable the planner

to focus on one subproblem at a time
»  These methods were domain-specific

  A restricted version can be implemented without using HTNs
»  Add new preconditions and effects

to the planning operators
»  Still domain-specific

  Focusing is a general idea that is useful in many different domains
»  poker
»  driving a car
»  Ph.D. research
»  giving this speech

  Can it be implemented in a domain-independent way?
»  I suspect there are restricted versions for which the answer is yes

R. Alford, et al. Maintaining focus:
Overcoming attention deficit disorder
in contingent planning. FLAIRS-2009.

44

Agent Modeling
  DBS’s agent model was specific to the IPD
  For more complex environments, it is much harder

to build agent models and use them effectively

  Several research efforts are focused on
specific domains
»  e.g., games such as Poker

  Can we develop more general approaches?
»  Important for effective multi-agent planning

Khuller, et al. Computing most probable
worlds of action probabilistic logic
programs: scalable estimation for 1030,000
worlds. AMAI 51(2-4):295–331, 2007.

Subrahmanian, et al. CARA:
A cultural-reasoning
architecture. IEEE Intelligent
Systems, Mar./Apr. 2007.

Billings et al. Game tree search with
adaptation in stochastic imperfect
information games. Computers and
Games 1, 21–34, 2004.

Schweizer et al. An exploitive Monte-
Carlo poker agent. KI-2009.

Carmel & Markovich. Learning
models of intelligent agents.
AAAI-95, 1995.

45

Objectives Execution Observability Agent model Planning technique
goals offline full capabilities planning as model checking
utilities offline full predictive planning on MDPs
utilities off/online full predictive game-tree search
utilities off/online partial predictive information-set search

Planning and Game Theory

  Planning in multi-agent environments overlaps with game theory
  Good potential for combining planning and game theory

»  The last part of my talk (the Noisy IPD) is an example
»  Much more can be done

A. Parker, et al. Overconfidence or
paranoia? Search in imperfect-
information games. AAAI-2006.

46

Any questions?

Thank You!

  Acknowledgments:
»  Ugur Kuter wrote ND-SHOP2 and Yoyo as part of his Ph.D. research. He is

now an Assistant Research Scientist at the University of Maryland.
»  Tsz-Chiu Au wrote DBS as part of his Ph.D. research. He is now a

postdoctoral researcher at the University of Texas.
»  This work was supported in part by AFOSR grant FA95500610405 and

DARPA IPTO grant FA8650-06-C-7606. The opinions in this presentation
are mine, and do not necessarily reflect the opinions of the funders.

Any questions?

