
1 

How do you plan 
if there are other agents  

and you don’t know their plans? 
Dana Nau 

University of Maryland 
College Park, MD 
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What is a Plan? 
plan n. 

1.  A scheme, program, or method 
worked out beforehand for 
accomplishing an objective: 
a plan of attack.  

2.  A proposed or tentative project: 
I had no plans for the evening.  

3.  A program or policy stipulating a 
service or benefit: a pension plan. 

4.  A systematic arrangement of 
elements or important parts: 
a seating plan; the plan of a story. 

Theater 
Seating 

Plan 
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Processes:

Opn A BC/WW Setup Runtime  LN  Description
001 A  VMC1  2.00    0.00  01  Orient board

                           02  Clamp board

                           03  Establish datum point at bullseye (0.25, 1.00)
001 B  VMC1  0.10    0.43  01  Install 0.30-diameter drill bit

                           02  Rough drill at (1.25, -0.50) to depth 1.00

                           03  Finish drill at (1.25, -0.50) to depth 1.00
001 C  VMC1  0.10    0.77  01  Install 0.20-diameter drill bit

                           02  Rough drill at (0.00, 4.88) to depth 1.00

                           03  Finish drill at (0.00, 4.88) to depth 1.00
                           [...]

001 T  VMC1  2.20    1.20  01  Total time on VMC1
[...]              

004 A  VMC1  2.00    0.00  01  Orient board

                           02  Clamp board
                           03  Establish datum point at bullseye (0.25, 1.00)

004 B  VMC1  0.10    0.34  01  Install 0.15-diameter side-milling tool

                           02  Rough side-mill pocket at (-0.25, 1.25)
                               length 0.40, width 0.30, depth 0.50

                           03  Finish side-mill pocket at (-0.25, 1.25)

                               length 0.40, width 0.30, depth 0.50
                           04  Rough side-mill pocket at (-0.25, 3.00)

                               length 0.40, width 0.30, depth 0.50

                           05  Finish side-mill pocket at (-0.25, 3.00)
                               length 0.40, width 0.30, depth 0.50

004 C  VMC1  0.10    1.54  01  Install 0.08-diameter end-milling tool

                           [...]
004 T  VMC1  2.50    4.87  01  Total time on VMC1

                   
005 A   EC1  0.00   32.29  01  Pre-clean board (scrub and wash)

                           02  Dry board in oven at 85 deg. F

005 B   EC1 30.00    0.48  01  Setup
                           02  Spread photoresist from 18000 RPM spinner

005 C   EC1 30.00    2.00  01  Setup

                           02  Photolithography of photoresist
                               using phototool in "real.iges"

005 D   EC1 30.00   20.00  01  Setup

                           02  Etching of copper
005 T   EC1 90.00   54.77  01  Total time on EC1

                   

006 A   MC1 30.00    4.57  01  Setup
                           02  Prepare board for soldering

006 B   MC1 30.00    0.29  01  Setup

                           02  Screenprint solder stop on board
006 C   MC1 30.00    7.50  01  Setup

                           02  Deposit solder paste at (3.35,1.23) on board using nozzle
                           [...]

                           31  Deposit solder paste at (3.52,4.00) on board using nozzle

006 D   MC1  0.00    5.71  01  Dry board in oven at 85 deg. F to solidify solder paste
006 T   MC1 90.00   18.07  01  Total time on MC1

[...]              

011 A   TC1  0.00   35.00  01  Perform post-cap testing on board
011 B   TC1  0.00   29.67  01  Perform final inspection of board

011 T   TC1  0.00   64.67  01  Total time on TC1

                   
999 T      319.70  403.37  01  Total time to manufacture

Part of a 
manufacturing 
process plan 

Plans in AI 
  AI planning researchers 

use a more specialized 
definition: 

  [a representation] of 
future behavior … 
usually a set of actions, 
with temporal and other 
constraints on them, for 
execution by some agent 
or agents.   – Austin Tate,�
MIT Encyclopedia of the 
Cognitive Sciences, 1999
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Introduction 

  AI planning researchers usually assume there is just one agent 
»  The plan executor 
»  Nothing happens unless the executor makes it happen 

  Generalizing to multiple agents 
»  Two cases: 

1.  Team of agents with a common objective 
•  How to do communication, coordination, 

information-gathering, … 

2.  Objectives of other may differ from yours 
•  How to accomplish your objectives? 

 This is the focus of my talk 

c 
a b 
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Outline 

 Abstract model of AI planning 

 Classification of multi-agent planning problems 

  Issues and techniques 

» Ways to model the other agents 

» Ways to deal with combinatorial explosion 

 Open problems, important trends 
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Abstract Model of AI Planning 

  Basic ingredients: 
»  The planner 
»  The plan executor (controller) 
»  The environment (system) 

(s) 

Execution status 

Other agents 
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Abstract Model of AI Planning 

(s) 

Objectives 

  Classical goal: get to any state that satisfies some property, e.g.,  on(a,b) 
  Utility:  a numeric measure of a state’s desirability, e.g., the height of a stack 

  Some other possibilities (e.g., tasks, extended goals) 
» For now, I’ll ignore these 

Other agents 

e 
d c 

b 
a 

Execution status 
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  Offline: 
»  no feedback from the controller (e.g., classical planning) 

  Online: 
»  planning and execution are interleaved 
»  planner gets information about execution status 

Abstract Model of AI Planning 

Other agents 

(s) 

Execution status 
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  Full observability: 
»  Controller’s observations tell it the exact state of the world (e.g., MDP) 

  Partial observability: 
»  Controller’s observations give partial information (e.g., POMDP) 

(s) 

Observations 

c 
a b 

Abstract Model of AI Planning 

Other agents 

Execution status 
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  Deterministic: only one possible outcome (e.g., classical planning) 
  Stochastic: probability distribution over outcomes (e.g., MDP) 
  Nondeterministic: multiple possible outcomes, but no probabilities 

(s) 

c 
a b 

c 

a b 

a b 

grab(c) 

Actions 

Abstract Model of AI Planning 

Other agents 

Execution status 
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  Most AI planning research assumes there are no other agents 
»  But some multi-agent problems can be reduced to single-agent 

planning problems 
»  Encode the other agents’ actions as outcomes of our actions 

(s) 

Abstract Model of AI Planning 

Other agents 

Execution status 
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Classification of 
Multi-Agent Planning Problems 

  Can classify multi-agent planning problems according to 
»  The characteristics discussed earlier 
»  How the other agents are modeled 

  Can use single-agent planning techniques in two of the classes 

Objectives Execution Observability Agent model        Planning technique 
goals offline full capabilities planning as model checking 
utilities offline full predictive planning on MDPs 
utilities off/online full predictive game-tree search 
utilities off/online partial predictive information-set search 
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Planning as Model Checking 
  Nondeterministic actions 

»  Multiple outcomes, any of which might happen 
»  Like MDP actions, but without the probabilities 

  Can use these to model the other agents’ capabilities 
»  Encode the other agents’ possible actions as outcomes of our actions 

You 
move 
right 

Hallway 

You Them 

They 
move 
left 

They 
move 
right 

Hallway 

You Them 

Hallway 

You 

Them 

Move Right 

s0 

s1 

s2 
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Types of Solutions 
  For planning as model checking, there are three kinds of solutions  

»  weak: at least one execution will reach a goal  
»  strong: every execution will reach a goal 
»  strong-cyclic: every fair execution will reach a goal 

•  Fair execution: doesn’t stay in a loop forever if the loop has an exit 
•  Like assuming a nonzero probability for each possible outcome 

s0 

You Them 

s1 

You 

Them 

s2 

You Them 

s3 

You 

Them 

Wait 

Pass 

Move 
Right 
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  In classical AI planning, a plan is a linear sequence of actions 
»  Can’t use that here 
»  Need actions to be contingent on the state of the world 

  Instead, use a policy: a function that maps states into actions 

»  e.g., π0 = {(s0, MoveRight), (s1, Pass), (s2, Wait)} 

You Them 

You 

Them 

You Them 

You 

Them 

Wait 

Pass 

Move 
Right 

Policies and Execution Structures 

s0 
s1 

s2 

s3 
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  A hunter and k prey on a n x n grid 
»  Fully observable, offline planning,  

hunter’s goal is to catch all of the prey 
  Hunter’s possible actions: N, S, E, W, Grab 

»  Grab is applicable when the hunter and 
a prey are at the same location 

  Each prey can move N, S, E, W, or Wait 
»  Can’t have multiple prey at a single location 

  Combinatorial explosion 
»  k prey, 5 actions per prey => each hunter’s action has 5k possible outcomes  
»  Search tree with branching factor 5k 

»  Number of nodes at depth d is 5kd 

  How to deal with this? 

Example: Hunter and Prey 
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Planning over Sets of States 
  MBP searches a state space whose nodes are sets of states rather than 

individual states 
»  Represents sets of states as 

Binary Decision Diagrams (BDDs) 
»  Actions map BDDs into other BDDs 

  This can reduce the search space in two ways 
»  Reduce the branching factor 
»  Fold the tree into a graph 

            

            

… … 

      

… 

                        

      

… 

                        

      

… 

                        

      

… 

                        

Giunchiglia & Traverso. 
Planning as model checking. 
ECP, 1999. 

Cimatti et al. Weak, strong, 
and strong cyclic planning 
via symbolic model checking. 
Artificial Intelligence, 2003. 
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Examples of MBP’s Performance 
  MBP does well with one prey, 

regardless of grid size 
  One prey on a 13x13 grid: 

»  generate policy in about 2 seconds 

  MBP does badly with multiple prey 
  Six prey on a 4x4 grid 

  > 35 minutes to generate policy 
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Why Multiple Prey Are a Problem 
  k prey => hunter’s actions each have up to 5k outcomes 

»  BDDs can’t collapse them because they aren’t independent 
•  Can’t have multiple prey at a single location 

  The BDDs fold the tree into a graph, but the branching factor is still 5k 

            

                  … … 

                        … … 

5k 

… … 

5k 

… … … … … … … … … … … … 

…                   … … …                   … …                   … … 
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Focusing 
  MBP had problems with multiple prey because it 

tried to plan for all 5k combinations of their actions 

  Better to focus on one prey at a time 
»  Ignore the others until you’ve caught that one 

  Reduces the branching factor 
»  ≤ 5 outcomes per action, rather than 5k 

  How to accomplish this? 

5 

… … … … 

                  … … 

5k 

… … … … … … … … … 

…             …             … …                   … … …                   … …                   … … 

? 

? 

? 

            … 
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  Input: 
»  Operators: like in classical planning 
»  Tasks (activities to carry out) 

rather than goals 
»  Methods: tell how to accomplish a 

task by decomposing it into a set of 
subtasks 

  Planning by problem reduction: 
»  Decompose tasks recursively into 

subtasks  
»  Stop when all remaining tasks are 

primitive (i.e., correspond to actions) 

Focusing via HTN Planning 
? 

? 

? 

  Method for catch-all-prey 
if number of uncaught prey ≥ 1 
then subtasks: 

select(p), catch(p), catch-all-prey 
else subtasks:   (none) 

  Method for catch(p) 
if hunter is at p’s location 
then subtasks:  grab(p) 
else subtasks: 

 move-toward(p), catch(p) 
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SHOP2 

  SHOP2 is my lab’s HTN planning system 
»  http://www.cs.umd.edu/projects/shop 
»  Won award at the 2002 International 

Planning Competition 
»  Has been used in hundreds (thousands?) 

of projects worldwide 

»  SHOP2 only works in deterministic domains 
»  But we can generalize it to handle nondeterminism 

Nau et al. SHOP2: an 
HTN Planning System. 
JAIR, 2003. 

Nau et al. Applications of 
SHOP and SHOP2. IEEE 
Intelligent Systems, 2005. 
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Generalizing to handle Nondeterminism 

  ND-SHOP2: add code to 
»  plan for all of the nondeterministic outcomes  
»  detect cycles that have no acceptable exits 

SHOP2 
or any other 
forward-search 
planner 

Planning for 
all outcomes 

Check for 
cycles that 
have no exits 

Kuter & Nau. Forward-chaining 
planning in nondeterministic 
domains. AAAI, 2004. 
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ND-SHOP2 versus MBP on Hunter-Prey 

One prey on a large grid 
  MBP outperforms ND-SHOP2 
  MBP can plan for large sets of 

states at once, but ND-SHOP2 
must plan for them separately 

Many prey on a small grid 
  ND-SHOP2 outperforms MBP 
  ND-SHOP2 can focus on one prey 

at a time, but MBP can’t 
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BDDs plus HTNs 
  Yoyo:  

»  Combines ND-SHOP2’s task 
decomposition with MBP’s BDDs 

»  Outperforms both MBP and ND-SHOP2 

Kuter et al. Task decomposition 
on abstract states, for planning 
under nondeterminism. Artificial 
Intelligence, 2009. 
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Classification of 
Multi-Agent Planning Problems 

  Can classify multi-agent planning problems according to 
»  The characteristics discussed earlier 
»  How the other agents are modeled 

  Can translate two of the classes into single-agent planning problems 

Objectives Execution Observability Agent model         Planning technique 
goals offline full capabilities planning as model checking 
utilities offline full predictive planning on MDPs 
utilities off/online full predictive game-tree search 
utilities off/online partial predictive information-set search 
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Modeling Other Agents’ Actions 
  Stochastic actions 

»  Multiple outcomes, with probabilities for each outcome 
»  Can use these to encode predictive models of other agents 

•  Probabilities of various behaviors 
  Reduce multi-agent planning to planning on MDPs 

You 
move 
right 

Hallway 

You Them 

They 
move 
left 

They 
move 
right 

Hallway 

You Them 

Hallway 

You 

Them 

Move Right 

s0 

s1 

s2 
0.9 

0.1 
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Combinatorial Explosion in MDPs 
  Consider an MDP version of the Hunter-Prey problem 

»  Give the hunter a utility function  
•  E.g., amount of time to catch all prey 

»  Predictive agent model 
•  Probabilities for each prey’s action 
•  Encode as probabilistic outcomes of the 

hunter’s actions  

  Same combinatorial explosion as before:  
»  Branching factor = 5k  

  There are some techniques analogous to the previous ones 
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Reducing the State Space in MDPs 
  Can compress MDP state spaces in a manner similar to BDDs 

»  Algebraic Decision Diagrams (ADDs) 
•  like BDDs but with numeric formulas 

»  I won’t discuss ADDs per se 
•  But in one of my later examples, I’ll do an analogous 

classification using an ad hoc technique 

Hoey et al.  SPUDD: Stochastic 
Planning using Decision 
Diagrams.  UAI, 1999. 
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Reducing the State Space in MDPs 
  Can incorporate focusing into several MDP planning algorithms 

»  Basic idea: 
•  Run forward-search HTN planning in parallel 

with a forward-search MDP algorithm 
•  Each time the MDP algorithm needs to know 

a node’s successors, use HTN decomposition 
to compute the ones we’re focusing on 

  Open problem: 
»  Is it feasible to combine ADDs with focusing, 

like we did in Yoyo? 
»  It should be, but I don’t think anyone has tried 

Kuter et al.  Using domain-
configurable search control 
for probabilistic planning.  
AAAI, 2005. 
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How to Build Predictive Models? 
  Need accurate probabilities for predicting the agents’ actions 

»  How to get them? 
  One way is from previously observed behavior 

»  E.g., in each state of the world, what are the 
observed probabilities for the prey’s actions? 

  Problem: may not have statistically 
significant data for every state of the world 

  One way to handle this: 
»  Partition the states or histories into 

equivalence classes 
•  Sets of states where you think (or hope) 

the prey will behave similarly 
»  In each equivalence class, what are the 

observed probabilities for the prey’s actions? 
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Iterated Prisoner’s Dilemma (IPD) 
  Prisoner’s Dilemma 

»  Dominant strategy is to Defect 
  Iterated Prisoner’s Dilemma 

»  Same pair of players, multiple times 
»  No dominant strategy 
»  Performance depends the strategies 

of all the players 
  Axelrod (1984),The Evolution of Cooperation 

»  Best strategy in Axelrod’s tournaments was 
Tit-for-Tat (TFT) 
•  On 1st move, cooperate. On nth move, 

repeat the other player’s (n–1)-th move 
»  Could establish and maintain advantageous 

cooperations with many other players 
»  Could prevent malicious players from 

taking advantage of it 

If I defect this time, 
what will he do next time? 

Player2 
Player1 Cooperate Defect 

Cooperate 3, 3 0, 5 
 Defect 5, 0 1, 1 

Prisoner’s Dilemma 
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Example: 
  A real-world example of the IPD, described in Axelrod’s book: 

»  Trench warfare in World War I 

  Incentive to cooperate: 

»  If I attack the other side, then they’ll retaliate and I’ll get hurt 
»  If I don’t attack, maybe they won’t either 

  Result: evolution of cooperation 
»  Even though the two infantries were supposed to be enemies, they 

avoided attacking each other 
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IPD with Noise 
  To model accidents or misinterpretations, 

introduce noise 
»  Nonzero probability (e.g., 10%) 

that a “noise gremlin” will change 
some of the actions 
•  change Cooperate (C) to Defect (D) 
•  and vice versa 

  Noise makes it hard to maintain 
cooperation 
»  Consider two players who both use 

Tit-for-Tat 
»  One accident or misinterpretation 

can cause a long string of retaliations C D 

C C 
C 

C 
C 

C 
C 

C 

. . . 

. . . 

C 

D 

C 

D 
D 

D C 

Noise 

Retaliation 

Retaliation 

Retaliation 

Retaliation 
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Example of Noise 

Story from a British army 
officer in World War I: 

  I was having tea with A Company when we heard a lot of shouting and went out 
to investigate. We found our men and the Germans standing on their respective 
parapets.  Suddenly a salvo arrived but did no damage.  Naturally both sides 
got down and our men started swearing at the Germans, when all at once  
a brave German got onto his parapet and shouted out: “We are very sorry 
about that; we hope no one was hurt. It is not our fault. It is that damned 
Prussian artillery.” 

The salvo wasn’t the German infantry’s intention 
  They didn’t expect it nor desire it 
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Discussion 
  The German soldier shouted:   

 “We are very sorry about that; we hope no one was hurt. 
  It is not our fault. It is that damned Prussian artillery.” 

  This apology avoided a conflict  
»  It was convincing because it was consistent with the German infantry’s 

past behavior 
»  The British had ample evidence that the German infantry wanted to 

keep the peace 

  If you can tell which actions are affected by noise, you can avoid reacting 
to the noise 

  IPD agents often behave deterministically 
»  For others to cooperate with you it helps if you’re predictable 

  This makes it feasible to build a model from observed behavior 
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The DBS Agent 
  From the other player’s recent behavior, 

build a behavioral model π 
»  A set of four rules of the form (m,m') => p 

•  m = our last move (C or D) 
•  m' = their last move (C or D) 
•  p = P(their next move will be C) 

  Noise Filtering: 
»  If π predicts p = 1 or p = 0 

and the prediction is wrong 
•  Defer judgment: assume it’s noise 

»  If the disagreement continues 
•  Assume the other player’s 

behavior has changed 
•  Recompute π based on 

their recent behavior 

  Move generation: … 

Au & Nau. Accident or intention: 
That is the question (in the iterated 
prisoner’s dilemma). AAMAS, 2006. 

Au & Nau. Is it accidental or 
intentional? A symbolic approach to 
the noisy iterated prisoner’s 
dilemma. In G. Kendall (ed.), The 
Iterated Prisoners Dilemma: 20 
Years On. World Scientific, 2007. 

Partition of game histories 
into four equivalence 
classes: 
  Histories ending in (C,C) 
  Histories ending in (C,D) 
  Histories ending in (D,C) 
  Histories ending in (D,D) 



38 

Move Generation 
  At each iteration: 

»  Generate an acyclic MDP 
•  Each state s is a triple [iteration, our last move, their last move] 
•  Probabilities are given by the behavioral model 
•  Depth = 60 (arbitrary) 

»  Solve it using dynamic programming 
»  At the root node, choose the move (C or D) with higher expected utility 

1,C,C 1,C,D 1,D,D 

2,C,C 2,C,D 2,D,C 2,D,D 

Current 
iteration 

Next 
iteration 

Iteration 
after next 

… … … … 

C 

1,D,C 

D 

C 

D 
C 

D C 
D C 

D 
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http://www.prisoners-dilemma.com 

  Category 2: IPD with noise 
» 165 programs participated 

  DBS dominated the top 10 places 

  Two programs scored higher than DBS 
» Each of them used master-and-

slaves strategies 

20th-Anniversary IPD Competition 
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Master & Slaves Strategy 
  Each participant could submit up to 20 programs 
  Some submitted programs that could recognize each other 

»  by communicating pre-arranged sequences of Cs and Ds 
  The 20 programs worked as a team: 1 master, 19 slaves 

  When a slave plays with its master 
»  Slave cooperates, master defects 
»  The master gets 5 points, 

the slave gets nothing 

  When a slave plays with an agent not in its team 
»  The slave defects, to minimize the other 

agent’s payoff 

and they 
beat up 
everyone  
else 

My slaves give 
me 
all their 
money … 
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Comparison 
  Analysis 

»  Average score of each master-and-slaves team was lower than DBS’s 
»  If BWIN and IMM01 each had ≤ 10 slaves, DBS would have placed 1st  
»  Without any slaves, BWIN and IMM01 would have done badly 

  In contrast, DBS had no slaves 
»  It established cooperation with many other agents 
»  It did this despite the noise 

•  Its predictive model of the other agents’ behavior enabled it to filter 
out the noise 
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Summary 
  Reducing multi-agent planning problems to single-agent planning problems 

»  Model the other agents’ actions as nondeterministic outcomes of ours 
  Capability model 

»  Encode other agents’ possible actions as nondeterministic outcomes of 
ours 

»  BDDs, HTNs 
»  Example: Hunter-Prey 

  Predictive model 
»  Encode information about probabilities of other agents’ behaviors 

under various conditions 
»  Building and using a predictive model 
»  Example: IPD with Noise 

  Next, some examples of open problems and future trends 
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Domain-Independent Focusing? 
  In the Hunter-Prey domain, we wrote HTN methods to enable the planner 

to focus on one subproblem at a time 
»  These methods were domain-specific 

  A restricted version can be implemented without using HTNs 
»  Add new preconditions and effects 

to the planning operators 
»  Still domain-specific 

  Focusing is a general idea that is useful in many different domains 
»  poker 
»  driving a car 
»  Ph.D. research 
»  giving this speech 

  Can it be implemented in a domain-independent way? 
»  I suspect there are restricted versions for which the answer is yes 

R. Alford, et al. Maintaining focus: 
Overcoming attention deficit disorder 
in contingent planning. FLAIRS-2009. 
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Agent Modeling 
  DBS’s agent model was specific to the IPD 
  For more complex environments, it is much harder 

to build agent models and use them effectively 

  Several research efforts are  focused on 
specific domains 
»  e.g., games such as Poker 

  Can we develop more general approaches? 
»  Important for effective multi-agent planning 

Khuller, et al. Computing most probable 
worlds of action probabilistic logic 
programs: scalable estimation for 1030,000 
worlds. AMAI 51(2-4):295–331, 2007. 

Subrahmanian, et al. CARA: 
A cultural-reasoning 
architecture. IEEE Intelligent 
Systems, Mar./Apr. 2007. 

Billings et al. Game tree search with 
adaptation in stochastic imperfect 
information games. Computers and 
Games 1, 21–34, 2004. 

Schweizer et al. An exploitive Monte-
Carlo poker agent. KI-2009. 

Carmel & Markovich. Learning 
models of intelligent agents. 
AAAI-95, 1995. 
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Objectives Execution Observability Agent model         Planning technique 
goals offline full capabilities planning as model checking 
utilities offline full predictive planning on MDPs 
utilities off/online full predictive game-tree search 
utilities off/online partial predictive information-set search 

Planning and Game Theory 

  Planning in multi-agent environments overlaps with game theory 
  Good potential for combining planning and game theory 

»  The last part of my talk (the Noisy IPD) is an example 
»  Much more can be done 

A. Parker, et al. Overconfidence or 
paranoia? Search in imperfect-
information games. AAAI-2006. 
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Any questions? 

Thank You! 
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Any questions? 


