
1

Game Applications of HTN Planning
with State Variables

Dana Nau

Dept. of Computer Science, and
Institute for Systems Research

University of Maryland

Dana Nau
Invited talk,

Dana Nau
ICAPS Workshop on Planning in Games,

Dana Nau
2013

2

Introduction and Outline
  I’ve done lots of research in two areas

»  AI planning
»  games and game theory

  But mostly as separate topics
»  Many incompatibilities, difficult to combine

  But:
»  Workshop last year on AI and games
»  Most of the participants were doing research on video games
»  A lot of them were using planning algorithms

  I’ll talk about
»  Incompatibilities
»  Ways to fix some of them

3

Planning Versus Games

  Lots of incompatibilities
»  Some easy to fix, some more difficult

Typical AI Planning Typical Games
State Set of propositions Data structures
Actions Add/delete propositions Modify data structures
Agents One Many
World Static Dynamic
Time available Whatever the planner needs Small
Objective Find complete solution Find partial solution
Execution Starts after planning ends Simultaneous with planning

4

Using Planning in Games
  Approximate some part of the game as a planning problem

»  Develop a special-purpose planner for that problem
»  Use it as a subroutine

  I’ll discuss some examples that involve HTN planning
»  But first, a description of how HTN planning works

5

HTN Planning
  Motivation

»  For some planning problems, we may already have ideas for how to
look for solutions

  Example: travel to a destination that's far away:
»  Brute-force search:
•  Many ways to combine vehicles and routes

»  Experienced human: small number of “recipes”
•  e.g., flying:

1.  buy ticket from local airport to remote airport
2.  travel to local airport
3.  fly to remote airport
4.  travel to final destination

»  HTN planners use such recipes to generate the search space
  Ingredients

»  states, tasks, operators, methods, planning algorithm

6

States and Tasks
  State: description of the current situation

»  I’m at home, I have €20, there’s a park 8 km away

  Task: description of an activity to perform
»  Travel to the park

  Two kinds of tasks
»  Primitive task: a task that corresponds to a basic action
»  Compound task: a task that is composed of other simpler tasks

home"

park"

7

Operators
  Operators: parameterized descriptions of what the basic actions do

»  walk from location x to location y
•  Precond: agent is at x
•  Effects: agent is at y

»  call taxi to location x
•  Precond: (none)
•  Effects: taxi is at x

»  ride taxi from location x to location y
•  Precond: agent and taxi are at x
•  Effects: agent and taxi at y, agent owes 1.50 + ½ distance(x,y)

»  pay driver
•  Precond: agent owes amount of money r, agent has money m ≥ r
•  Effects: agent owes nothing, agent has money m – r

  Actions: operators with arguments

8

Methods
  Method: parameterized description of a possible way to perform a compound

task by performing a collection of subtasks
  There may be more than one method for the same task

»  travel by foot from x to y
•  Task: travel from x to y
•  Precond: agent is at x, distance to y is ≤ 4 km
•  Subtasks: walk from x to y

»  travel by taxi from x to y
•  Task: travel from x to y
•  Precond: agent is at x, agent has money ≥ 1.5 + ½ distance(x,y)
•  Subtasks: call taxi to x,

 ride taxi from x to y,
 pay driver

9

Travel by taxi

Initial
state

call taxi to home ride taxi to park

Precond: …
Effects: …

Precond: …
Effects: …

Precond: …
Effects: …

 I’m at home
 I have €20
 home to park is 8 km
 Taxi is at home

 I’m at home
 I have €20
 home to park is 8 km

 I’m at the park
 I have €20
 home to park is 8 km
 I owe €5.50
 Taxi is at the park

 I’m at the park
 I have €14.50
 home to park is 8 km
 I owe nothing
 Taxi is at the park

Final
state

 s1 s2 s3

 s0

Travel by foot
Precond:
ü I’m at home
× home to park ≤ 4 km

pay driver

Precond:
ü  I’m at home
ü  I have ≥ €5.50

Backtrack

Simple Travel-Planning Problem
  Left-to-right backtracking search (SHOP)

home"

park"

travel from home to park

10

SHOP and SHOP2
  SHOP and SHOP2:

»  http://www.cs.umd.edu/projects/shop
»  HTN planning systems
»  SHOP2 an award in the AIPS-2002 Planning Competition

  Freeware, open source
»  Downloaded more than 20,000 times
»  Used in many hundreds of projects worldwide

•  Government labs, industry, academia

11

  Ideal: game-tree search (all lines of play) to compute expected utilities
  Don’t know what cards other players have

»  Many moves they might be able to make
•  worst case about 6x1044 leaf nodes
•  average case about 1024 leaf nodes

  About 1½ minutes available

  Bridge Baron
»  1997 world champion of computer bridge

  Special-purpose HTN planner that generates game trees
»  Branches ó standard bridge card plays (finesse, ruff, cash out, …)
»  Much smaller game tree: can search it and compute expected utilities

  Why it worked:
»  Special-purpose planner to generate trees rather than linear plans
»  Lots of work to make the HTN methods as complete as possible

Bridge

Not enough time – need smaller tree

12

  Special-purpose HTN planner for planning at the squad level
»  Method and operator syntax similar to SHOP’s and SHOP2’s
»  Quickly generates a linear plan that would work if nothing interferes
»  Replan several times per second as the world changes

  Why it worked:
»  Very different objective from a bridge tournament
»  Don’t want to look for the best possible play
»  Need actions that appear believable and consistent to human users
»  Need them very quickly

KILLZONE 2

13

Planning Versus Games

  These incompatibilities are easy to fix
»  Instead of logical propositions, use state variables

Typical AI Planning Typical Games
State Set of propositions Data structures
Actions Add/delete propositions Modify data structures
Agents One Many
World Static Dynamic
Time available Whatever the planner needs Small
Objective Find complete solution Find partial solution
Execution Starts after planning ends Simultaneous with planning

14

c

a b

Propositions Versus State Variables

  Classical representation:
»  State: set of propositions
»  Actions add/delete them

  PDDL is based on this
  Reason is largely historical

»  AI planning evolved out
of AI theorem proving

{ontable(a), on(c,a),
 clear(c), ontable(b),
 clear(b), handempty}

{loc(a)=table, clear(a)=0, loc(c)=a,
 clear(c)=1, loc(b)=table,
 clear(b)=1, holding=nothing}

unstack(x,y)
Precond: loc(x) = y, y ≠ table,
 clear(x) = 1,
 holding = nothing
Effects: loc(x) = hand, clear(x) = 0,
 clear(y) = 1, holding = x

unstack(x,y)
Precond: on(x,y), clear(x),
 handempty
Effects: ¬on(x,y), ¬clear(x),
 clear(y), holding(x),
 ¬handempty

c
a b

unstack(c,a)

  State-variable representation:
»  State: variable bindings
»  Actions change the values

  Same expressive power
  More compatible with

conventional computer
programming

15

Pyhop
  A simple HTN planner written in Python

»  Works in both Python 2.7 and 3.2

  Planning algorithm is like the one in SHOP
  Main differences:

»  HTN operators and methods are ordinary Python functions
»  The current state is a Python object that contains variable bindings

•  Operators and methods refer to states explicitly
•  To say c is on a, write s.loc['c'] = 'a' where s is the current state

  Easy to implement and understand
»  Less than 150 lines of code

  Open-source software, Apache license
»  http://bitbucket.org/dananau/pyhop

s

c
a b

16

travel by foot from x to y
Task: travel from x to y
Precond: agent is at x, distance to y is ≤ 4 km
Subtasks: walk from x to y

def travel_by_foot(state,a,x,y):
 if state.dist[x][y] <= 4:
 return [('walk',a,x,y)]
 return False

travel by taxi from x to y
Task: travel from x to y
Precond: agent is at x, agent has money ≥ 1.5 + ½ distance(x,y)
Subtasks: call taxi to x, ride taxi from x to y, pay driver

def travel_by_taxi(state,a,x,y):
 if state.cash[a] >= 1.5 + 0.5 * state.dist[x][y]:
 return [('call_taxi',a,x),
 ('ride_taxi',a,x,y),
 ('pay_driver',a,x,y)]

 return False

declare_methods('travel',travel_by_foot,travel_by_taxi)

Travel-Planning Methods

home"

park"

17

walk from x to y
Precond: agent is at location x
Effects: agent is at location y

def walk(state,a,x,y):
 if state.loc[a] == x:
 state.loc[a] = y
 return state
 else: return False

call taxi to location x
Precond: (none)
Effects: taxi is at location x

def call_taxi(state,a,x):
 state.loc['taxi'] = x
 return state

Travel-Planning Operators (1)

home"

park"

18

ride taxi from x to y
Precond: agent and taxi are at x
Effects: agent and taxi are at y, agent owes 1.5 + ½ distance(x,y)

def ride_taxi(state,a,x,y):
 if state.loc['taxi']==x and state.loc[a]==x:
 state.loc['taxi'] = y
 state.loc[a] = y
 state.owe[a] = 1.5 + 0.5*state.dist[x][y]
 return state
 else: return False

pay driver
Precond: agent owes money, and has at least as much as what’s owed
Effects: agent owes nothing, agent’s money reduced by what was owed

def pay_driver(state,a):
 if state.cash[a] >= state.owe[a]:
 state.cash[a] = state.cash[a] – state.owe[a]
 state.owe[a] = 0
 return state
 else: return False

declare_operators(walk, call_taxi, ride_taxi, pay_driver)

Travel-Planning Operators (2)

home"

park"

19

Travel Planning Problem
Initial state: I’m at home, I have €20, there’s a park 8 km away

state1 = State('state1’)
state1.loc = {'me':'home’}
state1.cash = {'me':20}
state1.owe = {'me’:0}

state1.dist = {'home':{'park':8}, ’park':{’home':8}}

Task: travel to the park

Invoke the planner
pyhop(state1,[('travel','me','home','park')])

Solution plan: call taxi, ride taxi from home to park, pay driver

[('call_taxi', 'me', 'home'),
 ('ride_taxi', 'me', 'home', 'park'),
 ('pay_driver', 'me')]

home"

park"

20

Planning Versus Games

  Pyhop resolves these incompatibilities

  Are there general solutions for these?
»  Or do they need to be game-specific?

Typical AI Planning Typical Games
State Set of propositions Data structures
Actions Add/delete propositions Modify data structures
Agents One Many
World Static Dynamic
Time available Whatever the planner needs Small
Objective Find complete solution Find partial solution
Execution Starts after planning ends Simultaneous with planning

21

Summary
  State-variable representation makes it easier to integrate planning into

ordinary programming

  Pyhop is an HTN planner that does this
»  Written in Python
»  Simple algorithm, easy to understand
»  Open source (Apache license)
»  Downloadable at http://bitbucket.org/dananau/pyhop

  I hope some of you will find it useful
»  If you use it, please let me know
»  I hope some of you will post enhancements

  Resolves some of the incompatibilities between AI planning and games
»  But not all of them
»  How best to resolve the others?

