
1Nau: ICAPS hierarchical planning workshop, 2019

Last update: July 11, 2019

Hierarchical Refinement as a Generalization
of HTN Planning

Dana Nau
University of Maryland

work performed with
Ø Sunandita Patra University of Maryland
Ø Malik Ghallab LAAS/CNRS, University of Toulouse
Ø Paolo Traverso FBK ICT IRST, Trento, Italy
Ø James Mason University of Maryland

http://www.cs.umd.edu/~nau/papers/nau2019hierarchical.pdf

2Nau: ICAPS hierarchical planning workshop, 2019

Bremen Harbor

3Nau: ICAPS hierarchical planning workshop, 2019

Harbor Management Tasks
= Multiple levels of abstraction

Ø Physical/managerial
organization of harbor

= Upper levels:
Ø Abstract tasks, can be

planned in advance
= Lower levels:

Ø Multiple agents
Ø Partial observability
Ø Dynamic change

= Continual online planning
Ø Abstract and partial until

more detail needed

Planning . Acting

4Nau: ICAPS hierarchical planning workshop, 2019

8

Planning stage
Acting stage

Planning
= Prediction + search
= Search over predicted states, possible

organizations of tasks and actions
= Use descriptive models to predict

what

Acting and Planning

Acting
= Performing tasks and actions
= Use operational models that tell how

Ø Dynamic, unpredictable
environment

Ø Adapt to context, react to events

= Planning in service of acting
Ø Actor asks planner for advice

= Planner runs online
Ø e.g., receding horizon

5Nau: ICAPS hierarchical planning workshop, 2019

Opening a Door

= Details depends on what kind of door
Ø Might not be known until acting time

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open door

6Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged

7Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right

8Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right
Ø Open toward or away

9Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right
Ø Open toward or away
Ø Knob, lever,

10Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right
Ø Open toward or away
Ø Knob, lever,

push bar, push plate,

11Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right
Ø Open toward or away
Ø Knob, lever,

push bar, push plate,
pull handle, thumb latch,

12Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open doorWhat kind of door?

Ø Sliding or hinged
Ø Hinge on left or right
Ø Open toward or away
Ø Knob, lever,

push bar, push plate,
pull handle, thumb latch,
something else

13Nau: ICAPS hierarchical planning workshop, 2019

Refinement Acting

= Task:
Ø activity for the actor to perform

= For each task, one or more
refinement methods
Ø Operational models telling how

to perform the task

method-name(arg1, …, argk)
task: task-identifier
pre: test
body: computer program

that may include
tasks and commands

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

“primitive” functions that the actor can send to its execution platform

14Nau: ICAPS hierarchical planning workshop, 2019

Refinement Acting

= Task:
Ø activity for the actor to perform

= For each task, one or more
refinement methods
Ø Operational models telling how

to perform the task

method-name(arg1, …, argk)
task: task-identifier
pre: test
body: computer program

that may include
tasks and commands

= Differences from HTN methods
Ø Actor uses them reactively
Ø Body is a computer program

that invokes tasks, commands
Ø Commands interact with

external world
Ø Outcomes not known in

advance
Ø Current state obtained using

sensors, represented using state
variables

“primitive” functions that the actor can send to its execution platform

15Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open door Opening a Door

m-opendoor(r,d,l,h)
task: opendoor(r,d)
pre: loc(r) = l ∧ road(l,d)

∧ handle(d,h)
body:

while ¬reachable(r,h) do
move-close(r,h)

monitor-status(r,d)
if door-status(d) = closed then

unlatch(r,d)
throw-wide(r,d)
end-monitor-status(r,d)

m1-unlatch(r,d,l,o)
task: unlatch(r,d)
pre: loc(r,l)∧ toward-side(l,d)∧

side(d,left)∧ type(d,rotate)∧ handle(d,o)
body: grasp(r,o)

turn(r,o,alpha1)
pull(r,val1)
if door-status(d) = cracked then ungrasp(r,o)
else fail

= What kind:
Ø Hinged on left, opens

toward us, knob

m1-throw-wide(r,d,l,o)
task: throw-wide(r,d)
pre: loc(r,l)∧ toward-side(l,d)∧

side(d,left)∧ type(d,rotate)∧
handle(d,o)∧ door-status(d) = cracked

body: grasp(r,o)
pull(r,val1)
move-by(r,val2)

16Nau: ICAPS hierarchical planning workshop, 2019

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

RAE (Reactive Acting Engine)

= Uses refinement methods to accomplish tasks
Ø Based on OpenPRS robot control architecture

= I’ll give a summary
= For details:

Ø Ghallab, Nau, and Traverso,
Automated Planning and Acting,
Cambridge University Press, 2016

Ø Final manuscript and lecture slides
freely downloadable here

http://www.laas.fr/planning

17Nau: ICAPS hierarchical planning workshop, 2019

 is m’s current step
a command?

command
status?

return
success

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

command

send a to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

(τ,m,…) ← top(σ)

no

retry τ using an
untried candidate finished

RAE (Reactive Acting Engine)
Agenda: {stack σ1, …, stack σn}

Like program execution stacks

stack =

Progress(σ):

loop:
for every new external task or event τ

Candidates = {applicable method instances}
choose m ∈ Candidates
create refinement stack σ, initially just ⟨τ,m⟩
add σ to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished, remove it from Agenda

(sub-subtask, method, …)
(subtask, method, …)
(task, method, …)

18Nau: ICAPS hierarchical planning workshop, 2019

 is m’s current step
a command?

command
status?

return
success

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

command

send a to the
execution platform

assignment

update
state

retry τ using an
untried candidate

yes

(τ,m,…) ← top(σ)

no

retry τ using an
untried candidate finished

RAE (Reactive Acting Engine)
Agenda: {stack σ1, …, stack σn}

Like program execution stacks

stack =

Progress(σ):

loop:
for every new external task or event τ

Candidates = {applicable method instances}
choose m ∈ Candidates
create refinement stack σ, initially just ⟨τ,m⟩
add σ to Agenda

for each stack σ in Agenda
Progress(σ)
if σ is finished, remove it from Agenda

(sub-subtask, method, …)
(subtask, method, …)
(task, method, …)

= Get advice from a planner

19Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open door

How to Do the Planning?

m-opendoor(r,d,l,h)
task: opendoor(r,d)
pre: loc(r) = l ∧ road(l,d)

∧ handle(d,h)
body:

while ¬reachable(r,h) do
move-close(r,h)

monitor-status(r,d)
if door-status(d) = closed then

unlatch(r,d)
throw-wide(r,d)
end-monitor-status(r,d)

= In the book: SeRPE planner
Ø Extends the SHOP algorithm to reason

about refinement methods
Ø Executes code in the method’s body,

but
• Descriptive models of commands
• Classical actions, abstract state

Ø To backtrack from a method m:
• Revert to state when m was chosen

20Nau: ICAPS hierarchical planning workshop, 2019

Hinged door that opens to the left,
toward robot

ungrasp

grasp
knob

turn
knob

maintain
move
back

pull

monitor

identify
type
of

door
pull

monitor

move
close

to
knob

open door

……

get out close door

respond to user requests

… …
bring o7 to room2

go to
hallway

deliver
o7

…… … …

…

move to door

fetch
o7

navigate
to room2

navigate
to room1

open door

How to Do the Planning?

m-opendoor(r,d,l,h)
task: opendoor(r,d)
pre: loc(r) = l ∧ road(l,d)

∧ handle(d,h)
body:

while ¬reachable(r,h) do
move-close(r,h)

monitor-status(r,d)
if door-status(d) = closed then

unlatch(r,d)
throw-wide(r,d)
end-monitor-status(r,d)

= Classical actions don’t represent
Ø Nondeterministic outcomes,

partial observability, exogenous events,
durations, predicted future events,
overlapping actions and events, …

Ø Sometimes OK, but often not

= In the book: SeRPE planner
Ø Extends the SHOP algorithm to reason

about refinement methods
Ø Executes code in the method’s body,

but
• Descriptive models of commands
• Classical actions, abstract state

Ø To backtrack from a method m:
• Revert to state when m was chosen

21Nau: ICAPS hierarchical planning workshop, 2019

Planning
= Prediction + search
= Search over predicted states, possible

organizations of tasks and actions
= Use descriptive models to predict what

Acting and Planning

Acting
= Performing tasks and actions
= Use operational models that tell how

Ø Dynamic, unpredictable
environment

Ø Adapt to context, react to events

8

Planning stage
Acting stage

Consistency?

22Nau: ICAPS hierarchical planning workshop, 2019

Planning
= Prediction + search
= Search over predicted states, possible

organizations of tasks and actions
= Use descriptive models to predict what

Acting and Planning

Acting
= Performing tasks and actions
= Use operational models that tell how

Ø Dynamic, unpredictable
environment

Ø Adapt to context, react to events

8

Planning stage
Acting stage

Simulated execution of
actor’s operational models

23Nau: ICAPS hierarchical planning workshop, 2019

Why should we think this will work?

= Why does AI planning use descriptive models?
(1) AI planners search a huge search space, need fast predictions
(2) Effort required to create detailed operational models
• Especially if you aren’t a domain expert

–––
= Problems aren’t as bad as they used to be

(1) Like HTN methods, the operational models focus the search
Computers have gotten more powerful
• Compute detailed simulations more quickly
– e.g., fast physics-based simulations

(2) Real-world actors will already include control software
• May be able to use it as refinement methods

24Nau: ICAPS hierarchical planning workshop, 2019

either simulate or
use descriptive model

 is m’s current step
a command?

command
status?

return

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

commandassignment

update
state

return failure

yes

(τ,m,…) ← top(σ)

no

return failure
finished

RAEplan(task τ):
Candidates = {applicable method instances}
nondeterministically choose m ∈ Candidates
create refinement stack σ for τ and m
loop while Progress(σ) ≠ failure

if σ is completed then return m
return failure

RAEplan
= Simulate RAE on a single task

Progress(σ):

25Nau: ICAPS hierarchical planning workshop, 2019

either simulate or
use descriptive model

 is m’s current step
a command?

command
status?

return

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

commandassignment

update
state

return failure

yes

(τ,m,…) ← top(σ)

no

return failure
finished

RAEplan(task τ):
Candidates = {applicable method instances}
nondeterministically choose m ∈ Candidates
create refinement stack σ for τ and m
loop while Progress(σ) ≠ failure

if σ is completed then return m
return failure

= Simulate RAE on a single task

RAEplan

What
control
strategy?

How to handle
nondeterministic
outcomes?

Progress(σ):

26Nau: ICAPS hierarchical planning workshop, 2019

either simulate or
use descriptive model

 is m’s current step
a command?

command
status?

return

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

commandassignment

update
state

return failure

yes

(τ,m,…) ← top(σ)

no

return failure
finished

RAEplan(task τ):
Candidates = {applicable method instances}
nondeterministically choose m ∈ Candidates
create refinement stack σ for τ and m
loop while Progress(σ) ≠ failure

if σ is completed then return m
return failure

= Simulate RAE on a single task

RAEplan

= Backtrack over method’s body

= Was easy in SHOP
Ø backtrack over the task list

= In RAEplan, need to backtrack over
code

= A group of students worked on this for
several months, didn’t get it to work

Idea 1:
backtracking

Progress(σ):

27Nau: ICAPS hierarchical planning workshop, 2019

either simulate or
use descriptive model

 is m’s current step
a command?

command
status?

return

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

commandassignment

update
state

return failure

yes

(τ,m,…) ← top(σ)

no

return failure
finished

RAEplan(task τ):
Candidates = {applicable method instances}
nondeterministically choose m ∈ Candidates
create refinement stack σ for τ and m
loop while Progress(σ) ≠ failure

if σ is completed then return m
return failure

= Simulate RAE on a single task

RAEplan

= Too many parallel processes

Idea 2:
multithreading

Progress(σ):

28Nau: ICAPS hierarchical planning workshop, 2019

either simulate or
use descriptive model

 is m’s current step
a command?

command
status?

return

executing failed

 choose a candidate m′
push (a, m′,…) onto σ

no
more steps

in m?

pop(σ)

no
candidates

for a?

yes

yes

a ← next step of m

a’s type?

task

commandassignment

update
state

return failure

yes

(τ,m,…) ← top(σ)

no

return failure
finished

RAEplan(task τ):
Candidates = {applicable method instances}
nondeterministically choose m ∈ Candidates
create refinement stack σ for τ and m
loop while Progress(σ) ≠ failure

if σ is completed then return m
return failure

= Simulate RAE on a single task

Progress(σ):
RAEplan

= Multiple runs
Ø Random outcomes in each run

= Return the method m that gives the
highest expected utility

Idea 3:
Monte Carlo rollouts

Patra, Traverso, Ghallab, and
Nau. Acting and planning using
operational models. AAAI, 2019

http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf

29Nau: ICAPS hierarchical planning workshop, 2019

Summary of Experimental Results

= Four different domains, different combinations of characteristics
= Evaluation criteria:

Ø Efficiency, successes vs failures, how many retries
= Result: planning helps

Ø RAE operated better with RAEplan than without
Ø RAE operated better with more planning than with less planning

Patra, Traverso, Ghallab, and
Nau. Acting and planning using
operational models. AAAI, 2019

http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf

30Nau: ICAPS hierarchical planning workshop, 2019

Summary
= Continual online planning, in service of acting
= Descriptive vs. operational models
= Refinement methods

Ø Generalization of HTN methods
• State variables
• Body is a computer program that includes tasks, commands
• Commands interact with environment
• Outcomes not known in advance

Ø Used in two ways
• Reactively in RAE
• Predictively in RAEplan

= Experimental results with RAE, RAEplan
Ø More planning → better acting

31Nau: ICAPS hierarchical planning workshop, 2019

Limitations and Future Work

= How to get the operational models?
Ø Earlier, I said, “Real-world actors may already include operational models”
• OK if the actor is RAE, OpenPRS, …
• Otherwise, might not be in a form we can use

Ø Currently, only alternative is to write them ourselves
• Develop learning algorithms to do this?

= Experiments were done in “toy domains”
Ø Want to test the approach in real planning problems

= Ongoing project with US Naval Research Laboratory
Ø Use RAE, RAEplan for recovery from attacks on software-defined networks
Ø They’re writing the refinement methods
Ø We plan to modify RAE, RAEplan to meet their needs

32Nau: ICAPS hierarchical planning workshop, 2019

Links

= Ghallab, Nau, and Traverso,
Automated Planning and Acting,
Cambridge University Press, 2016
Ø Final manuscript, lecture slides

= Patra, Traverso, Ghallab, and Nau.
Acting and planning using
operational models. AAAI, 2019

= RAE and RAEplan source code
Ø 3-clause BSD license
Ø Caveat: software still under

development

Automated Planning
and Acting

Malik Ghallab, Dana Nau
and Paolo Traverso

http://www.laas.fr/planning
http://www.cs.umd.edu/~nau/papers/patra2019acting.pdf
https://bitbucket.org/sunandita/raeplan/src/master/

