Last update: October 16, 2020

Integrated Planning and Acting
Using Operational Models

Dana S. Nau and Sunandita Patra

University of Maryland

Nau and Patra — ICAPS 2020 Summer School Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

http://creativecommons.org/licenses/by-nc-sa/4.0/

c
o
i
(C
>
=
o
=

Nau and Patra — ICAPS 2020 Summer School

e Multiple levels of abstraction

> Physical/managerial
organization of harbor

e Higher levels:
» Plan abstract tasks
e Lower levels:

» Multiple agents,
partial observability
dynamic change

e Continual online planning

» Plans are abstract and
partial until more detail
needed

Nau and Patra — ICAPS 2020 Summer School

Harbor Management

Tasks:

manage incoming shipment

registration
manager

«—| storage area A manager

storage A
) storage area B e
assignment (<=
manager
manager
= storage area A
C manager

booking ﬁ\release

manager

navigation

/2

/2\

manager

£\

Planning

Acting

Hypothetical Worker Robot

e Multiple levels of abstraction

e At higher levels:
» Plan abstract tasks
e At lower levels:

» Nondeterminism,
partial observability
dynamic change

e Continual online planning

» Plans are abstract and
partial until more detail
needed

Nau and Patra — ICAPS 2020 Summer School

Tasks:

identify

type
of
door

respond to user requests

Planning
v
bring 07 to room?2
i
. 4 -
|
go to || navigate | | fetch | | navigate | [deliver !
hallway| [to room1 o7/ | [to room2 o7/ :
I oo e v
| coe
|
= _l ___________________________ \I
| |move to door open door | | get out| | close door| |
WS AT
move | |UNgrasp
IS}(S\S/: grasp| [turn maintain| | back
o knob | |knob pull pull Acting
knob monitor| |{monitor

Planning and Acting

Planning
e Prediction + search

» Search over predicted states, possible
organizations of tasks and actions

e Uses descriptive models (e.g., PDDL)
» predict what the actions will do

» don’t include instructions for performing it

Acting

® Performing actions

» Dynamic, unpredictable, partially observable environment

> Adapt to context, react to events
e Uses operational models

> instructions telling ~ow to perform the actions

Nau and Patra — ICAPS 2020 Summer School

Actor

Deliberation components

Planning

Queries
/ Plans

Acting

Objectives

“—1 Other

<«<——> gctors
Messages

Commcmdsl TPercepts

Execution platform

1 A

Actuationsl ‘[Signals

External World

Planning
Acting

Nau and Patra — ICAPS 2020 Summer School

Opening a Door

Tasks:

identify

type
of
door

respond to user requests

v

bring 07 to room?2

. 4
go to || navigate | | fetch | | navigate | [deliver
hallway| |to room1 o7 | [toroom2 o7
I oo e Y
| coe
|
P
| |move to door open door | | get out| | close door
WS AT
move | |UNgrasp
1(13((;\8/: grasp| [turn maintain| | back
to knob | |knob pull pull
knob monitor| |{monitor

Planning

Acting

Nau and Patra — ICAPS 2020 Summer School

Opening a Door

e Different methods, depending on
what kind of door

> Sliding or hinged?

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move

pull

back

pull

ungrasp

monitor

monitor

Opening a Door

e Different methods, depending on
what kind of door
> Sliding or hinged?
> Hinge on left or right?

Nau and Patra — ICAPS 2020 Summer School

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move

pull

back

pull

ungrasp

monitor

monitor

Opening a Door
e Different methods, depending on
what kind of door
> Sliding or hinged?
> Hinge on left or right?

> Open toward or away?

Nau and Patra — ICAPS 2020 Summer School

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move
back

pull

pull

ungrasp

monitor

monitor

Opening a Door

e Different methods, depending on
what kind of door

> Sliding or hinged?
> Hinge on left or right?
> Open toward or away?

» Knob, lever, push bar, ...

Nau and Patra — ICAPS 2020 Summer School

identify

type
of

door

move
close

to
knob

grasp
knob

open door

turn
knob

maintain

move

ungrasp

pull

back

pull

monitor

monitor

10

Opening a Door

e Different methods, depending on
what kind of door

> Sliding or hinged?
> Hinge on left or right?
> Open toward or away?

» Knob, lever, push bar,
pull handle, push plate, ...

Nau and Patra — ICAPS 2020 Summer School

identify

type
of
door

move
close
to

grasp
knob

knob

open door

move | |Ungrasp
turn maintain| | back
knob/| |pull pull
monitor| |monitor

11

Opening a Door

e Different methods, depending on
what kind of door

> Sliding or hinged?
> Hinge on left or right?
> Open toward or away?

» Knob, lever, push bar,
pull handle, push plate,
something else?

Nau and Patra — ICAPS 2020 Summer School

identify

type
of
door

move
close

to
knob

grasp

open door

knob

move | |Ungrasp
turn maintain| | back
knob/| |pull pull
monitor| |monitor

12

RAE and UPOM

e Python implementation:
» https://github.com/sunandita/ICAPS Summer School RAE 2020
» Full code: https://bitbucket.org/sunandita/rae/

e Related publications

Actor » Patra, Mason, Kumar, Ghallab, Traverso, and Nau (2020).
Deliberation components| | Integra.ting Acting, Planning, and Learning in Hierarchical
Objectives Operational Models.

_ Planning T Other ICAPS-2020. Best student paper honorable mention award.
Querl%lans <«——> gctors https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597
Acting Messages

» Patra, Mason, Ghallab, Dana, and Traverso (2020).
Commandsl Tpemepzs Deliberative Acting, Online Planning and Learning with
Hierarchical Operational Models.

Execution platform Subm.itted for journal publication.
Preprint at https://arxiv.org/abs/2010.01909

Actuationsl ‘[Signals » Ghallab, Nau, and Traverso (2016).
Automated Planning and Acting.
External World Cambridge University Press. Authors’ final manuscript at

http://projects.laas.fr/planning/

Nau and Patra — ICAPS 2020 Summer School 13

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020
https://bitbucket.org/sunandita/rae/
https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597
https://arxiv.org/abs/2010.01909
http://projects.laas.fr/planning/

Outline

1. Motivation

2. Representation — state variables, commands, tasks, refinement methods
3. Acting — Rae (Refinement Acting Engine)

4. Planning — UPOM (UCT-like Planner for Operational Models)

S. Acting with Planning — Rae + UPOM

6. Using the implementation — Rae code, UPOM code, examples

Nau and Patra — ICAPS 2020 Summer School

14

Representation

loc3 / %1

cl r2 |

loc / rl —— O
locl / 03 @

e Objects

> Robots = {rl,r2}

> Containers = {c1, c2}

> Locations = {locl, loc2, loc3, loc4}

e Rigid relations (properties that won’t change)

» adjacent(locO,locl), adjacent(loc1,locO),
adjacent(locl,loc2), adjacent(loc2,locl),
adjacent(loc2,loc3), adjacent(loc3,loc2),
adjacent(loc3,loc4), adjacent(loc4,loc3)

Nau and Patra — ICAPS 2020 Summer School

e State variables (fluents)

v

v

v

e where r € Robots, ¢ € Containers, [€ Locations
loc(r) € Locations

cargo(r) € Containers U {empty}

pos(c) € Locations U Robots U {unknown}

view(/) € {T, F}

e Whether a robot has looked at location /

e If view(/)=T then pos(c) =1 for every container c at /

e Commands to the execution platform:

>

>

>

take(r,0,0): r takes object o at location /
put(7,0,0): r puts o at location /
perceive(r,/): robot r perceives what objects are at /

move-to(r,/): robot » moves to location /

15

Tasks and Methods

(2],
e Task: an activity for the actor to perform M

> taskname(arg,, ..., arg;) loc3 / %l
r2 |

cl
loc / rli— &
locl /O

e For each task, one or more refinement methods

> Operational models telling how to perform

the task

method-name(arg,, ..., argy) m-fetch1(7,c) m-fetch2(7c)
task: task-identifier task: fetch(r,c) task: fetch(zc)
pre: test pre: pos(c) = unknown pre: pos(c) # unknown
body: body: body:

a program if A/ (view(/) = F) then if loc(r) = pos(c) then
move-to(7,/) take(#c,pos(c))
perceive(r,/[) else do
if pos(c) =/ then move-to(7;,pos(c))

command > take(r,c,/) take(7,c,pos(c))

else fetch(r,c¢) «— task
else fail

Nau and Patra — ICAPS 2020 Summer School

Outline

1. Motivation

2. Representation — state variables, commands, tasks, refinement methods
3. Acting — Rae (Refinement Acting Engine)

4. Planning — UPOM (UCT-like Planner for Operational Models)

S. Acting with Planning — Rae + UPOM

6. Using the implementation — Rae code, UPOM code, examples

Nau and Patra — ICAPS 2020 Summer School

17

Rae (Refinement Acting Engine)

e Performs multiple tasks in parallel

» Purely reactive, no lookahead

e For each task or event 7, a refinement stack

» execution stack

> corresponds to current path
in Rae’s search tree for 1

e Agenda = {all current refinement stacks}

psmm—

Nau and Patra — ICAPS 2020 Summer School

T3

—

commands

\

y

ACting — tasks

events

Execution Platform

A

s~
Environment

procedure Rae:
loop:

for every new external task or event T do
choose a method instance m for t
create a refinement stack for t, m
add the stack to Agenda

for each stack o in Agenda

Progress(o)

if o 1s finished then remove it

18

Representation

loc3 / %1

cl r2 |

loc / rl —— O
locl / 03 @

e Objects

> Robots = {rl,r2}

> Containers = {c1, c2}

> Locations = {locl, loc2, loc3, loc4}

e Rigid relations (properties that won’t change)

» adjacent(locO,locl), adjacent(loc1,locO),
adjacent(locl,loc2), adjacent(loc2,locl),
adjacent(loc2,loc3), adjacent(loc3,loc2),
adjacent(loc3,loc4), adjacent(loc4,loc3)

Nau and Patra — ICAPS 2020 Summer School

e State variables (fluents)

v

v

v

e where r € Robots, ¢ € Containers, [€ Locations
loc(r) € Locations

cargo(r) € Containers U {nil}

pos(c) € Locations U Robots U {unknown}

view(/) € {T, F}

e Whether a robot has looked at location /

e If view(/)=T then pos(c) =1 for every container c at /

e Commands to the execution platform:

>

>

>

take(r,0,0): r takes object o at location /
put(7,0,0): r puts o at location /
perceive(r,/): robot r perceives what objects are at /

move-to(r,/): robot » moves to location /

19

m-fetch1(r,c) Example
task: fetch(7,c) Search tree

pre: pos(c) = unknown
body:

if 3/ (view(/) = F) then

move-to(r,/)
erceive(r,
?f pos(c) (: lDthen procedure Rae:
take(r,c,0) loop:
else fetch(r,c) for|every new external task or event t
lse fail choose a method instance m for t
create a refinement stack for t, m
m-fetch2(50) . Con.tainer locations unknown add the stack to Agenda
task: fetch(zc) * Partially observable , for each stack o in Agenda
pre: pos(c) # unknown * Robot only sees current location Progress(o)
bOd?ti loc(r) = pos(c) then if o is finished then remove it
take(7,c,pos(c)) loc3 / %
else do v
move-to(r;pos(c)) loc cl = r2 &0
take(7,c,pos(c)) locl / O I((); 0%

Nau and Patra — ICAPS 2020 Summer School

do

20

m-fetch1(r,c) © =70, ¢ =C2 Exam ple
Search tree

task: fetch(7,c) <
pre: pos(c) = unknown CanW >
body: = {m-fetch(r1,c2),
if 3/ (view(/) = F) then m-fetch(r2,c2)}
move-to(r,/)
erceive(r,
?f 005(¢) (: lDthen procedure Rae:
take(r,c,[) loop:
else fetch(r,c) for every new external task or event t do
else fail choose a method instance m for t

create a refinement stack for t, m
* Container locations unknown add the stack to Agenda
* Partially observable
* Robot only sees current location

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown

body: if o is finished then remove it
if loc(7) = pos(c) then M

take(#,c,pos(c)) loc3 /
else do 2|
;

move-to(r;pos(c)) loc cl 1=
take(7,c,pos(c)) locl / o

for each stack o in Agenda
Progress(o)

Nau and Patra — ICAPS 2020 Summer School 21

m-fetchl(r,c) 7= "rl, c=c2 Example

task: fetch(7,c)
pre: pos(c) = unknown Candidates
body: = {m-fetch(r1,c2),

if 31 (view(/) = F) then m-fetch(r2,c2)} ro=rl
move-to(,/) \(m fetch1 r1,02)> m

perceive(r,/)

Search tree

if pos(c) = I then procedure Rae:
take(r,c,[) loop:
else fetch(r,c) for every new external task or event t do
else fail choose a method instance m for t

create a refinement stack for t, m
* Container locations unknown add the stack to Agenda
* Partially observable

* Robot only sees current location

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown

body: if o is finished then remove it
if loc(7) = pos(c) then M

take(#,c,pos(c)) loc3 /
else do 2|
;

move-to(r;pos(c)) loc cl 1=
take(7,c,pos(c)) locl / o

for each stack o in Agenda
Progress(o)

Nau and Patra — ICAPS 2020 Summer School 22

m-fetchl(r,c) 7= "rl, c=c2 Example

task: fetch(r,c) Search tree
pre: pos(c) = unknown Candidates

body: = {m-fetch(r1,c2), N
if 3/ (view(/) = F) then o=rl =g
m

m-fetch(r2,c2)} o
move-to(r,/) Cm fetch1(r1 ,02)>

perceive(r,/)

if pos(c) = [then procedure Rae:
take(r,c,0) loop:
else search(r,c) for every new external task or event Tt do
else fail

choose a method instance m for t

create a refinement stack for t, m

m-fetch2(rc) e Container locations unknown add the stack to Agenda

task: fetch(zc)) Partlallilybobserlvable | , for each stack o in Agenda

pre: pos(c) # unknown obot only sees current location Progress(o)

body: if o 1s finished then remove it
if loc(7) = pos(c) then M

take(#,c,pos(c)) loc3 /
else do 2|
;

move-to(r;pos(c)) loc cl 1=
take(7,c,pos(c)) locl / O Io~ o)

Nau and Patra — ICAPS 2020 Summer School 23

m-fetchl(r,c) 7= "rl, c=c2 Example

task: fetch(7,c)

pre: pos(c) =unknown Candidates
body: = {m-fetch(r1,c2), -
if A/ (view([) = F) then m-fetch(r2,c2)} o= T
move-to(,/) \(m fetch1(r1,c2) m

perceive(r,/)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

* Container locations unknown
* Partially observable
* Robot only sees current location

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown

Search tree

Progress(o):

yes

m’s current step

no a command?

yes
runnming_~command '
status?
return retry T using an
suc|ceeded ry g
success untried candidate

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command
update send 7' to the
state execution platform

body: —~
?f loc(r) = pos(c) then
take(7,c,pos(c)) loc3 /
else do % v
move-to(r;pos(c)) loc cl = r2 &0
take(7,c,pos(c)) locl / O I((); 0%

Nau and Patra — ICAPS 2020 Summer School

yes

push (7', m',...) onto ¢ | | untried candidate

choose a candidate m'| | retry 7 using an

24

m-fetch1(r,c) 7= rl, c=c2
task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl
if 3/ (view(/) = F) then
move-to(r,/)
perceive(r,/)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer Schoo

Example

Search tree

(Cm-fetch1(r1,c2))

%de/exeoution
.

move-to(ri,loc1) o

* Container locations unknown
* Partially observable
* Robot only sees current location

a7

loc3 /

cl jr2'

loc rl | J/—=, @
locl O IO 0O

Progress(o):

yes

no

yes

Success

more steps
in m?
yes

m’s current step
a command?

running_~command
status?
return retry 7 using an

suclceeded

untried candidate

pop(o)

7' < next step of m

assignment

update
state

yes

command

send 7’ to the
execution platform

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

25

m-fetch1(r,c) 7= rl, c=c2
task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl
if 3/ (view(/) = F) then
move-to(r,/)
perceive(r,/)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer Schoo

Example

Search tree

(Cm-fetch1(r1,c2))

%de/exeoution
.

move-to(ri,loc1) o

* Container locations unknown
* Partially observable
* Robot only sees current location

a7

loc3 /

cl jr2'

loc rl | J/—=, @
locl O IO 0O

Progress(o):

yes

no

yes

Success

more steps
in m?
yes

m’s current step
a command?

running_~command
status?
return retry 7 using an

suclceeded

untried candidate

pop(o)

7' < next step of m

assignment

update
state

yes

command

send 7’ to the
execution platform

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

26

m-fetch1(r,c) 7= rl, c=c2
task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl
if 3/ (view(/) = F) then
move-to(r,/)
perceive(r,/)
if pos(c) = [then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))

Example

Search tree

(Cm-fetch1(r1,c2))

— O
' code/execution
4>

e /

move-to(r1,loc1) ‘ee

procedure Rae:
loop:

for every new external task or event T do
choose a method instance m for t
create a refinement stack for t, m
add the stack to Agenda

for each stack o in Agenda

Progress(o)

Progress(o):

yes

m’s current step

no a command?

yes
runnming_~command
status?
return retry T using an
suclceeded Ty g

success untried candidate

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command
update send 7' to the
state execution platform

yes

take(7,c,pos(c))
if o 1s finished then remove it

Nau and Patra — ICAPS 2020 Summer School

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

27

m-fetch1(r,c) ¥ =rl, c=c2

task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl

if 3/ (view(/) = F) then
move-to(r,[) <« running ...
perceive(r,[)
if pos(c) =/ then
take(r,c,/)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))

Example

Search tree

(Cm-fetch1(r1,c2))

%de/exeoution
.

move-to(ri,loc1)

loc

take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer School

Progress(o):

yes

m’s current step

no a command?

yes
runming_~command
status?
return retry T using an
suclceeded Ty g

success untried candidate

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command
update send 7' to the
state execution platform

yes

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

28

m-fetch1(r,c) ¥ =rl, c=c2

task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl

if 3/ (view(/) = F) then
move-to(r,[) <« succeeded
perceive(r,[)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))

Example

Search tree

(Cm-fetch1(r1,c2))

%de/exeoution

e

move-to(ri,loc1)

/

take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer School

Progress(o):

yes

m’s current step

no a command?

yes
runnming_~command
status?
return retry T using an
suclceeded Ty g

success untried candidate

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command
update send 7' to the
state execution platform

yes

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

29

m-fetch1(r,c) 7= rl, c=c2
task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl
if 3/ (view(/) = F) then
move-to(r,/)
perceive(r,/)
if pos(c) = [then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer School

Example

Search tree

Cm-etchi(r1,c2) D "

code ekecution

move-to(ri,loc1)

perceive(r1,locl)| ==

Progress(o):

yes

m’s current step

no a command?

yes
runnming_~command
status?
return retry T using an
suclceeded Ty g

success untried candidate

more steps
in m?
yes

7' < next step of m

pop(o)

assignment command
update send 7' to the
state execution platform

yes

push (7', m',...) onto ¢ | | untried candidate

choose a candidate m'| | retry 7 using an

30

m-fetch1(r,c) 7= rl, c=c2
task: fetch(7,c)
pre: pos(c) = unknown
body: [=locl
if 3/ (view(/) = F) then
move-to(r,/)
perceive(r,]) << Jailed
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer School

Example

Search tree

Cm-fetch1(r1,c2) D

code ekecution

move-to(ri,loc1)

pereeivefrtoel)| -

sensor failure

Progress(o):

yes

m’s current step

no a command?

yes
runnming_~command
status?
return retry T using an
suclceeded Ty g

success untried candidate

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command
update send 7' to the
state execution platform

yes

push (7', m',...) onto o

choose a candidate m'| | retry 7 using an

untried candidate

31

m-fetch1(r,c) = r2,c=c2

task: fetch(7,c)
pre: pos(c) = unknown
body:

if 3/ (view(/) = F) then

Example

Candidates

= {mfetehtrled),

m-fetch(r2,c2)}

<
N

move-to(r,/)
perceive(r,/)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(7) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer Schoo

Aje execution

Search tree

erry
ro = r2

\Cm_feiehq_éﬁ_’@g\\

—=>{ m-fetch 1(r2,c2D

e

move-to(ri,loc1)

pereetveirtlee)

sensor failure

assignment

Progress(o):

yes

m’s current step
a command?

no

yes

running_~command
status?
return retry 7 using an

suclceeded ; -
untried candidate

Success

more steps
in m?
yes

pop(o)

7' < next step of m

command

update

send 7’ to the
execution platform

state

yes

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

32

m-fetch1(r,c) = r2,c=c2

task: fetch(7,c)
pre: pos(c) = unknown
body:

if 3/ (view(/) = F) then

Example

Candidates

= {mfetehtrled),

m-fetch(r2,c2)}

Search tree

elry
ro = r2

<
N

move-to(r,/)
perceive(r,/)
if pos(c) =/ then
take(r,c,0)
else fetch(r,c)
else fail

m-fetch2(7c)
task: fetch(zc)
pre: pos(c) # unknown
body:
if loc(r) = pos(c) then
take(7,c,pos(c))
else do
move-to(#pos(c))
take(7,c,pos(c))

Nau and Patra — ICAPS 2020 Summer School

\Cm_feiehq_éﬁ_’@g\\

Aje execution

—=>{ m-fetch 1(r2,c2D

e

move-to(ri,loc1)

pereetveirtlee)

sensor failure

Is this the same as a
backtracking search?

Progress(o):

yes

m’s current step
a command?

no

yes

running_~command
status?
return retry 7 using an

suclceeded ; -
untried candidate

Success

more steps
in m?
yes

pop(o)

7' < next step of m

assignment command

send 7’ to the
execution platform

update
state

yes

choose a candidate m’
push (7', m',...) onto o

retry T using an
untried candidate

33

Extensions to Rae

e Methods for events
> e.g., an emergency
e Methods for goals
» special kind of task: achieve(goal)

> sets up a monitor to see if the goal has been
achieved

e (Concurrent subtasks

Nau and Patra — ICAPS 2020 Summer School

34

Outline

e Motivation

e Representation — state variables, commands, tasks, refinement methods
e Acting — Rae (Refinement Acting Engine)

e Planning — UPOM (UCT-like Planner for Operational Models)

e Acting with Planning — Rae + UPOM

e Using the implementation — Rae code, UPOM code, examples

Nau and Patra — ICAPS 2020 Summer School

35

Why Plan?

procedure Rae:
loop:
for every new external task or event T do

choose a method instance m for t

create a refinement stack for t, m
add the stack to Agenda
for each stack o in Agenda
Progress(o)
if o 1s finished then remove it

Progress(o):

running

return
success

e Bad choice may lead to
> more costly solution
» failure, need to recover

» unrecoverable failure

e Idea: do simulations to predict outcomes

status?

retry T using an

suclceeded , ,
untried candidate

more steps
in m?

yes

pop(o)

7' < next step of m

assignment

update
state

Nau and Patra — ICAPS 2020 Summer School

command

send 7’ to the
execution platform

candidates
for 7’7

choose a candidate m'
push (', m’,...) onto o

retry 7 using an
untried candidate

36

Simulate-Progress(o):

Planner

e Basic ideas
> Repeated Monte Carlo rollouts on a single task ¢
> Choose method instances using a UCT-like formula

» Simulated execution of commands

running

UPOM(7): sruect»lclgs succeeded rett ryg usnélgdartl
. untricd candidate

choose a method instance m for t fore steps

create refinement stack o for r and m in m? n

loop while Simulate-Progress(o) # failure ves pop(0)

if o 1s completed then return (m, utility of outcome) ,

return failure 7' < next step of m
UPOM-Lookahead (task 7): assignment command

Call UPOM(1) multiple times : :

Return the m € Candidates that has the highest average utility update start simulation

state of

Nau and Patra — ICAPS 2020 Summer School

candidates
for 7’7

choose a candidate m'
push (', m’,...) onto o

retry 7 using an
untried candidate

37

Simulating a command

e Simplest case:
> probabilistic action template

a(xy, ..., x;)
pre: ..

(py) effy: ey, ey, ...

(pm) effm: €nls €m2s - --

> Choose randomly, each eff; has probability p,

» Use eff; to update the current state

e More general:

> Arbitrary computation, e.g.,
physics-based simulation

> Run the code to get
prediction of effects

Nau and Patra — ICAPS 2020 Summer School

Simulate-Progress(o):

running

return
success

retry T using an
untried candidate

suclceeded

more steps
in m?

yes

pop(o)

7' < next step of m

assignment

update
state

command

start simulation
of ¢/

candidates
for 7’7

choose a candidate m’ retry T using an
push (7', m',...) onto o untried candidate

38

e Rollouts on MDPs

» At each state, choose action at
random, get random outcome

e UCT algorithm

» Choice of action balances
exploration vs exploitation

> Converges to
optimal choice
at root of tree

: ossible :
action P action

(ste;

action action

choices
@ possible
outcomes

Monte Carlo Rollouts

pre: ...
body:
action a,

e UPOM search tree more complicated
> tasks, methods, commands, code execution

e If no exogenous events, can map it into UCT
on a complicated MDP

> proof of convergence to optimal

disjunction among

177) alternative choices
<
eqiience0f code execCumtion

simulate| @,

/

sample from
possible results

simulate| @,

/TN
sample
/[
n

disjunction disjunction

m m'
4\ 7\

m,
7\

Nau and Patra — ICAPS 2020 Summer School]

n+1

method instance m
task: 7

task 7;
action a,
task 7,

4

m
7 \\

m',
7\

39

Outline

e Motivation

e Representation — state variables, commands, tasks, refinement methods
e Acting — Rae (Refinement Acting Engine)

e Planning — UPOM (UCT-like Planner for Operational Models)

e Acting with Planning — Rae + UPOM

e Using the implementation — Rae code, UPOM code, examples

Nau and Patra — ICAPS 2020 Summer School

40

Progress(o):

RAE + UPOM

procedure Rae:
loop:

for every new external task or event T do

running

choose a method instance m for t status?

retry T using an
untried candidate

create a refinement stack for t, m return
add the stack to Agenda success
for each stack ¢ in Agenda

suclceeded

more steps
in m?

Progress(o) yes

pop(o)

if o 1s finished then remove it

7' < next step of m

assignment command

e Whenever RAE needs to choose a method instance,

use UPOM-Lookahead to make the choice uftg?;e

send 7’ to the
execution platform

candidates
for 7’7

choose a candidate m'
push (', m’,...) onto o

retry 7 using an
untried candidate

Nau and Patra — ICAPS 2020 Summer School 41

Summary of Experimental Results

Dynamic Dead Sensing Robot Concurrent
Domain | |[T] |M| |[M| |A| events ends collaboration tasks
S&R 8 16 16 14 v v v v v
Explore 9 17 17 14 v v v v v
Fetch 7 10 10 9 v v v - v
Nav 6 9 15 10 v — v v v
Deliver 6 6 50 9 v v - v v

e Five different domains, different combinations of characteristics

e Evaluation criteria:

» Efficiency, successes vs failures, how many retries

e Result: planning helps
> Rae operates better with UPOM than without

> Rae operates better with more planning than with less planning

Nau and Patra — ICAPS 2020 Summer School

42

Other Details

e Receding horizon
> Cut off search before accomplishing t
e ¢.g., depth d, . or when we run out of time

» At leaf nodes, use heuristic function

e Learning a heuristic function

> Supervised learning

Nau and Patra — ICAPS 2020 Summer School

Planning
Acting

43

Outline

1. Motivation

2. Representation — state variables, commands, tasks, refinement methods
3. Acting — Rae (Refinement Acting Engine)

4. Planning — UPOM (UCT-like Planner for Operational Models)

S. Acting with Planning — Rae + UPOM

6. Using the implementation — Rae code, UPOM code, examples

Nau and Patra — ICAPS 2020 Summer School

44

Code Demo

e Github repository: https://github.com/sunandita/ICAPS Summer_School RAE 2020

e System requirements:

» Unix based operating system preferred

> Have Docker or the Python Conda environment preinstalled
e Things to play with:

> Domain file: ICAPS_Summer_School RAE_2020/domains/domain_x.py

> Problem file: ICAPS_Summer_School RAE_2020 /problems/x/problemld_x.py

» x € [chargeableRobot, explorableEnv, searchAndRescue, springDoor, orderFulfillment]
e How to run?

> c¢d ICAPS_Summer_School RAE_2020/RAE_and UPOM

> python3 testRAEandUPOM.py —h

Nau and Patra — ICAPS 2020 Summer School

45

https://github.com/sunandita/ICAPS_Summer_School_RAE_2020

