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Objective
● Learn and utilize hierarchies of goals 

and skills 
● Use for integrated acting and planning
● Scale to mixed teams of humans, robots, 

& software
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Approach

• Generalization of goal networks to 
temporal planning
• Work in progress
• Today’s presentation

• Link goal networks to abstracted RL skills 
• Work in progress
• I’m not prepared to talk about it

• Algorithms to automatically learn 
temporal-goal-network hierarchies
• Not there yet
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Background HTN Planning
● For some planning problems, we may already have ideas for how to look 

for solutions
● Example: travel to a destination that’s far away:

▸ Brute-force search:
• many combinations of vehicles and routes

▸ Experienced human: small number of “recipes” that decompose tasks 
into smaller subtasks

e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

● How can a planner make use of such information?
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* See http://www.cs.umd.edu/projects/shop

HTN Planning
● Recursively use methods to decompose tasks into subtasks
● SHOP, SHOP2, Pyhop* do HTN planning left-to-right

▸ decompose tasks in the same order that they’ll be accomplished
▸ always know current state
▸ increases the scope of applicability

• state can be arbitrary data structure
• preconditions and effects can be computations

action: call-taxi(UMD) action: ride-taxi(UMD,DCA) action: walk(taxi,building)

action: buy-ticket(DCA,LAX) task: fly(DCA,LAX) task: travel(LAX,UCLA)

travel-by-flying(x,y)
task: travel(x,y)
pre: at(x),

long-distance(x,y), 
airport-near(x,u),
airport-near(y,v),

subtasks:
buy-ticket(u,v),
travel(x,u),
fly(u,v),
travel(v,y)

method:

Background

method: travel-by-flying(UMD,UCLA

task: travel(UMD,UCLA)

method: travel-by-taxi(UMD,DCA

task: travel(UMD,DCA)

http://www.cs.umd.edu/projects/shop
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* Shivashankar, Alford, Kuter, and Nau. The GoDeL planning system: A more perfect union
of domain-independent and hierarchical planning. In IJCAI, pp. 2380–2386, 2013

travel-by-flying(x,y)
pre: at(x),

long-distance(x,y), 
airport-near(x,u),
airport-near(y,v),

subgoals:
have-ticket(u,v),
at(u),
at(v),
at(y)

HGN Planning
● Recursively use methods to decompose goals into subgoals
● GDP, GoDel* decompose goals left-to-right

▸ Like SHOP, SHOP2, Pyhop, always know current state
▸ Also: can reason about goals

• e.g., Godel’s interaction 
with Fast Downward

method:

Background

action: call-taxi(UMD) action: walk(taxi,building)

method: travel-by-flying(UMD,UCLA

action: have-ticket(DCA,LAX) goal: at(LAX) goal: at(UCLA)

goal: at(UCLA)

action: ride-taxi(UMD,DCA)

method: travel-by-taxi(UMD,DCA

goal: at(DCA)

https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf
https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf
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* Chapter 4 of Ghallab, Nau, and Traverso, Automated 
Planning and Acting, Cambridge University Press, 2016. 
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Planning and Acting*
● Planning: prediction + search

▸ Search over predicted states, ways to organize tasks and actions
▸ Has traditionally used descriptive models (e.g., PDDL) 

• predict what the actions will do
● Acting: performing the actions 

▸ Dynamic, unpredictable, partially observable environment

▸ Operational models: tell how to perform the actions in the 
current context, react to events

Background

http://www.laas.fr/planning
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* Chapter 4 of Ghallab, Nau, and Traverso, Automated 
Planning and Acting, Cambridge University Press, 2016. 
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Planning and Acting*
● Planning: prediction + search

▸ Search over predicted states, ways to organize tasks and actions
▸ Has traditionally used descriptive models (e.g., PDDL) 

• predict what the actions will do
● Acting: performing the actions 

▸ Dynamic, unpredictable, partially observable environment

▸ Operational models: tell how to perform the actions in the 
current context, react to events

● Planning is online, recurs continually as the world changes
(next slide)

Planning
Acting

Background

http://www.laas.fr/planning
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method: travel-by-flying(UMD,UCLA) – code execution …

● RAE+UPOM acting-and-planning system*
▸ Uses actor’s operational models for both acting and online planning 
▸ Planning: receding-horizon search

• Repeated Monte Carlo rollouts in a simulated environment
• Statistical sample of possible outcomes
• Choose the method with greatest expected utility

Planning and ActingBackground

* Patra, Mason, Kumar, Ghallab, Traverso, and Nau. Integrating acting, planning, and learning in hierarchical 
operational models. ICAPS, pp. 478–487, Oct. 2020. Best student paper honorable mention award.

action: call-taxi(UMD) action: ride-taxi(UMD,DCA) action: walk(taxi,building)

action: buy-ticket(DCA,LAX) task: fly(DCA,LAX)

task: travel(UMD,UCLA)

task: travel(UMD,DCA)

method: travel-by-taxi(UMD,DCA) – code execution …

method-name(arg1, …, argk)
task: task-identifier
pre:    test
body: 

computer program 
that may contain

• other tasks
• commands

https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597


11Nau – IntEx/GR, Oct 2020

Goal Reasoning*

● Planning and acting, taken a step further
▸ Actor may change its goals as the world 

changes
▸ Overlaps with automated planning and 

acting, cognitive architectures, BDI 
systems

▸ Early works used the Goal-Driven 
Autonomy model
• Deliberation extended to include 

discrepancy detection, goal 
management and explanation

▸ Goal networks support goal reasoning via 
the goal lifecycle*

* D.W. Aha. Goal Reasoning: Foundations, Emerging Applications, 
and Prospects.  AI Magazine, Vol. 29, No. 2, pp. 3-24.
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https://144.208.67.177/ojs/index.php/aimagazine/article/view/2800
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Plan-Space Planning

Plan-space planning:
start with a dummy plan (initial state, goal)
loop

if no flaws, exit with success
choose a flaw f
if f is unresolvable, exit with failure
nondeterministically choose a way to resolve f

● Two kinds of flaws:
▸ Open goal: unachieved precondition

• To resolve: find or add an action that 
achieves it

▸ Threat: potential interference with an 
achieved precondition
• To resolve: add constraints that 

remove the interference

Background

pickup(a) stack(a,b)

pickup(b) stack(b,c)

c
a b

initial 
state:

goals:

on(a,b)

on(b,c)
threat:

c
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bclear(b)
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clear(b)
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open
goals:
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Plan-Space Planning
● Disadvantages: 

▸ large branching factor – huge search space on large problems
▸ can’t do receding horizon, planning as simulation

● Advantage: flexibility of solution

● Planning involves making commitments
▸ e.g., use action a1 to satisfy preconditions of action a2

● Least commitment principle:
▸ Look for a solution plan that makes as few commitments as possible
▸ Solution plan may be partially ordered, partially instantiated

● In temporal plans, this can provide flexibility for 
▸ resource scheduling
▸ responding to unexpected events

● Temporal plan-space planning has been used in many NASA projects

Background

action a2

action a3 action a4

action a1 action a5
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ϕ:
temporal assertions:

[0,t1] loc(r1):(dock1,w1), [t1,t2] loc(r1):(w1,w2),
[0,t1] occupant(dock1):(r1,empty),
[t1,t2] occupant(dock1) = empty

constraints:
adjacent(dock1,w1), connected(w1,w2), t0 < t1 < t2 

● “Classical” AI planning algorithms use a state-oriented view
▸ Time is a sequence of states s0, s1, s2

▸ Actions instantaneously transform each state into the next one

● Time-oriented view:
▸ For each state variable x, a timeline

• values of x over time
▸ State at time t = {values of state-variable at time t}

● Chronicle representation:
▸ notation for a collection of timelines and constraints

● TPS planning algorithm*
▸ temporal version of plan-space planning

Temporal Planning

0 time

dock1
Change

Persistencew1
loc(r1):

occupant(dock1): r1

t1 t2

w2

empty

dock1

dock2

• w1
r1

• w2

* Chapter 14 of Ghallab, Nau, and Traverso, Automated 
Planning: Theory and Practice, Morgan Kaufmann, 2004.

Background

http://projects.laas.fr/planning/aptp/index.html
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leave

navigate

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d,d′)

m-move(r,d,d′,w,w′)
task: move(r,d) // go to another loading dock
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(r,w′,w)
[t4,te] enter(r,d,w)

assertions:
[ts,ts+1] loc(r) = d′

constraints:
adjacent(d,w), connected(w,w′), 
adjacent(d′,w′), t1 ≤ t2, t3 ≤ t4

* Chapter 4 of Ghallab, Nau, and Traverso, Automated 
Planning and Acting, Cambridge University Press, 2016. 

Hierarchical Temporal Planning

● Chronicle representation of methods
▸ May have multiple methods for the same goal

● TemPlan algorithm*  ≈ TPS plus task refinement

dock1

dock2

• w1
r1

• w2

Background

http://www.laas.fr/planning
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Temporal goal networks
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Temporal Goal Networks

● Representation similar to what TemPlan
uses*
▸ But no tasks
▸ Methods for goals, not tasks

● Planning algorithm similar to TemPlan
▸ But doesn’t use plan-space planning
▸ It steps a “current time” left-to-right

• resolves flaws in the order that it 
comes to them

* Chapter 4 of Ghallab, Nau, and Traverso, Automated 
Planning and Acting, Cambridge University Press, 2016. 

http://www.laas.fr/planning
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Motivation
● Recall:

▸ HTN planning: SHOP, SHOP2, SHOP3, Pyhop
▸ HGN planning: GDP, Godel
▸ Integrated acting and planning: RAE+UPOM

● Decompose tasks/goals left-to-right
▸ Always know current state
▸ State can be an arbitrary data structure
▸ Preconditions & effects can be arbitrary computations

● Broadens scope of applicability
● Enables planning with real-time constraints

● Want to do the same for temporal planning
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actors
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Chronicles
● A chronicle includes

▸ temporal assertions
• change, e.g.,  [0,t1] loc(r1):(dock1,w1)
• persistence, e.g.,  [t1,t2] occupant(dock1) = ∅

▸ if t1 = t2 then the assertion is instantaneous
▸ constraints

• on objects, e.g.,  r ≠ r1
• on time points, e.g.,  t0 < t1 < t2

● Let C = {all the constraints}
● Divide the temporal assertions into two sets

▸ T = {the unsupported assertions}
• how did r1 get to w2 ?

▸ S = {the supported assertions}
• we know how occupant(d1) became ∅
• we’re told that initially 

loc(r1) = dock1, occupant(d1) = r1

ϕ:
S: [t0,t1] loc(r1):(d1,w1), 

[t0,t1] occ(d1):(r1,∅),
[t1,t2] occ(d1) = ∅

T: [t2] loc(r1) = w2
C: adj(d1,w1), adj(d2,w2),

conn (w1,w2), conn (w2,w1), 
t0 < t1 < t2 

d1

d2

• w1
r1

• w2

0 time

d1
Change

Persistencew1loc(r1):

occ(d1): r1

t1 t2

w2

∅

Abbreviations:
adjacent: adj
connected: conn
dock1, dock2: d1, d2
empty: ∅
occupant: occ
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Actions● Action template:
▸ head (name and parameter list)
▸ starting and ending times ts, te

▸ set T of unsupported assertions
▸ set C of constraints

● Action: an instance of an action
▸ substitute values for variables

● No supported assertions
▸ if you insert an action into a chronicle, 

you need to figure out how to support it
[3,t1] leave(r1,d1,w1):
T: [3,t1] loc(r1):(d1,w1),

[3,t1] occ(d1):(r1,∅)
C:  adj(d1,w1)

[3,t1] leave(r1,d1,w1) 

3 time

d1

w1

loc(r1):

occ(d1): r1

t1

∅

[ts,te] leave(r,d,w):
T: [ts ,te] loc(r):(d,w),

[ts ,te] occ(d):(r,∅)
C:  adj(d,w)

d1

d2

• w1
r1

• w2
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[ts,te] m-move(r,d,d′,w,w′)
T: [ts] loc(r) = d′

[t1] loc(r) = w′
[t2] loc(r) = w
[te] loc(r) = d

C: adj(d,w), conn(w,w′),
adj(d′,w′), 
ts < t1 < t2 < te

[0,tb] m-move(r1,d1,d2,w1,w2)
T: [0] loc(r1) = d1

[t1] loc(r1) = w1
[t2] loc(r1) = w2
[tb] loc(r1) = d2

C: adj(d1,w1), conn(w1,w2),
adj(d2,w2),
0 < t1 < t2 < tb

Methods● Method:
▸ head (name and parameter list)
▸ starting and ending times ts, te

▸ set T of subgoals: unsupported persistence assertions 
• No change assertions
• Can’t make a change happen, can only create subgoals

● Method instance: substitute values for variables

In Ghallab et al (2016), the body of a method 
contained no temporal assertions – just tasks 
and method instances

d1

d2

r1

• w2

• w1

loc(r)

w1
w2
d2

0 t1 t2 tb

[0,tb] m-move(r1,d1,d2,w1,w2)

d1
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Applicable action or method

● Let ϕ = (S,T,C) be a chronicle
▸ a = an action or method

● Let: 
▸ Let A = {all temporal assertions in a whose 

starting time is the same as a’s starting time}
▸ a is applicable in ϕ at time t if

(1) a’s starting time is t 
(2) ϕ causally supports A
(3) a causally supports a temporal assertion 

α∈T

● Note: (3) prevents action chaining
▸ Analogous to a restriction in GDP
▸ We could omit (3), but then we would need 

to figure out how to control the search

d1

d2

r1

• w2

• w1

A = {[0,t1] loc(r1):(d1,w1),
[0,t1] occ(d1):(r1,∅)}

[0,t1] leave(r1,d1,w1):
T: [0,t1] loc(r1):(d1,w1),

[0,t1] occ(d1):(r1,∅)
C:  adj(d1,w1)

ϕ0:
S: [0] loc(r1) = d1,

[0] occ(d1) = r1
T: [t1] loc(r1) = w1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 < tb

α = {[t1] loc(r1) = w1}
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0 time

dock1
w1loc(r1):

occupant(d1): r1

t1 t2

w2

t3

d2

Chronicles as Planning Problems
● As in plan-space planning, need to resolve all flaws
● In TPS and TemPlan

▸ Unsupported temporal assertion
▸ e.g., [t2,t3] loc(r1):(w2,d2) 
▸ Goal: cause loc(r1)=w2 at time t2

• Resolver: a supported action
▸ Threats: things that may interfere with chronicle’s consistency

▸ e.g., [t0,t1] loc(r1):(d1,w1), [t2,t3] loc(r1):(w2,d2)
▸ if 0 < t2 ≤ t1 ≤ t3, r1 is at two places at the same time

• Resolver: a new constraint t1 < t2

● To get something more like GDP and GoDel:
▸ Need a current time now that we step left-to-right
▸ Resolve flaws that can be resolved at time now

ϕ:
S: [0,t1] loc(r1):(d1,w1), [0,t1] occupant(d1):(r1,∅)
T: [t2,t3] loc(r1):(w2,d2)
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
t0 < t1, t2 < t3

d1

d2

r1

• w2

• w1
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Flaws
● Flaws are the same as in TPS and TemPlan

▸ But resolvers must be usable at time now
▸ Can’t change the past

Flaw type 1: unsupported temporal assertion α
• e.g., what causes r1 to be at loc3 at time t3?

● Resolvers that are usable at time now
▸ Add constraints to support α from an assertion β ∈ T

such that end(β) = now
• e.g., l = loc3, t3 = now

▸ Add a supported persistence assertion β that starts at 
time now and supports α
• e.g., l = loc3, [t2, t3] loc(r1) = loc3

▸ Apply an action or method instance that’s applicable 
in ϕ at time now and supports α
• e.g., a = [t2,t3] go(r1,l,loc3)

lo
c(

r1
)

l = loc3

loc4

lo
c(

r1
)

l = loc3

go
loc4

lo
c(

r1
)

loc3

l

t1 now    t3 t4

lo
c(

r1
)

loc3
l

t1 now=t3 t4

t1 now    t3 t4

t1 now    t3 t4

Unsupported

Supported
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Flaws (2)

Flaw type 2: a pair of temporal assertions {α,β} that possibly conflict
▸ i.e., they can have inconsistent instances

e.g., if t3 < t2, r1 is in two places at once 

● As in TPS and TemPlan, but resolvers must be usable at time now
▸ Can’t change the past

● Resolvers applicable at time now:
▸ Various ways of adding constraints to resolve the inconsistencies
▸ I’ll skip them

• Lots of special cases
• I’m not sure I have all of them right

loc1
loc3

loc2

loc(r1)

loc(r1)

loc3

loc2

l

loc(r
)loc(r1)

t1 t2 t3 t4

t1 t3 t2 t4
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Planning Algorithm

● Basic idea:
▸ Variable now representing current time
▸ Step now through the time points in ϕ, in 

an order that satisfies the constraints in C
• As we go, add time constraints to 

enforce the order we’re creating
▸ For each value of now, 

• resolve some of the flaws that can be 
resolved at time now
▸ i.e., flaws having resolvers that are 

applicable at time now
• Choose what time point(s) to use for 

the next value of now

TGN-Forward-Plan(ϕ, Σ)
now = ϕ’s starting time;  plan = ∅
loop:

if ϕ contains no flaws then return (ϕ, plan)
if ϕ contains an unresolvable flaw then return failure
nondeterministically choose 

F ⊆ {flaws that can be resolved at time now}
if F ≠ ∅ then for every f ∈ F

nondeterministically choose a resolver ρ for f 
that can be used at time now

ϕ = Transform(ϕ, ρ)
add ρ to plan

Next = {time points in ϕ that may come next}
nondeterministically choose Next* ⊆ Next
if Next* ≠ ∅ then 

next ← any t ∈ Next
C ← C∪ {now < next} ∪ {t=next | t ∈ Next*}
now ← next
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loc(r1)

loc(r2)

0 tb tc

d1

d2 d2

d1

● d1, d2 are loading docks
● only big enough to hold 

one vehicle at a time

navigate(r,w,w′):
T: [ts ,te] loc(r):(w,w′)
C:  conn(w,w′)

enter(r,d,w):
T: [ts ,te] loc(r):(w,d),

[ts ,te] occ(d):(∅,r)
C:  adj(w,d)

leave(r,d,w):
T: [ts ,te] loc(r):(d,w),

[ts ,te] occ(d):(r,∅)
C:  adj(d,w), ts+2 ≤ te

m-move(r,d,d′,w,w′)
T: [ts] loc(r) = d

[t1] loc(r) = w
[t2] loc(r) = w′
[te] loc(r) = d′

C: adj(d,w), conn(w,w′), 
adj(d′,w′),
ts < t1 < t2 < te

Method:

Action templates:

Variables:
r ∈ Robots = {r1,r2}
d, d′ ∈ Docks = {d1,d2}
w, w′ ∈ Waypoints = {w1,w2}
t, t′, t* ∈ Timepoints

ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2
T: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 < tb

Example

d1

d2

r1

r2
• w2

• w1
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d1

d2

• w1 r1

• w2
r2

Example

Open goals that can be resolved: 
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
• Resolve both

ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
T: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
0 ≤ tb

ϕ1:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

T: [t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
0 < t1 < t2 < tb , 0 < t′1 < t′2 < tb

now = 0

Next = {t1,t′1}
Next* ← ∅
now doesn’t
change

[0,tb] m-move(r1,d1,d2,w1,w2)
T: [0] loc(r1) = d1

[t1] loc(r1) = w1
[t2] loc(r1) = w2
[tb] loc(r1) = d2

C: adj(d1,w1), conn(w1,w2),
adj(d2,w2), 0 < t1 < t2 < tb

[0,tb] m-move(r2,d2,d1,w2,w1)
T: [0] loc(r2) = d2

[t′2] loc(r2) = w2
[t′2] loc(r2) = w1
[tb] loc(r2) = d1

C: adj(d2,w2), conn(w2,w1),
adj(d1,w1), 0 < t′1 < t′2 < tb

loc(r1)

loc(r2)

0 tb tc

d1

d2 d2

d1
loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1 r1

• w2
r2
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now = 0

Example

[0,t′1] leave(r2,d2,w2)
T: [0,t′1] loc(r2):(d2,w2)

[0 ,t′1] occ(d2):(r2,∅)
C: adj(d1,w1), 2 ≤ t′1

Open goals that can be 
resolved:

[t1] loc(r1) = w1, 
[t′1] loc(r2) = w2

• Resolve both

ϕ1:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

T: [t1] loc(r1) = w1, [t′1] loc(r2) = w2, 
[t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
0 < t1 < t2 < tb , 0 < t′1 < t′2 < tb

ϕ2:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
[t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),

T: [t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb[0,t1] leave(r1,d1,w1)

T: [0,t1] loc(r1):(d1,w1)
[0 ,t1] occ(d1):(r1,∅)

C: adj(d1,w1), 2 ≤ t1
Next = {t1,t′1}
Next* ← {t1}
now ← t1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1r1

• w2
r2

d1

d2

• w1 r1

• w2
r2
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[t1,t2] navigate(r1,w1,w2):
T: [t1,t2] loc(r1):(w1,w2),
C:  conn(w1,w2), t1 < t2

Example
ϕ2:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
[t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅)

T: [t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

now = t1

Open goal that can be 
resolved:

[t2] loc(r1) = w2 
• Resolve it

Next = {t′1,t2}
Next* ← {t′1}
now ← t′1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1r1

• w2
r2

d1

d2

• w1

• w2
r2

r1

ϕ3:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2),
[t2] loc(r1) = w2

T: [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb
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loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

Example
ϕ3:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2),
[t2] loc(r1) = w2

T: [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

ϕ4:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t′2] loc(r2) = w1

T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

[t′1,t′2] navigate(r2,w2,w1):
T: [t′1,t′2] loc(r2):(w2,w1),
C:  conn(w2,w1), t′1 < t′2

now = t′1

Open goal that can be 
resolved:

[t′2] loc(r2) = w1
• Resolve it

Next = {t2,t′2}
Next* ← {t2,t′2}
now ← t2 = t′2

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1

• w2
r2

r1

d1

d2

• w1

• w2

r2

r1



31Nau – IntEx/GR, Oct 2020

Example
ϕ4:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t′2] loc(r2) = w1

T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

ϕ5:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),
[tb] loc(r1) = d2, [tb] loc(r2) = d1

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

[t2,tb] enter(r1,d2,w2)
T: [t2,tb] loc(r1):(w2,d2)

[t2,tb] occ(d2):(∅,r1)
C: adj(d2,w2), t2 < tb

[t′2,tb] enter(r2,d1,w1)
T: [t′2,tb] loc(r2):(w1,d1)

[t′2,tb] occ(d1):(∅,r2)
C: adj(d1,w1), t′2 < tb

now = t2 = t′2

Open goals that can be 
resolved:

[tb,tc] loc(r1) = d2
[tb,tc] loc(r2) = d1

• Resolve both

Next = {tb}
Next* ← {tb}
now ← tb

0 t1 t′1 t2=t′2 tb tc

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d10 t1 t′1 t2=t′2 tb tc

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1

• w2

r2

r1

d1

d2

• w1

• w2

r2

r1
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Example
ϕ5:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),
[tb] loc(r1) = d2, [tb] loc(r2) = d1

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

now = tb

No flaws

ϕ6:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d1

0 t1 t′1 t2=t′2 tb tc

d1

d2

• w1

• w2

r2

r1

d1

d2

• w1

• w2

r2

r1
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ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2
T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
0 < tb

Example

Temporal plan:

loc(r1)

loc(r2)

0 t1 t′1 t2=t′2 tb

d1

d2d2

d1w1

w2w2

w1

loc(r1)

loc(r2)

0 tb

d1

d2d2

d1
{[0,t1] leave(r1,d1,w1),
[0,t′1] leave(r2,d2,w2),
[t1,t2] navigate(r1,w1,w2),
[t′1,t′2] navigate(r2,w2,w1),
[t2,tb] enter(r1,d2,w2),
[t′2,tb] enter(r2,d1,w1)}

d1

d2

r1

r2
• w2

• w1

d1

d2

• w1

• w2

r2

r1

ϕ6:
S: [0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),

[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1), 
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2
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Contributions

● Temporal network formalism is mostly the same as in Ghallab, Nau, & Traverso
▸ Two differences: 

• No tasks; temporal methods achieve goals
▸ Will facilitate goal reasoning

▸ Left-to-right planning algorithm (like GDP and GoDeL, but temporal)
• Lower branching factor than plan-space planning
• Always knows current state 
• Will facilitate

▸ Online planning (integration of planning and acting)
▸ Simulation-based planning (like RAE+UPOM)
▸ Reasoning about uncertainty

Planning
Acting
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Questions
● What’s missing?

▸ The actor
▸ How to reason about uncertainty?

▸ action outcomes; action durations; exogenous events
• Generalize the state and action definitions
• Incorporate Monte Carlo rollouts analogous to those in RAE+UPOM

▸ Theoretical results: correctness, completeness, complexity, expressivity, …
▸ Implementation, testing
▸ How to learn actions and methods?
▸ Goal reasoning?

● Is TGN-Forward-Plan the right algorithm?
● Is it even the right approach?

▸ Perhaps use something like Linear Temporal Logic

● Anything else?


