Last update: October 21, 2020

Temporal Goal Networks:
Work in Progress

Dana S. Nau
University of Maryland

Collaborators:

Mak Roberts (NRL) — co-PI
Sunandita Patra — postdoctoral researcher
Ruoxi L1, Onur Kulaksizoglu, Mark Cavolowsky, Alex Mendelsohn — PhD students

Research supported in part by ONR grant N000142012257 and NRL grant NO017320P0399

Nau — IntEx/GR, Oct 2020

Key

Objective
goal
e [carn and utilize hierarchies of goals

and skills g have(house) [Subgoal]

e Use for integrated acting and planning

(0)

nstruct-house(dirt)>

e Scale to mixed teams of humans, robots,
& software

\

=\ built- waII(North)
have(dirt)]

have(dir

vetw

Temporal have(wood)
Goal <

Network [mined(dlrt)] defeated(hostlle)

-~ sagist
~~~~ """"""""
-~ e
‘5 --------

---------------------
~
e

-.
------------
..-----...----' ___,.--“ ~

Goal '
Skills approached coIIected

Nau — IntEx/GR, Oct 2020



Key

Approach Top-level
goal

[ Subgoal]

* Generalization of goal networks to
temporal planning

have(house)

* Work in progress

onstruct-house(dirt)}>

* Today’s presentation
* Link goal networks to abstracted RL skills

* Work in progress h irt) ™ -
prog Qe dinl bwltwall(North)

* I’m not prepared to talk about it have(dirt))

vetw

* Algorithms to automatically learn
- : Temporal have(wood)
temporal-goal-network hierarchies
Goal <

* Not there yet Network [ mined(dlrt)] defeated(hostlle)

-~ aaiit
~~~~ -----------
~ --“
‘5

oe

UL -‘___..- ~~o
..----"" wsnn® ~

Goal '
Skills approached coIIected

Nau — IntEx/GR, Oct 2020

Background

HTN Plan-space
planning planning

HGN Planning Goal Temporal
planning and acting reasoning planning

Temporal goal networks

Nau — IntEx/GR, Oct 2020

Background HTN Planning

e For some planning problems, we may already have ideas for how to look
for solutions

e Example: travel to a destination that’s far away:

> Brute-force search:
e many combinations of vehicles and routes

» Experienced human: small number of “recipes” that decompose tasks
into smaller subtasks

e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

e How can a planner make use of such information?

Nau — IntEx/GR, Oct 2020

Background

HTN Planning

e Recursively use methods to decompose tasks into subtasks
e SHOP, SHOP2, Pyhop* do HTN planning left-to-right

> decompose tasks in the same order that they’ll be accomplished

> always know current state

> 1ncreases the scope of applicability

e state can be arbitrary data structure

e preconditions and effects can be computations

task: travel(UMD,UCLA)

method: travel-by-flying(UMD,UCLA

/

/ ~

\

action: buy-ticket(DCA,LAX)| | task: travel(UMD,DCA)

task: fly(DCA,LAX) | |task: travel(LAX,UCLA)

method: travel-by-taxi(UMD,DCA

/

[T~

method:

travel-by-flying(x,y)

task: travel(x,y)

pre: at(x),
long-distance(x,y),
airport-near(x,u),
airport-near(y,v),

subtasks:
buy-ticket(u,v),
travel(x,u),

fly(u,v),
travel(v,y)

* See http://www.cs.umd.edu/projects/shop

action: call-taxi(UMD)| |action: ride-taxi(UMD,DCA)

action: walk(taxi,building)

Nau — IntEx/GR, Oct 2020

http://www.cs.umd.edu/projects/shop

method:

Background HGN Planning travel-by-flying(x,y)
pre: at(x),
long-distance(x,),

e Recursively use methods to decompose goals into subgoals _
airport-near(x,u),

e GDP, GoDel* decompose goals left-to-right airport-near(y,v)
» Like SHOP, SHOP2, Pyhop, always know current state subgoals:
> Also: can reason about goals have-ticket(u,v),
, . , at(u),
e ¢.g., Godel’s interaction at(v)

I
method: travel-by-flying(UMD,UCLA

_— / ~

action: have-ticket(DCA,LAX) | | goal: at(DCA) goal: at(LAX) | | goal: at(UCLA)

method: travel-by-taxi(UMD,DCA

_——— / ——

action: call-taxi(UMD) action: ride-taxi(UMD,DCA) action: walk(taxi,building)

* Shivashankar, Alford, Kuter, and Nau. The GoDeL planning system: A more perfect union
of domain-independent and hierarchical planning. In IJCAI, pp. 2380-2386, 2013

Nau — IntEx/GR, Oct 2020

https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf
https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf

Background Planning and Acting”

e Planning: prediction + search
» Search over predicted states, ways to organize tasks and actions

» Has traditionally used descriptive models (e.g., PDDL)
e predict what the actions will do
e Acting: performing the actions
» Dynamic, unpredictable, partially observable environment

> Operational models: tell sow to perform the actions in the
current context, react to events

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Nau — IntEx/GR, Oct 2020

Actor

Deliberation components

Planning

Queries
/ Plans

Acting

Objectives

“—1 Other

<«<——> gctors
Messages

Commandsl TPerceptS

Execution platform

| A

Actuationsl ’|\Signals

External World

http://www.laas.fr/planning

Background Planning and Acting”

e Planning: prediction + search
» Search over predicted states, ways to organize tasks and actions

» Has traditionally used descriptive models (e.g., PDDL)
e predict what the actions will do
e Acting: performing the actions
» Dynamic, unpredictable, partially observable environment

> Operational models: tell sow to perform the actions in the
current context, react to events

e Planning is online, recurs continually as the world changes

(next slide)

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Nau — IntEx/GR, Oct 2020

Actor

Deliberation components

Objectives
Planning < Other
QueriV
Plans <«—> actors
Messages

Acting

Commandsl TPerceptS

Execution platform

| A

Actuationsl ’[Signals

External World

Planning
Acting

http://www.laas.fr/planning

Planning and Acting
e RAE+UPOM acting-and-planning system™

Background

» Uses actor’s operational models for both acting and online planning
> Planning: receding-horizon search
e Repeated Monte Carlo rollouts in a simulated environment

e Statistical sample of possible outcomes

: . method-name(arg, ..., argy)
e Choose the method with greatest expected utility task: tash-identifier
task: travel(UMD,UCLA) pre: fest
body:
computer program

method: travel-by-flying(UMD,UCLA) — code execution ...

action: buy-ticket(DCA,LAX)| |task: travel(UMD,DCA) | | task: fly(DCA,LAX)

that may contain
» other tasks
s commands

method: travel-by-taxi(UMD,DCA) — code execution ...

/ I
action: call-taxi(UMD)| |action: ride-taxi(UMD,DCA)| |action: walk(taxi,building)

* Patra, Mason, Kumar, Ghallab, Traverso, and Nau. Integrating acting, planning, and learning in hierarchical
operational models. ICAPS, pp. 478487, Oct. 2020. Best student paper honorable mention award.

Nau — IntEx/GR, Oct 2020

10

https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597

Background Goal Reasoning”

e Planning and acting, taken a step further Actor
» Actor may change its goals as the world

changes Deliberation components Objectives
> Overlaps with automated planning and Oueries 7 Planning | Goal | Other
acting, cognitive architectures, BDI pyr ﬁlﬁms easoner mrges’ actors
ctin 1
systems 9
» Early works used the Goal-Driven Commandsl TPercepts

Autonomy model

e Deliberation extended to include Execution platform

discrepancy detection, goal [7
management and explanation Actuations Signals

» Goal networks support goal reasoning via

the goal lifecycle* External World

* D.W. Aha. Goal Reasoning: Foundations, Emerging Applications,
and Prospects. Al Magazine, Vol. 29, No. 2, pp. 3-24.

Nau — IntEx/GR, Oct 2020 11

https://144.208.67.177/ojs/index.php/aimagazine/article/view/2800

Background Plan-Space Planning

. o, e n
initial goals: clear(b)
state: [1 ontable(b)

o)

e Two kinds of flaws:
» Open goal: unachieved precondition

e To resolve: find or add an action that
achieves it

» Threat: potential interference with an
achieved precondition

e To resolve: add constraints that
remove the interference

Nau — IntEx/GR, Oct 2020

pickup(a) —> stack(a,b) \ goals:

............... |
......... R - b
pickup(b) [—>{ stack(b,c) -7 O [

C fr
a | b | clear(b)
ntable(b)

Plan-space planning;:
start with a dummy plan (initial state, goal)
loop
if no flaws, exit with success
choose a flaw f
if f1s unresolvable, exit with failure

nondeterministically choose a way to resolve f

12

Background Plan-Space Planning

e Disadvantages:

» large branching factor — huge search space on large problems

> can’t do receding horizon, planning as simulation _
action a,

e Advantage: flexibility of solution

action a; action as

e Planning involves making commitments

action a; —>{ action ay

> e.g., use action a, to satisfy preconditions of action a,
® [east commitment principle:
> Look for a solution plan that makes as few commitments as possible

> Solution plan may be partially ordered, partially instantiated

e In temporal plans, this can provide flexibility for
> resource scheduling
> responding to unexpected events

e Temporal plan-space planning has been used in many NASA projects

Nau — IntEx/GR, Oct 2020

Eckoumd Temporal Planning 'WZ/ / dock2 /

rl |
« L : : . . °wl O O O
e “Classical” Al planning algorithms use a state-oriented view dock1l

» Time is a sequence of states s, 51, >

» Actions instantaneously transform each state into the next one ,
W2

o Time-oriented view: loc(rl): dockl? Persistence
» For each state variable x, a timeline 5 5 5 Chan
> : : : ge
, occupant(dockl): rl: i empty i
e values of x over time \‘ ;
> State at time ¢ = {values of state-variable at time #} O 1:1 t: " >
2 ime

e Chronicle representation: b:

temporal assertions:
[0,7,] loc(rl):(dockl,w1l), [#,t,] loc(rl):(wl,w2),
[0,7,] occupant(dockl):(rl,empty),

» notation for a collection of timelines and constraints

e TPS planning algorithm*
> temporal version of plan-space planning
[t1,t2] occupant(dockl) = empty
* Chapter 14 of Ghallab, Nau, and Traverso, Automated constraints:
Planning: Theory and Practice, Morgan Kaufmann, 2004.

adjacent(dock1,w1l), connected(wl,w2), 1, <t <t

Nau — IntEx/GR, Oct 2020

14

http://projects.laas.fr/planning/aptp/index.html

Background Hierarchical Temporal Planning

w2 / dock?2 /

rl

*wl odoo
dockl

e Chronicle representation of methods

> May have multiple methods for the same goal

e TemPlan algorithm™ = TPS plus task refinement

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Nau — IntEx/GR, Oct 2020

..

navigate
leave enter
I
t, b t 1 t,
m-move(r,d,d’ w,w’)
task: move(r,d) I/ go to another loading dock

refinement:
[¢,11] leave(r,d',w'")
[,,1;] navigate(r,w',w)
[24,1,] enter(r,d,w)
assertions:
[t,t,+1] loc(r) =d'

constraints:
adjacent(d,w), connected(w,w’),
adjacent(d'w’), {1 < t, <1y

15

http://www.laas.fr/planning

Temporal Goal Networks

e Representation similar to what TemPlan

HTN Plan-space uses*®
planning planning » But no tasks
> Methods for goals, not tasks
HGN Planning Goal Temporal e Planning algorithm similar to TemPlan
planning and acting reasoning planning > But doesn’t use plan-space planning

> [t steps a “current time” left-to-right

e resolves flaws in the order that it

comes to them
Temporal goal networks

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Nau — IntEx/GR, Oct 2020

http://www.laas.fr/planning

Motivation

Actor
e Recall: Deliberation components Objdcives
> HTN planning: SHOP, SHOP2, SHOP3, Pyhop ey Planning| 1 Other
> HGN planning: GDP, Godel Acting Plans (A/ETges) actors
» Integrated acting and planning: RAE+UPOM
e Decompose tasks/goals left-to-right Commandsl Tpercep s
» Always know current state Execution platform
» State can be an arbitrary data structure —A
» Preconditions & effects can be arbitrary computations AcfuafionSl ‘[Signals

e Broadens scope of applicability Ext | World
xternal vvor

e Enables planning with real-time constraints

e Want to do the same for temporal planning Planning

Acting

Nau — IntEx/GR, Oct 2020 17

e A chronicle includes
> temporal assertions

e change,e.g., [0.t,] loc(rl):(dockl,wl)

e persistence, e.g., |1,,1,] occupant(dockl) =0

» if ¢, = t, then the assertion is instantaneous

> constraints
e onobjects, e.g., r#rl
® 0on time points, e.g., tp<t; <t
e Let C= {all the constraints}
e Divide the temporal assertions into two sets
» T = {the unsupported assertions}
e how did rl get to w2 ?
> S = {the supported assertions}
e we know how occupant(dl) became @

e we’re told that initially
loc(rl) = dock1, occupant(dl) =r1l

Nau — IntEx/GR, Oct 2020

Chronicles

Change

o:
S: [to,t1] loc(rl):(d1,wl),
[#0,11] occ(d1):(r1,D),

[#,,t,] occ(d1l) =@

T: [t,] loc(rl) = w2

C: adj(d1,w1l), adj(d2,w?2),
conn (wl,w2), conn (w2,w1l),
h<h<Dh

time

>

Persistence

Abbreviations:
adjacent:
connected:
dock1, dock2:
empty:
occupant:

conn
d1, d2

OCC

18

® Action template:

v

head (name and parameter list)

v

starting and ending times ¢, ¢,

v

set T of unsupported assertions

v

set C of constraints

e Action: an instance of an action

» substitute values for variables

e No supported assertions

> 1f you insert an action into a chronicle,
you need to figure out how to support it

Nau — IntEx/GR, Oct 2020

Actions

[2,,t.] leave(r,d,w):
T [t,,t.] loc(r):(dw),
[, ,t,] occ(d):(r,D)
C: adj(d,w)

[3,#1] leave(rl,d1,wl):
T: [3.44] loc(r1):(d1,w1l),
[3,#;] occ(d1):(r1,D)
C: adj(d1,wi)

loc(r1): d1}

occ(dl): r1 \ 5

>
3 [time

19

In Ghallab et al (2016), the body of a method
® Method: M ethod S contained no temporal assertions — just tasks
and method instances

> head (name and parameter list)

> starting and ending times ¢, ¢,

» set T of subgoals: unsupported persistence assertions / /
: o W2 d2
e No change assertions W
e (Can’t make a change happen, can only create subgoals : 1]
® Method instance: substitute values for variables W / Odlo 005
[£,,t,] m-move(r,d,d’,w,w") [0,7,] m-move(rl,dl,d2,wl,w2) [O,tb]m—move(rl,dl,dZ,wl,wZ)
T: [t]loc(r)=d' T: [0]loc(rl)=d1 |
[t,] loc(r) = W' [t,] loc(rl) = wl loc(r)
[5,] loc(r) = w [5,] loc(rl) = w2 1
[z.] loc(r) = d [#5] loc(r1) = d2 e .
C: adj(d,w), conn(w,w"), C: adj(d1,wil), conn(wl,w2), L * 5
adj(d'.w"), adj(d2,w2), wl—e
<t <h <l 0<ty<t<t d1l— = -
0 4 6 t

Nau — IntEx/GR, Oct 2020

Applicable action or method

e Let ¢ =(S,7,C) be a chronicle
» a = an action or method
e [et:

» Let 4 = {all temporal assertions in @ whose
starting time 1s the same as a’s starting time}

> a 1s applicable in ¢ at time t 1f
(1) a’s starting time is ¢
(2) ¢ causally supports 4

(3) a causally supports a temporal assertion
oeT

e Note: (3) prevents action chaining
» Analogous to a restriction in GDP

» We could omit (3), but then we would need
to figure out how to control the search

Nau — IntEx/GR, Oct 2020

rl |)
*wl O O O
d1i

A= {[0,t4] loc(rl):(d1,w1l),
[0,t4] occ(d1):(r1,D)}

a = {[t;] loc(rl) = wi}

[0,7,] leave(rl,d1,w1l):

To\ [0,4/] loc(r1):(d1,wi), =
4 [0.£,] occ(d1):(r1,@)

C: adj(d1,wi)

Po:

S:\ [0] loc(rl) = d1,

[0] occ(dl) =r1
T [1,] loc(rl) = wl /

C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),

0<t

« W2 / d2 /
/

21

Chronicles as Planning Problems

e As in plan-space planning, need to resolve all flaws
e In TPS and TemPlan
» Unsupported temporal assertion
> e.g., [6,t;] loc(rl):(w2,d2)
» Goal: cause loc(rl)=w2 at time 7,

e Resolver: a supported action

> Threats: things that may interfere with chronicle’s consistency

> e.g., [t.t;] loc(rl):(d1,w1l), [£,.t;] loc(rl):(w2,d2)

» 10 <1, <t <1, rlis at two places at the same time

e Resolver: a new constraint 7, <,

e To get something more like GDP and GoDel:
> Need a current time now that we step left-to-right

» Resolve flaws that can be resolved at time now

Nau — IntEx/GR, Oct 2020

r1

o w2 / d2
/

o Wl/éo

dl

@)

oc(rt): W

dockl E E
occupant(dl): rl\'
0 l L B time

>

@:

S: [0,4] loc(r1):(d1,w1l), [0,z,] occupant(dl):(r1,®)

T: [tr,15] loc(rl):(w2,d2)

C: adj(d1,wl), adj(d2,w2),
conn(wl,w2), conn(w2,wl),
h<h,L<0N

22

Flaws \

= [Supported
e Flaws are the same as in TPS and TemPlan T loc3
. ol 5 J— Unsupported
» But resolvers must be usable at time now n s
» Can’t change the past h now 1 Iy
Flaw type 1: unsupported temporal assertion o, :-T“
e ¢.g., what causes rl to be at loc3 at time #;? o = |°C3_ |
e Resolvers that are usable at time now _ 5 ‘
> Add constraints to support o from an assertion f € T i, now=it; Iy
such that end(f) = now 1 locd
i
e e¢.g.,l=loc3, t; =now / *_g | [=loc3 |
» Add a supported persistence assertion f that starts at g

time now and supports o t now t t

e e¢.g.,l=loc3, [t,, t;] loc(rl) =loc3

> Apply an action or method instance that’s applicable ———>
in ¢ at time now and supports o

loc(rl)
fo

° ¢.g.,a=[t,t]go(rl,/loc3)

h now t l4
Nau — IntEx/GR, Oct 2020

>

Flaws (2) [loc3

Flaw type 2: a pair of temporal assertions {a.f} that possibly conflict

> 1.e., they can have inconsistent instances tH t fy Iy

e.g., 1if t; <1, rl is in two places at once

® Asin TPS and TemPlan, but resolvers must be usable at time now | 5 loc3

» Can’t change the past

® Resolvers applicable at time now:

» Various ways of adding constraints to resolve the inconsistencies
> I’1l skip them
e Lots of special cases

e I’m not sure I have all of them right

Nau — IntEx/GR, Oct 2020 24

Planning Algorithm

TGN-Forward-Plan(g, ¥)

now = ¢’s starting time; plan = @

e Basic idea: loop:
> Variable now representing current time if ¢ contains no flaws then return (¢, plan)

if ¢ contains an unresolvable flaw then return failure
nondeterministically choose
, , F € {flaws that can be resolved at time now}
e As we go, add time constraints to if F # @ then for every f € F

enforce the order we’re creatin .
& nondeterministically choose a resolver p for f

> Step now through the time points in ¢, in
an order that satisfies the constraints in C

> For each value of now, that can be used at time now
e resolve some of the flaws that can be ¢ = Transform(¢, p)
resolved at time now add p to plan

Next = {time points in ¢ that may come next}
nondeterministically choose Next* € Next

_ . if Next* # @ then
e Choose what time point(s) to use for next < any ¢ € Next

the next value of now C «— CU {now < next} U {t=next | t € Next*}
now <— next

> i.e., flaws having resolvers that are
applicable at time now

Nau — IntEx/GR, Oct 2020 25

Po:

S: [0] loc(rl) = d1, [0] loc(r2) = d2,
[0] occ(d1l) =r1, [0] occ(d2) =r2

T: [tp.t.] loc(rl) = d2, [t,t.] loc(r2) = d1

C: adj(d1,w1), adj(d2,w?2),
conn(wl,w2), conn(w2,wl),

0<t
oc(r2) |2 92
" e R
loc(rl)e i1
0 Iy,
r2 =
e w2 ° 47 OO/
o Wl rl |/
O O
dl ;

Nau — IntEx/GR, Oct 2020

Example

Variables:
r € Robots = {rl1,r2}
d, d' € Docks = {d1,d2}
w, w' € Waypoints = {wl,w2}
t,t', t« € Timepoints

Method:

m-move(rd,d’, w,w’)

T: [t.])loc(r)=d
[£,] loc(r) =w
[£,] loc(r) = w'
[£,] loc(r) =d'

C: adj(d,w), conn(w,w"),
adj(d' w"),
<L <hL<I

e d1, d2 are loading docks
e only big enough to hold

one vehicle at a time

Action templates:

leave(r,d,w):
T: [t.,t,] loc(r):(dw),
[z, ,t,] occ(d):(r,D)
C: adj(dw), t,+2 <t,

enter(r,d,w):
T: [1,.1,] loc(r):(w.d),
(£, ,2.] occ(d):(D,r)

C: adj(w,d)

navigate(rw,w’):
T: [1,,2,] loc(r):(w,w)

C: conn(w,w)

26

9o
S: [0] loc(rl) = d1, [0] loc(r2) = d2,
[0] occ(d1l) =r1, [0] occ(d2) =r2,

T: [tp.t.] loc(rl) = d2, [£.t.] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1l),

0<1,
d2
Ioc(r2)T ________ 92,
1 . e
,,,,,, pu
loc(rl)e o1
0 Iht,

o W2

1 odlooA//

Nau — IntEx/GR, Oct 2020

Example

now =0

Open goals that can be resolved:
d2, [#,t.] loc(r2) =

[£4,1.] loc(rl) =
 Resolve both

[0,£,] m-move(rl,d1,d2,wl,w2)
T: [0] loc(rl) =d1
[#1] loc(rl) = wl
[,] loc(rl) = w2
[#,] loc(rl) = d2

C: adj(d1,wl), conn(wl,w2),

adj(d2,w2), 0 <t <t, <t

[0,¢,] m-move(r2,d2,d1,w2,wl)
T: [0] loc(r2) = d2
[£),] loc(r2) = w2
[£,] loc(r2) = wl
[#,] loc(r2) = d1
C: adj(d2,w2), conn(w2,w1l),
adj(d1,wl), 0<?, <t,<t,

dl

1

S: [0] loc(rl) = d1, [0] loc(r2) = d2,

[0] occ(d1l) =r1, [0] occ(d2) =r2,

[£,2.] loc(rl) = d2, [£,.t,.] loc(r2) = d1

T: [#] loc(rl) = w1, [t"] loc(r2) = w2,

[,] loc(rl) = w2, [t;] loc(r2) = wi,

[#,] loc(rl) = d2, [#,] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
0<t,<t,<t,,0<t,<t)<t

Next = {tlat’l}

d2 d2
M2 et Net* 0
R SO now doesn’t
w1 = wl 5? change
0 t, &, tth tyt.
r2 7
o W2 ~ OdZOO /

/
’ Wl/orl odlool/

27

o1 3%

S: [0] loc(r1) = d1, [0] loc(r2) = d2, Example S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1l) =r1, [0] occ(d2) =r2, [0] occ(d1l) =r1, [0] occ(d2) =r2,
[2,,2.] loc(rl) = d2, [#.t,.] loc(r2) = d1 now = 0 [2,2.] loc(rl) = d2, [#,.t,.] loc(r2) = d1

T: [#] loc(rl) = w1, [t'] loc(r2) = w2, [t,] loc(rl) = w1, [#] loc(r2) = w2,

[£,] loc(rl) = w2, [t,] loc(r2) = wi, Is th [0,#] loc(rl):(d1,wl), [0,¢;]loc(r2):(d2,w2),
[1,] loc(r1) = d2, [1,] loc(r2) = d1 ggz?vfgf‘ s that can be [0,2,] occ(d1):(r1, @), [0,,] occ(d2):(r2,@),

C: adj(dllW]')l adj(dzlwz)l [tl] |OC(r1) = Wl; T [tz] |OC(I‘1) = W2, [t'z] IOC(rZ) =wl,
conn(wl,w2), conn(\,/vz,V\il), (] loc(r2) = w2 [#,] loc(rl) = d2, [#,] loc(r2) = d1
O<ta<b=6,0<ti<tr<b « Resolve both C: adj(d1,wl), adj(d2,w2),

conn(w1,w2), conn(w2,w1l),
oc(r2) 22) oy 82 |[0n]leave(rldLw) 2SN <B <l 2SI <<ty
V\i e " T: [0,4,] loc(rl):(d1,wl) o 2) 42
Tl 0.t d1):(r1, 8 octr o _ gy g

ool e oo d ‘\3 s Next = {1.1')
: ANCEE C: adjdlwl),2<¢ ~~~,-.¢ - Next* — {t,}

O : .’ H :, —y |OC(I’1))\M1 ‘iNii\’\.H ¢

Lty Lty bl [0,¢'] leave(r2,d2,w2) | | dl ‘ now 1

| T [0,£] loc(r2):(d2,w2) 0 tl tl Lty tyt,
2 - [0,¢',] occ(d2):(r2,0) r2 /4
ew2 /° °d2® / C: adj(dLwl),2 <7/ Cew2 7 d2 /

.Wl/orl 641"/ rl o'%]z/ i

Nau — IntEx/GR, Oct 2020 28

o
S PHeetrh=d4{0Hoeer2)=4d2;
[}-ecetd)=+1{0}-eceld)—=+2;
[5,.£.] loc(r1) = d2, [£,.£.] loc(r2) = d1
HHeetrh—wi - Heetr2)y—w2;

[0,£] loc(rl):(d1,wl), [0,¢;] loc(r2):(d2,w2),
[0,¢,] occ(dl1):(r1,®), [O,

t'/] occ(d2):(r2,D)

T: [t] loc(rl) = w2, [t%] loc(r2) = wi,
[#,] loc(rl) = d2, [#,] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1l),
2<t,<t,<t,,2<t,<th<t

loc(r2 \2 W2 oo O

Example
now =t

Open goal that can be
resolved:

[£,] loc(rl) = w2
* Resolve it

[¢,,2,] navigate(rl,wl,w2):
T [t,,] loc(rl):(wl,w2),

C: conn(wl,w2), t; <t,

Ioc(rl))l wﬁl'-
ARKE
0 tltl Lty tyt,
r2
) (9’ d2 /

i

Nau — IntEx/GR, Oct 2020

a

@3

S: [#.t.] loc(rl) = d2, [#,,t.] loc(r2) = d1
[0,7,] loc(rl):(d1,wl), [0,¢',] loc(r2):(d2,w2),
[0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0),
[#,2,] loc(rl):(wl,w2),
[£,] loc(rl) = w2

T: [t,] loc(r2) = wi,
[#,] loc(rl) = d2, [#,] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(wl1,w2), conn(w2,w1l),
2<H<t,<t,,2<t | <t,<t,

Ioc(r2).\2 w2 C'iz Next = {t'.,t,}
NS Next* « {t'}
0 7 tl Lty it
| r2 4 7
(e w2 7 d2 /

O O YM
° Wl/

29

@3 Py

S: [tp,t.] loc(rl) = d2, [#,2.] loc(r2) = d1 Example S: [tp,t.] loc(rl) = d2, [#,2.] loc(r2) = d1
[0,7] loc(r1):(d1,wl), [0,¢'1] loc(r2):(d2,w2), [0,71] loc(rl):(d1,wl), [0,¢'1] loc(r2):(d2,w2),
[0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0), [0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0),
[#,2,] loc(rl):(wl,w2), now = t', [#,2,] loc(rl):(w1,w2), [¢',,25] loc(r2):(w2,w1l),
HaHeetrh=w2 [t,] loc(r2) = wi

T: [t,] loc(r2) = wi, Open goal that can be T: [t,] loc(rl) = d2, [t,] loc(r2) = d1
[2,] loc(rl) = d2, [#] loc(r2) = d1 resolved: C: adj(d1,wl), adj(d2,w2),

C: adj(d1,w1), adj(d2,w2), (] loc(r2) = wl conn(wi,w2), conn(w2,w1l),
conn(w1,w2), conn(w2,w1), e Resolve it 25 <L<t,,25t'<th<tg

2<H<t<ty,2<t)<th<t

loc(r2) d2

loc(r2 '\2 wW2; .= [t',,t'5] navigate(r2,w2,w1l):
P B T: [t',15] loc(r2):(w2,wl), | joc(rl) il %M: a2}
ng g Wil e C: conn(w2,wl), t', < t', i dl ext™ «— {1t}

a1 P P N _
R 0 tl fll tz t’z tb tc now < b = 13

0 t; tl P
T hrfWZ (p/ d2 / = EX) / d2 /
o / 00 7//
.W/ dl / - o.ﬁovtﬁ/ dl /

Ioc(rl)

Nau — IntEx/GR, Oct 2020 30

P4

St [t,t.] loc(rl) = d2, [£,,2.] loc(r2) = d1 Exam pIe
[0,7,] loc(rl):(d1,wl), [0,¢;] loc(r2):(d2,w2),
[0,£,] occ(d1):(r1,®), [0,#,] occ(d2):(r2,0),
[¢,,2,] loc(rl):(wl,w?2), [¢',,t'5] loc(r2):(w2,w1l), now==t,=t,
HafHeer2y—wit
T [1] loc(rl) = d2, [#,] loc(r2) = d1 Open goals that can be
C. adj(d1,wl), adj(d2,w2), resolved:

[tp,tc] loc(rl) = d2
[tp,t;] loc(r2) = d1
* Resolve both

conn(w1,w2), conn(w2,w1l),
254 <t,<t,,2=<t) <th<g

d2 [£,,1,] enter(rl,d2,w2)

T: [trt,] loc(rl):(w2,d2)
[£,,1,] occ(d2):(D,r1)

)
P 5 Lk C: adj(d2,w2), t, <t,
0 #t|, bL=thtt.

loc(r2)

loc(rl)

[£5,t,] enter(r2,d1,w1l)
T: [t'yt,] loc(r2):(wi,d1)

| [¢',,1,] occ(d1):(D,r2)
1 ° V(\)Ioz/)/// d2 /

REN / C: adj(di,wil), 5 <t,

r2

= A

Q

O

Nau — IntEx/GR, Oct 2020

¢s:

S: [#.t.] loc(rl) = d2, [#,,t.] loc(r2) = d1
[0,£,] loc(rl):(d1,wl), [0,¢',] loc(r2):(d2,w2),
[0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0),
[t,,t,] loc(rl):(wl,w?2), [t',, 5] loc(r2):(w2,w1l),
[£,,2,] loc(rl):(w2,d2), [t'5,1,] loc(r2):(wl,dl),
[2,,t,] occ(d2):(@,rl), [t'5,1,] occ(dl):(D,r2),
[#,] loc(rl) = d2, [#,] loc(r2) = d1

T

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1l),
2<<t,<t,2<t\<th<t,t,=t"

fd2
LI PR - Next = {t,}
o< Nerr— i)
loc(rl) w=1 Wl\é? now <«— t,

O tl tlll tzzldz l;b l:c " |
rl 4
_— 0~ 045 /

oewl |12
/o Sprce

31

¢s: P
S: [t,,t.] loc(rl) = d2, [£,,2.] loc(r2) = d1 Example S
[0,4,] loc(r1):(d1,w1), [0,£] loc(r2):(d2,w2),
[0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0),
[¢,,2,] loc(rl):(wl,w?2), [¢',,t'5] loc(r2):(w2,w1l),

[£5,2.] loc(rl) = d2, [£,.t.] loc(r2) = d1

[0,#] loc(rl):(d1,wl), [0,¢;] loc(r2):(d2,w2),
[0,7,] occ(d1):(r1,®), [0,2',] occ(d2):(r2,0),
[t,,t,] loc(rl):(wl,w2), [¢',, 5] loc(r2):(w2,w1l),
|
|

[£5,1,] loc(rl):(w2,d2), [¢'5,1,] loc(r2):(wl,d1), now =i, t, 1] loc(rl):(w2,d2), [t'5,1,] loc(r2):(wl,d1),
[2,,t,] occ(d2):(@,rl), [t',t,] occ(dl):(D,r2), h,ty] occ(d2):(@,rl), [t,1,] occ(dl):(D,r2),
HHeetr—=d2, {1, Hoetr)=d1 No flaws T

7 C: adjld1,w1), adj(d2,w2),

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1l),
25 <bL<t,25th <th<t, L, =t}

o W2 Y OdZOO

r2 |/

] Wl/O Yd1

09)

Nau — IntEx/GR, Oct 2020

conn(w1,w2), conn(w2,w1l),
25 <bL<t,25th <th<t,HL,=t)

32

Po:

S: [0] loc(rl) = d1, [0] loc(r2) = d2
T: [t,] loc(rl) = d2, [t,] loc(r2) = d1

C: adj(d1,w1), adj(d2,w?2),
conn(wl,w2), conn(w2,wl),

0<g,
Ioc(rZ)I(_j_% 302
oc(r) i T » dl
0 t,
r2
o w2 ° 47

o Wl rl |/
O O 09
dl ;

Nau — IntEx/GR, Oct 2020

Example

Temporal plan:

{10,¢,] leave(rl,d1,wl),
[0,¢;] leave(r2,d2,w2),
[¢,,2,] navigate(rl,wl,w2),
[¢',t),] navigate(r2,w2,w1),
[£,,1,] enter(rl,d2,w2),
[t)5,t,] enter(r2,d1,wl)}

Ps:

S: [0,#,] loc(r1):(d1,w1), [0,¢,] loc(r2):(d2,w2),
[0,#;] occ(d1):(r1,®@), [0,2'1] occ(d2):(r2,0),
[£1,55] loc(rl):(wl,w2), [¢';, 2] loc(r2):(w2,w1l),
[,,1,] loc(rl):(w2,d2), [t'5,7,] loc(r2):(wl,dl),
[1,,1,] occ(d2):(@,rl), [t,¢,] occ(d1):(D,r2),

T

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
2§t1<t2<fb,2ft,1<f’2<tb,f2:ld2

Ioc(r2)TOIZ :

loc(rl)

o wl r2
0 410 oo;

33

Contributions

e Temporal network formalism is mostly the same as in Ghallab, Nau, & Traverso
» Two differences:
e No tasks; temporal methods achieve goals
» Will facilitate goal reasoning
> Left-to-right planning algorithm (like GDP and GoDel, but temporal)
e Lower branching factor than plan-space planning
e Always knows current state
e Will facilitate
> Online planning (integration of planning and acting)
» Simulation-based planning (like RAE+UPOM)

» Reasoning about uncertainty

Nau — IntEx/GR, Oct 2020

Planning
Acting

34

Questions

e What’s missing?

> The actor
> How to reason about uncertainty?
> action outcomes; action durations; exogenous events
e Generalize the state and action definitions

e Incorporate Monte Carlo rollouts analogous to those in RAE+UPOM

» Theoretical results: correctness, completeness, complexity, expressivity, ...

v

Implementation, testing

v

How to learn actions and methods?

> Goal reasoning?

e Is TGN-Forward-Plan the right algorithm?

e s it even the right approach?

> Perhaps use something like Linear Temporal Logic

® Anything else?

Nau — IntEx/GR, Oct 2020

35

