
1Nau – IntEx/GR, Oct 2020

Last update: October 21, 2020

Temporal Goal Networks:
Work in Progress

Dana S. Nau
University of Maryland

Collaborators:
Mak Roberts (NRL) – co-PI
Sunandita Patra – postdoctoral researcher
Ruoxi Li, Onur Kulaksizoglu, Mark Cavolowsky, Alex Mendelsohn – PhD students

Research supported in part by ONR grant N000142012257 and NRL grant N0017320P0399

2Nau – IntEx/GR, Oct 2020

Objective
● Learn and utilize hierarchies of goals

and skills
● Use for integrated acting and planning
● Scale to mixed teams of humans, robots,

& software

aimed approached collected strafed hit killedmined
Goal

Skills

Temporal
Goal

Network

construct-house(dirt)

have(dirt)

have(dirt)

…

…

select-site

have(house)

build-door(wood)

built-wall(North)

have(wood)

have(wood)

…

…

craft(door)

place(door)

…
…

mined(dirt) defeated(hostile)

build-walls(dirt)

Key
Top-level

goal

Method
Subgoal

Goal Skill

3Nau – IntEx/GR, Oct 2020

Approach

• Generalization of goal networks to
temporal planning
• Work in progress
• Today’s presentation

• Link goal networks to abstracted RL skills
• Work in progress
• I’m not prepared to talk about it

• Algorithms to automatically learn
temporal-goal-network hierarchies
• Not there yet

aimed approached collected strafed hit killedmined
Goal

Skills

Temporal
Goal

Network

construct-house(dirt)

have(dirt)

have(dirt)

…

…

select-site

have(house)

build-door(wood)

built-wall(North)

have(wood)

have(wood)

…

…

craft(door)

place(door)

…
…

mined(dirt) defeated(hostile)

build-walls(dirt)

Key
Top-level

goal

Method
Subgoal

Goal Skill

4Nau – IntEx/GR, Oct 2020

Background

Temporal goal networks

HGN
planning

HTN
planning

Planning
and acting

Goal
reasoning

Temporal
planning

Plan-space
planning

5Nau – IntEx/GR, Oct 2020

Background HTN Planning
● For some planning problems, we may already have ideas for how to look

for solutions
● Example: travel to a destination that’s far away:

▸ Brute-force search:
• many combinations of vehicles and routes

▸ Experienced human: small number of “recipes” that decompose tasks
into smaller subtasks

e.g., flying:
1. buy ticket from local airport to remote airport
2. travel to local airport
3. fly to remote airport
4. travel to final destination

● How can a planner make use of such information?

6Nau – IntEx/GR, Oct 2020

* See http://www.cs.umd.edu/projects/shop

HTN Planning
● Recursively use methods to decompose tasks into subtasks
● SHOP, SHOP2, Pyhop* do HTN planning left-to-right

▸ decompose tasks in the same order that they’ll be accomplished
▸ always know current state
▸ increases the scope of applicability

• state can be arbitrary data structure
• preconditions and effects can be computations

action: call-taxi(UMD) action: ride-taxi(UMD,DCA) action: walk(taxi,building)

action: buy-ticket(DCA,LAX) task: fly(DCA,LAX) task: travel(LAX,UCLA)

travel-by-flying(x,y)
task: travel(x,y)
pre: at(x),

long-distance(x,y),
airport-near(x,u),
airport-near(y,v),

subtasks:
buy-ticket(u,v),
travel(x,u),
fly(u,v),
travel(v,y)

method:

Background

method: travel-by-flying(UMD,UCLA

task: travel(UMD,UCLA)

method: travel-by-taxi(UMD,DCA

task: travel(UMD,DCA)

http://www.cs.umd.edu/projects/shop

7Nau – IntEx/GR, Oct 2020

* Shivashankar, Alford, Kuter, and Nau. The GoDeL planning system: A more perfect union
of domain-independent and hierarchical planning. In IJCAI, pp. 2380–2386, 2013

travel-by-flying(x,y)
pre: at(x),

long-distance(x,y),
airport-near(x,u),
airport-near(y,v),

subgoals:
have-ticket(u,v),
at(u),
at(v),
at(y)

HGN Planning
● Recursively use methods to decompose goals into subgoals
● GDP, GoDel* decompose goals left-to-right

▸ Like SHOP, SHOP2, Pyhop, always know current state
▸ Also: can reason about goals

• e.g., Godel’s interaction
with Fast Downward

method:

Background

action: call-taxi(UMD) action: walk(taxi,building)

method: travel-by-flying(UMD,UCLA

action: have-ticket(DCA,LAX) goal: at(LAX) goal: at(UCLA)

goal: at(UCLA)

action: ride-taxi(UMD,DCA)

method: travel-by-taxi(UMD,DCA

goal: at(DCA)

https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf
https://www.cs.umd.edu/~nau/papers/shivashankar2013godel.pdf

8Nau – IntEx/GR, Oct 2020

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Planning and Acting*
● Planning: prediction + search

▸ Search over predicted states, ways to organize tasks and actions
▸ Has traditionally used descriptive models (e.g., PDDL)

• predict what the actions will do
● Acting: performing the actions

▸ Dynamic, unpredictable, partially observable environment

▸ Operational models: tell how to perform the actions in the
current context, react to events

Background

http://www.laas.fr/planning

9Nau – IntEx/GR, Oct 2020

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Planning and Acting*
● Planning: prediction + search

▸ Search over predicted states, ways to organize tasks and actions
▸ Has traditionally used descriptive models (e.g., PDDL)

• predict what the actions will do
● Acting: performing the actions

▸ Dynamic, unpredictable, partially observable environment

▸ Operational models: tell how to perform the actions in the
current context, react to events

● Planning is online, recurs continually as the world changes
(next slide)

Planning
Acting

Background

http://www.laas.fr/planning

10Nau – IntEx/GR, Oct 2020

method: travel-by-flying(UMD,UCLA) – code execution …

● RAE+UPOM acting-and-planning system*
▸ Uses actor’s operational models for both acting and online planning
▸ Planning: receding-horizon search

• Repeated Monte Carlo rollouts in a simulated environment
• Statistical sample of possible outcomes
• Choose the method with greatest expected utility

Planning and ActingBackground

* Patra, Mason, Kumar, Ghallab, Traverso, and Nau. Integrating acting, planning, and learning in hierarchical
operational models. ICAPS, pp. 478–487, Oct. 2020. Best student paper honorable mention award.

action: call-taxi(UMD) action: ride-taxi(UMD,DCA) action: walk(taxi,building)

action: buy-ticket(DCA,LAX) task: fly(DCA,LAX)

task: travel(UMD,UCLA)

task: travel(UMD,DCA)

method: travel-by-taxi(UMD,DCA) – code execution …

method-name(arg1, …, argk)
task: task-identifier
pre: test
body:

computer program
that may contain

• other tasks
• commands

https://www.aaai.org/ojs/index.php/ICAPS/article/view/6743/6597

11Nau – IntEx/GR, Oct 2020

Goal Reasoning*

● Planning and acting, taken a step further
▸ Actor may change its goals as the world

changes
▸ Overlaps with automated planning and

acting, cognitive architectures, BDI
systems

▸ Early works used the Goal-Driven
Autonomy model
• Deliberation extended to include

discrepancy detection, goal
management and explanation

▸ Goal networks support goal reasoning via
the goal lifecycle*

* D.W. Aha. Goal Reasoning: Foundations, Emerging Applications,
and Prospects. AI Magazine, Vol. 29, No. 2, pp. 3-24.

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Deliberation components

Goal
Reasoner

Planning

Acting

Queries
Plans

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Actor

Background

https://144.208.67.177/ojs/index.php/aimagazine/article/view/2800

12Nau – IntEx/GR, Oct 2020

Plan-Space Planning

Plan-space planning:
start with a dummy plan (initial state, goal)
loop

if no flaws, exit with success
choose a flaw f
if f is unresolvable, exit with failure
nondeterministically choose a way to resolve f

● Two kinds of flaws:
▸ Open goal: unachieved precondition

• To resolve: find or add an action that
achieves it

▸ Threat: potential interference with an
achieved precondition
• To resolve: add constraints that

remove the interference

Background

pickup(a) stack(a,b)

pickup(b) stack(b,c)

c
a b

initial
state:

goals:

on(a,b)

on(b,c)
threat:

c

a
bclear(b)

ontable(b)

clear(b)
ontable(b)

open
goals:

13Nau – IntEx/GR, Oct 2020

Plan-Space Planning
● Disadvantages:

▸ large branching factor – huge search space on large problems
▸ can’t do receding horizon, planning as simulation

● Advantage: flexibility of solution

● Planning involves making commitments
▸ e.g., use action a1 to satisfy preconditions of action a2

● Least commitment principle:
▸ Look for a solution plan that makes as few commitments as possible
▸ Solution plan may be partially ordered, partially instantiated

● In temporal plans, this can provide flexibility for
▸ resource scheduling
▸ responding to unexpected events

● Temporal plan-space planning has been used in many NASA projects

Background

action a2

action a3 action a4

action a1 action a5

14Nau – IntEx/GR, Oct 2020

ϕ:
temporal assertions:

[0,t1] loc(r1):(dock1,w1), [t1,t2] loc(r1):(w1,w2),
[0,t1] occupant(dock1):(r1,empty),
[t1,t2] occupant(dock1) = empty

constraints:
adjacent(dock1,w1), connected(w1,w2), t0 < t1 < t2

● “Classical” AI planning algorithms use a state-oriented view
▸ Time is a sequence of states s0, s1, s2

▸ Actions instantaneously transform each state into the next one

● Time-oriented view:
▸ For each state variable x, a timeline

• values of x over time
▸ State at time t = {values of state-variable at time t}

● Chronicle representation:
▸ notation for a collection of timelines and constraints

● TPS planning algorithm*
▸ temporal version of plan-space planning

Temporal Planning

0 time

dock1
Change

Persistencew1
loc(r1):

occupant(dock1): r1

t1 t2

w2

empty

dock1

dock2

• w1
r1

• w2

* Chapter 14 of Ghallab, Nau, and Traverso, Automated
Planning: Theory and Practice, Morgan Kaufmann, 2004.

Background

http://projects.laas.fr/planning/aptp/index.html

15Nau – IntEx/GR, Oct 2020

leave

navigate

enter

ts t1 t2 t3 t4 te

[ts ,te] move(r,d,d′)

m-move(r,d,d′,w,w′)
task: move(r,d) // go to another loading dock
refinement:

[ts,t1] leave(r,d′,w′)
[t2,t3] navigate(r,w′,w)
[t4,te] enter(r,d,w)

assertions:
[ts,ts+1] loc(r) = d′

constraints:
adjacent(d,w), connected(w,w′),
adjacent(d′,w′), t1 ≤ t2, t3 ≤ t4

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

Hierarchical Temporal Planning

● Chronicle representation of methods
▸ May have multiple methods for the same goal

● TemPlan algorithm* ≈ TPS plus task refinement

dock1

dock2

• w1
r1

• w2

Background

http://www.laas.fr/planning

16Nau – IntEx/GR, Oct 2020

Temporal goal networks

HGN
planning

HTN
planning

Planning
and acting

Goal
reasoning

Temporal
planning

Plan-space
planning

Temporal Goal Networks

● Representation similar to what TemPlan
uses*
▸ But no tasks
▸ Methods for goals, not tasks

● Planning algorithm similar to TemPlan
▸ But doesn’t use plan-space planning
▸ It steps a “current time” left-to-right

• resolves flaws in the order that it
comes to them

* Chapter 4 of Ghallab, Nau, and Traverso, Automated
Planning and Acting, Cambridge University Press, 2016.

http://www.laas.fr/planning

17Nau – IntEx/GR, Oct 2020

Motivation
● Recall:

▸ HTN planning: SHOP, SHOP2, SHOP3, Pyhop
▸ HGN planning: GDP, Godel
▸ Integrated acting and planning: RAE+UPOM

● Decompose tasks/goals left-to-right
▸ Always know current state
▸ State can be an arbitrary data structure
▸ Preconditions & effects can be arbitrary computations

● Broadens scope of applicability
● Enables planning with real-time constraints

● Want to do the same for temporal planning

Deliberation
components

Execution platform

Commands Percepts

Other
actors

Objectives

Messages

External World

SignalsActuations

Actor
Deliberation components

Execution platform

Planning

Acting

Queries
Plans

Planning
Acting

18Nau – IntEx/GR, Oct 2020

Chronicles
● A chronicle includes

▸ temporal assertions
• change, e.g., [0,t1] loc(r1):(dock1,w1)
• persistence, e.g., [t1,t2] occupant(dock1) = ∅

▸ if t1 = t2 then the assertion is instantaneous
▸ constraints

• on objects, e.g., r ≠ r1
• on time points, e.g., t0 < t1 < t2

● Let C = {all the constraints}
● Divide the temporal assertions into two sets

▸ T = {the unsupported assertions}
• how did r1 get to w2 ?

▸ S = {the supported assertions}
• we know how occupant(d1) became ∅
• we’re told that initially

loc(r1) = dock1, occupant(d1) = r1

ϕ:
S: [t0,t1] loc(r1):(d1,w1),

[t0,t1] occ(d1):(r1,∅),
[t1,t2] occ(d1) = ∅

T: [t2] loc(r1) = w2
C: adj(d1,w1), adj(d2,w2),

conn (w1,w2), conn (w2,w1),
t0 < t1 < t2

d1

d2

• w1
r1

• w2

0 time

d1
Change

Persistencew1loc(r1):

occ(d1): r1

t1 t2

w2

∅

Abbreviations:
adjacent: adj
connected: conn
dock1, dock2: d1, d2
empty: ∅
occupant: occ

19Nau – IntEx/GR, Oct 2020

Actions● Action template:
▸ head (name and parameter list)
▸ starting and ending times ts, te

▸ set T of unsupported assertions
▸ set C of constraints

● Action: an instance of an action
▸ substitute values for variables

● No supported assertions
▸ if you insert an action into a chronicle,

you need to figure out how to support it
[3,t1] leave(r1,d1,w1):
T: [3,t1] loc(r1):(d1,w1),

[3,t1] occ(d1):(r1,∅)
C: adj(d1,w1)

[3,t1] leave(r1,d1,w1)

3 time

d1

w1

loc(r1):

occ(d1): r1

t1

∅

[ts,te] leave(r,d,w):
T: [ts ,te] loc(r):(d,w),

[ts ,te] occ(d):(r,∅)
C: adj(d,w)

d1

d2

• w1
r1

• w2

20Nau – IntEx/GR, Oct 2020

[ts,te] m-move(r,d,d′,w,w′)
T: [ts] loc(r) = d′

[t1] loc(r) = w′
[t2] loc(r) = w
[te] loc(r) = d

C: adj(d,w), conn(w,w′),
adj(d′,w′),
ts < t1 < t2 < te

[0,tb] m-move(r1,d1,d2,w1,w2)
T: [0] loc(r1) = d1

[t1] loc(r1) = w1
[t2] loc(r1) = w2
[tb] loc(r1) = d2

C: adj(d1,w1), conn(w1,w2),
adj(d2,w2),
0 < t1 < t2 < tb

Methods● Method:
▸ head (name and parameter list)
▸ starting and ending times ts, te

▸ set T of subgoals: unsupported persistence assertions
• No change assertions
• Can’t make a change happen, can only create subgoals

● Method instance: substitute values for variables

In Ghallab et al (2016), the body of a method
contained no temporal assertions – just tasks
and method instances

d1

d2

r1

• w2

• w1

loc(r)

w1
w2
d2

0 t1 t2 tb

[0,tb] m-move(r1,d1,d2,w1,w2)

d1

21Nau – IntEx/GR, Oct 2020

Applicable action or method

● Let ϕ = (S,T,C) be a chronicle
▸ a = an action or method

● Let:
▸ Let A = {all temporal assertions in a whose

starting time is the same as a’s starting time}
▸ a is applicable in ϕ at time t if

(1) a’s starting time is t
(2) ϕ causally supports A
(3) a causally supports a temporal assertion

α∈T

● Note: (3) prevents action chaining
▸ Analogous to a restriction in GDP
▸ We could omit (3), but then we would need

to figure out how to control the search

d1

d2

r1

• w2

• w1

A = {[0,t1] loc(r1):(d1,w1),
[0,t1] occ(d1):(r1,∅)}

[0,t1] leave(r1,d1,w1):
T: [0,t1] loc(r1):(d1,w1),

[0,t1] occ(d1):(r1,∅)
C: adj(d1,w1)

ϕ0:
S: [0] loc(r1) = d1,

[0] occ(d1) = r1
T: [t1] loc(r1) = w1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 < tb

α = {[t1] loc(r1) = w1}

22Nau – IntEx/GR, Oct 2020

0 time

dock1
w1loc(r1):

occupant(d1): r1

t1 t2

w2

t3

d2

Chronicles as Planning Problems
● As in plan-space planning, need to resolve all flaws
● In TPS and TemPlan

▸ Unsupported temporal assertion
▸ e.g., [t2,t3] loc(r1):(w2,d2)
▸ Goal: cause loc(r1)=w2 at time t2

• Resolver: a supported action
▸ Threats: things that may interfere with chronicle’s consistency

▸ e.g., [t0,t1] loc(r1):(d1,w1), [t2,t3] loc(r1):(w2,d2)
▸ if 0 < t2 ≤ t1 ≤ t3, r1 is at two places at the same time

• Resolver: a new constraint t1 < t2

● To get something more like GDP and GoDel:
▸ Need a current time now that we step left-to-right
▸ Resolve flaws that can be resolved at time now

ϕ:
S: [0,t1] loc(r1):(d1,w1), [0,t1] occupant(d1):(r1,∅)
T: [t2,t3] loc(r1):(w2,d2)
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
t0 < t1, t2 < t3

d1

d2

r1

• w2

• w1

23Nau – IntEx/GR, Oct 2020

Flaws
● Flaws are the same as in TPS and TemPlan

▸ But resolvers must be usable at time now
▸ Can’t change the past

Flaw type 1: unsupported temporal assertion α
• e.g., what causes r1 to be at loc3 at time t3?

● Resolvers that are usable at time now
▸ Add constraints to support α from an assertion β ∈ T

such that end(β) = now
• e.g., l = loc3, t3 = now

▸ Add a supported persistence assertion β that starts at
time now and supports α
• e.g., l = loc3, [t2, t3] loc(r1) = loc3

▸ Apply an action or method instance that’s applicable
in ϕ at time now and supports α
• e.g., a = [t2,t3] go(r1,l,loc3)

lo
c(

r1
)

l = loc3

loc4

lo
c(

r1
)

l = loc3

go
loc4

lo
c(

r1
)

loc3

l

t1 now t3 t4

lo
c(

r1
)

loc3
l

t1 now=t3 t4

t1 now t3 t4

t1 now t3 t4

Unsupported

Supported

24Nau – IntEx/GR, Oct 2020

Flaws (2)

Flaw type 2: a pair of temporal assertions {α,β} that possibly conflict
▸ i.e., they can have inconsistent instances

e.g., if t3 < t2, r1 is in two places at once

● As in TPS and TemPlan, but resolvers must be usable at time now
▸ Can’t change the past

● Resolvers applicable at time now:
▸ Various ways of adding constraints to resolve the inconsistencies
▸ I’ll skip them

• Lots of special cases
• I’m not sure I have all of them right

loc1
loc3

loc2

loc(r1)

loc(r1)

loc3

loc2

l

loc(r
)loc(r1)

t1 t2 t3 t4

t1 t3 t2 t4

25Nau – IntEx/GR, Oct 2020

Planning Algorithm

● Basic idea:
▸ Variable now representing current time
▸ Step now through the time points in ϕ, in

an order that satisfies the constraints in C
• As we go, add time constraints to

enforce the order we’re creating
▸ For each value of now,

• resolve some of the flaws that can be
resolved at time now
▸ i.e., flaws having resolvers that are

applicable at time now
• Choose what time point(s) to use for

the next value of now

TGN-Forward-Plan(ϕ, Σ)
now = ϕ’s starting time; plan = ∅
loop:

if ϕ contains no flaws then return (ϕ, plan)
if ϕ contains an unresolvable flaw then return failure
nondeterministically choose

F ⊆ {flaws that can be resolved at time now}
if F ≠ ∅ then for every f ∈ F

nondeterministically choose a resolver ρ for f
that can be used at time now

ϕ = Transform(ϕ, ρ)
add ρ to plan

Next = {time points in ϕ that may come next}
nondeterministically choose Next* ⊆ Next
if Next* ≠ ∅ then

next ← any t ∈ Next
C ← C∪ {now < next} ∪ {t=next | t ∈ Next*}
now ← next

26Nau – IntEx/GR, Oct 2020

loc(r1)

loc(r2)

0 tb tc

d1

d2 d2

d1

● d1, d2 are loading docks
● only big enough to hold

one vehicle at a time

navigate(r,w,w′):
T: [ts ,te] loc(r):(w,w′)
C: conn(w,w′)

enter(r,d,w):
T: [ts ,te] loc(r):(w,d),

[ts ,te] occ(d):(∅,r)
C: adj(w,d)

leave(r,d,w):
T: [ts ,te] loc(r):(d,w),

[ts ,te] occ(d):(r,∅)
C: adj(d,w), ts+2 ≤ te

m-move(r,d,d′,w,w′)
T: [ts] loc(r) = d

[t1] loc(r) = w
[t2] loc(r) = w′
[te] loc(r) = d′

C: adj(d,w), conn(w,w′),
adj(d′,w′),
ts < t1 < t2 < te

Method:

Action templates:

Variables:
r ∈ Robots = {r1,r2}
d, d′ ∈ Docks = {d1,d2}
w, w′ ∈ Waypoints = {w1,w2}
t, t′, t* ∈ Timepoints

ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2
T: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 < tb

Example

d1

d2

r1

r2
• w2

• w1

27Nau – IntEx/GR, Oct 2020
d1

d2

• w1 r1

• w2
r2

Example

Open goals that can be resolved:
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
• Resolve both

ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
T: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 ≤ tb

ϕ1:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

T: [t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
0 < t1 < t2 < tb , 0 < t′1 < t′2 < tb

now = 0

Next = {t1,t′1}
Next* ← ∅
now doesn’t
change

[0,tb] m-move(r1,d1,d2,w1,w2)
T: [0] loc(r1) = d1

[t1] loc(r1) = w1
[t2] loc(r1) = w2
[tb] loc(r1) = d2

C: adj(d1,w1), conn(w1,w2),
adj(d2,w2), 0 < t1 < t2 < tb

[0,tb] m-move(r2,d2,d1,w2,w1)
T: [0] loc(r2) = d2

[t′2] loc(r2) = w2
[t′2] loc(r2) = w1
[tb] loc(r2) = d1

C: adj(d2,w2), conn(w2,w1),
adj(d1,w1), 0 < t′1 < t′2 < tb

loc(r1)

loc(r2)

0 tb tc

d1

d2 d2

d1
loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1 r1

• w2
r2

28Nau – IntEx/GR, Oct 2020

now = 0

Example

[0,t′1] leave(r2,d2,w2)
T: [0,t′1] loc(r2):(d2,w2)

[0 ,t′1] occ(d2):(r2,∅)
C: adj(d1,w1), 2 ≤ t′1

Open goals that can be
resolved:

[t1] loc(r1) = w1,
[t′1] loc(r2) = w2

• Resolve both

ϕ1:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

T: [t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
0 < t1 < t2 < tb , 0 < t′1 < t′2 < tb

ϕ2:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
[t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),

T: [t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb[0,t1] leave(r1,d1,w1)

T: [0,t1] loc(r1):(d1,w1)
[0 ,t1] occ(d1):(r1,∅)

C: adj(d1,w1), 2 ≤ t1
Next = {t1,t′1}
Next* ← {t1}
now ← t1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1r1

• w2
r2

d1

d2

• w1 r1

• w2
r2

29Nau – IntEx/GR, Oct 2020

[t1,t2] navigate(r1,w1,w2):
T: [t1,t2] loc(r1):(w1,w2),
C: conn(w1,w2), t1 < t2

Example
ϕ2:
S: [0] loc(r1) = d1, [0] loc(r2) = d2,

[0] occ(d1) = r1, [0] occ(d2) = r2,
[tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1
[t1] loc(r1) = w1, [t′1] loc(r2) = w2,
[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅)

T: [t2] loc(r1) = w2, [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

now = t1

Open goal that can be
resolved:

[t2] loc(r1) = w2
• Resolve it

Next = {t′1,t2}
Next* ← {t′1}
now ← t′1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1r1

• w2
r2

d1

d2

• w1

• w2
r2

r1

ϕ3:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2),
[t2] loc(r1) = w2

T: [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

30Nau – IntEx/GR, Oct 2020

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

Example
ϕ3:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2),
[t2] loc(r1) = w2

T: [t′2] loc(r2) = w1,
[tb] loc(r1) = d2, [tb] loc(r2) = d1

C: adj(d1,w1), adj(d2,w2),
conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

ϕ4:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t′2] loc(r2) = w1

T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

[t′1,t′2] navigate(r2,w2,w1):
T: [t′1,t′2] loc(r2):(w2,w1),
C: conn(w2,w1), t′1 < t′2

now = t′1

Open goal that can be
resolved:

[t′2] loc(r2) = w1
• Resolve it

Next = {t2,t′2}
Next* ← {t2,t′2}
now ← t2 = t′2

loc(r1)

loc(r2)

0 t1 t′1 t2 t′2 tb tc

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1

• w2
r2

r1

d1

d2

• w1

• w2

r2

r1

31Nau – IntEx/GR, Oct 2020

Example
ϕ4:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t′2] loc(r2) = w1

T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb

ϕ5:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),
[tb] loc(r1) = d2, [tb] loc(r2) = d1

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

[t2,tb] enter(r1,d2,w2)
T: [t2,tb] loc(r1):(w2,d2)

[t2,tb] occ(d2):(∅,r1)
C: adj(d2,w2), t2 < tb

[t′2,tb] enter(r2,d1,w1)
T: [t′2,tb] loc(r2):(w1,d1)

[t′2,tb] occ(d1):(∅,r2)
C: adj(d1,w1), t′2 < tb

now = t2 = t′2

Open goals that can be
resolved:

[tb,tc] loc(r1) = d2
[tb,tc] loc(r2) = d1

• Resolve both

Next = {tb}
Next* ← {tb}
now ← tb

0 t1 t′1 t2=t′2 tb tc

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d10 t1 t′1 t2=t′2 tb tc

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d1

d1

d2

• w1

• w2

r2

r1

d1

d2

• w1

• w2

r2

r1

32Nau – IntEx/GR, Oct 2020

Example
ϕ5:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),
[tb] loc(r1) = d2, [tb] loc(r2) = d1

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

now = tb

No flaws

ϕ6:
S: [tb,tc] loc(r1) = d2, [tb,tc] loc(r2) = d1

[0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),
[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

loc(r1)

loc(r2)

d1

d2

w1

w2w2

w1

d2

d1

0 t1 t′1 t2=t′2 tb tc

d1

d2

• w1

• w2

r2

r1

d1

d2

• w1

• w2

r2

r1

33Nau – IntEx/GR, Oct 2020

ϕ0:
S: [0] loc(r1) = d1, [0] loc(r2) = d2
T: [tb] loc(r1) = d2, [tb] loc(r2) = d1
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
0 < tb

Example

Temporal plan:

loc(r1)

loc(r2)

0 t1 t′1 t2=t′2 tb

d1

d2d2

d1w1

w2w2

w1

loc(r1)

loc(r2)

0 tb

d1

d2d2

d1
{[0,t1] leave(r1,d1,w1),
[0,t′1] leave(r2,d2,w2),
[t1,t2] navigate(r1,w1,w2),
[t′1,t′2] navigate(r2,w2,w1),
[t2,tb] enter(r1,d2,w2),
[t′2,tb] enter(r2,d1,w1)}

d1

d2

r1

r2
• w2

• w1

d1

d2

• w1

• w2

r2

r1

ϕ6:
S: [0,t1] loc(r1):(d1,w1), [0,t′1] loc(r2):(d2,w2),

[0,t1] occ(d1):(r1,∅), [0,t′1] occ(d2):(r2,∅),
[t1,t2] loc(r1):(w1,w2), [t′1,t′2] loc(r2):(w2,w1),
[t2,tb] loc(r1):(w2,d2), [t′2,tb] loc(r2):(w1,d1),
[t2,tb] occ(d2):(∅,r1), [t′2,tb] occ(d1):(∅,r2),

T:
C: adj(d1,w1), adj(d2,w2),

conn(w1,w2), conn(w2,w1),
2 ≤ t1 < t2 < tb , 2 ≤ t′1 < t′2 < tb , t2 = t′2

34Nau – IntEx/GR, Oct 2020

Contributions

● Temporal network formalism is mostly the same as in Ghallab, Nau, & Traverso
▸ Two differences:

• No tasks; temporal methods achieve goals
▸ Will facilitate goal reasoning

▸ Left-to-right planning algorithm (like GDP and GoDeL, but temporal)
• Lower branching factor than plan-space planning
• Always knows current state
• Will facilitate

▸ Online planning (integration of planning and acting)
▸ Simulation-based planning (like RAE+UPOM)
▸ Reasoning about uncertainty

Planning
Acting

35Nau – IntEx/GR, Oct 2020

Questions
● What’s missing?

▸ The actor
▸ How to reason about uncertainty?

▸ action outcomes; action durations; exogenous events
• Generalize the state and action definitions
• Incorporate Monte Carlo rollouts analogous to those in RAE+UPOM

▸ Theoretical results: correctness, completeness, complexity, expressivity, …
▸ Implementation, testing
▸ How to learn actions and methods?
▸ Goal reasoning?

● Is TGN-Forward-Plan the right algorithm?
● Is it even the right approach?

▸ Perhaps use something like Linear Temporal Logic

● Anything else?

