Temporal Goal Networks: Work in Progress

Dana S. Nau University of Maryland

Collaborators:

Mak Roberts (NRL) – co-PI Sunandita Patra – postdoctoral researcher Ruoxi Li, Onur Kulaksizoglu, Mark Cavolowsky, Alex Mendelsohn – PhD students

Research supported in part by ONR grant N000142012257 and NRL grant N0017320P0399

Nau – IntEx/GR, Oct 2020

1

Objective

- Learn and utilize hierarchies of goals and skills
- Use for integrated acting and planning
- Scale to mixed teams of humans, robots, & software

Key

Approach

- Generalization of goal networks to temporal planning
 - Work in progress
 - Today's presentation
- Link goal networks to abstracted RL skills
 - Work in progress
 - I'm not prepared to talk about it
- Algorithms to automatically learn temporal-goal-network hierarchies
 - Not there yet

Key

Top-level

HTN Planning

- For some planning problems, we may already have ideas for how to look for solutions
- Example: travel to a destination that's far away:
 - Brute-force search:
 - many combinations of vehicles and routes
 - Experienced human: small number of "recipes" that decompose tasks into smaller subtasks
 - e.g., flying:
 - 1. buy ticket from local airport to remote airport
 - 2. travel to local airport
 - 3. fly to remote airport
 - 4. travel to final destination
- How can a planner make use of such information?

HTN Planning

method:

HGN Planning

- Recursively use *methods* to decompose *goals* into *subgoals*
- GDP, GoDel* decompose goals left-to-right
 - Like SHOP, SHOP2, Pyhop, always know current state

of domain-independent and hierarchical planning. In IJCAI, pp. 2380-2386, 2013

Also: can reason about goals

method: travel-by-flying(x,y) pre: at(x), long-distance(x,y), airport-near(x,u), airport-near(y,v), subgoals:

have-ticket(u,v), at(u), at(v),

Nau – IntEx/GR, Oct 2020

Planning and Acting^{*}

- Planning: *prediction* + *search*
 - Search over predicted states, ways to organize tasks and actions
 - Has traditionally used *descriptive* models (e.g., PDDL)
 - predict *what* the actions will do
- Acting: *performing* the actions
 - Dynamic, unpredictable, partially observable environment
 - Operational models: tell how to perform the actions in the current context, react to events

* Chapter 4 of Ghallab, Nau, and Traverso, <u>Automated</u> <u>Planning and Acting</u>, Cambridge University Press, 2016.

Planning and Acting*

- Planning: *prediction* + *search*
 - Search over predicted states, ways to organize tasks and actions
 - Has traditionally used *descriptive* models (e.g., PDDL)
 - predict *what* the actions will do
- Acting: *performing* the actions
 - Dynamic, unpredictable, partially observable environment
 - *Operational* models: tell *how* to perform the actions in the current context, react to events
- Planning is online, recurs continually as the world changes (next slide)

* Chapter 4 of Ghallab, Nau, and Traverso, <u>Automated</u> <u>Planning and Acting</u>, Cambridge University Press, 2016.

Planning and Acting

* Patra, Mason, Kumar, Ghallab, Traverso, and Nau. <u>Integrating acting, planning, and learning in hierarchical</u> <u>operational models</u>. *ICAPS*, pp. 478–487, Oct. 2020. Best student paper honorable mention award.

Goal Reasoning*

- Planning and acting, taken a step further
 - Actor may change its goals as the world changes
 - Overlaps with automated planning and acting, cognitive architectures, BDI systems
 - Early works used the Goal-Driven Autonomy model
 - Deliberation extended to include discrepancy detection, goal management and explanation
 - Goal networks support goal reasoning via the *goal lifecycle**

* D.W. Aha. <u>Goal Reasoning: Foundations, Emerging Applications,</u> <u>and Prospects</u>. *AI Magazine*, Vol. 29, No. 2, pp. 3-24.

Plan-Space Planning

- Two kinds of *flaws*:
 - *Open goal*: unachieved precondition
 - To resolve: find or add an action that achieves it
 - *Threat*: potential interference with an achieved precondition
 - To resolve: add constraints that remove the interference

Plan-space planning:start with a dummy plan (initial state, goal)loopif no flaws, exit with successchoose a flaw fif f is unresolvable, exit with failurenondeterministically choose a way to resolve f

Plan-Space Planning

- Disadvantages:
 - large branching factor huge search space on large problems
 - can't do receding horizon, planning as simulation
- Advantage: flexibility of solution
- Planning involves making *commitments*
 - e.g., use action a_1 to satisfy preconditions of action a_2
- Least commitment principle:
 - Look for a solution plan that makes as few commitments as possible
 - Solution plan may be partially ordered, partially instantiated
- In temporal plans, this can provide flexibility for
 - resource scheduling
 - responding to unexpected events
- Temporal plan-space planning has been used in many NASA projects

Temporal Planning

- "Classical" AI planning algorithms use a *state-oriented view*
 - Time is a sequence of states s_0, s_1, s_2
 - Actions instantaneously transform each state into the next one
- *Time-oriented view*:
 - For each state variable *x*, a *timeline*
 - values of *x* over time
 - State at time t = {values of state-variable at time t}
- *Chronicle representation:*
 - notation for a collection of timelines and constraints
- TPS planning algorithm*
 - temporal version of plan-space planning
 - * Chapter 14 of Ghallab, Nau, and Traverso, <u>*Automated*</u> <u>*Planning: Theory and Practice*</u>, Morgan Kaufmann, 2004.

temporal assertions:

 $[0,t_1]$ loc(r1):(dock1,w1), $[t_1,t_2]$ loc(r1):(w1,w2),

[0,*t*₁] occupant(dock1):(r1,empty),

[t₁,t₂] occupant(dock1) = empty

constraints:

adjacent(dock1,w1), connected(w1,w2), $t_0 < t_1 < t_2$

Hierarchical Temporal Planning

- Chronicle representation of methods
 - May have multiple methods for the same goal
- TemPlan algorithm* \approx TPS plus task refinement

* Chapter 4 of Ghallab, Nau, and Traverso, <u>Automated</u> <u>Planning and Acting</u>, Cambridge University Press, 2016.

```
m-move(r,d,d',w,w')
                            // go to another loading dock
  task: move(r,d)
  refinement:
         [t_s, t_1] leave(r, d', w')
         [t_2, t_3] navigate(r, w', w)
         [t_4, t_e] enter(r, d, w)
  assertions:
         [t_{s}, t_{s}+1] loc(r) = d'
 constraints:
         adjacent(d,w), connected(w,w'),
         adjacent(d', w'), t_1 \leq t_2, t_3 \leq t_4
```

Temporal Goal Networks

- Representation similar to what TemPlan uses*
 - But no tasks
 - Methods for goals, not tasks
- Planning algorithm similar to TemPlan
 - But doesn't use plan-space planning
 - It steps a "current time" left-to-right
 - resolves flaws in the order that it comes to them

* Chapter 4 of Ghallab, Nau, and Traverso, <u>Automated</u> <u>Planning and Acting</u>, Cambridge University Press, 2016.

Motivation

• Recall:

- HTN planning: SHOP, SHOP2, SHOP3, Pyhop
- HGN planning: GDP, Godel
- Integrated acting and planning: RAE+UPOM
- Decompose tasks/goals left-to-right
 - Always know current state
 - State can be an arbitrary data structure
 - Preconditions & effects can be arbitrary computations
- Broadens scope of applicability
- Enables planning with real-time constraints
- Want to do the same for temporal planning

- A chronicle includes
 - temporal assertions
 - *change*, e.g., $[0,t_1] loc(r1):(dock1,w1)$
 - *persistence*, e.g., $[t_1, t_2]$ occupant(dock1) = Ø
 - if $t_1 = t_2$ then the assertion is *instantaneous*

φ:

- constraints
 - on *objects*, e.g., $r \neq r1$
 - on time points, e.g., $t_0 < t_1 < t_2$
- Let $C = \{ all the constraints \}$
- Divide the temporal assertions into two sets
 - $T = \{ \text{the unsupported assertions} \}$
 - how did r1 get to w2?
 - $S = \{$ the *supported* assertions $\}$
 - we know how occupant(d1) became Ø
 - we're told that initially loc(r1) = dock1, occupant(d1) = r1

- Action template:
 - head (name and parameter list)
 - starting and ending times t_s , t_e
 - set \mathcal{T} of unsupported assertions
 - ▶ set *C* of constraints
- Action: an *instance* of an action
 - substitute values for variables
- No supported assertions
 - if you insert an action into a chronicle, you need to figure out how to support it

• Method instance: subs $\begin{bmatrix} t_s, t_e \end{bmatrix} \text{m-move}(r, d, d', w, w')$ $T: \quad \begin{bmatrix} t_s \end{bmatrix} \text{loc}(r) = d'$ $\begin{bmatrix} t_1 \end{bmatrix} \text{loc}(r) = w'$

 $[t_2] \operatorname{loc}(r) = w$

 $[t_e] \log(r) = d$

adj(d',w'),

C: adj(d,w), conn(w,w'),

 $t_{s} < t_{1} < t_{2} < t_{\rho}$

head (name and parameter list) starting and ending times t_s, t_e

• *Method*:

- set \mathcal{T} of *subgoals*: unsupported persistence assertions
 - No change assertions
 - Can't make a change happen, can only create subgoals
- *Method instance*: substitute values for variables

 $[0,t_b]$ m-move(r1,d1,d2,w1,w2)

C: adj(d1,w1), conn(w1,w2),

 \mathcal{T} : [0] loc(r1) = d1

adj(d2,w2),

 $0 < t_1 < t_2 < t_h$

 $[t_1] loc(r1) = w1$

 $[t_2] loc(r1) = w2$

 $[t_b] \log(r1) = d2$

In Ghallab et al (2016), the body of a method contained *no* temporal assertions – just tasks and method instances

Applicable action or method

- Let $\phi = (S, \mathcal{T}, C)$ be a chronicle
 - a = an action or method
- Let:
 - Let A = {all temporal assertions in a whose starting time is the same as a's starting time}
 - *a* is *applicable* in ϕ *at time t* if
 - (1) *a*'s starting time is t
 - (2) ϕ causally supports *A*
 - (3) *a* causally supports a temporal assertion $\alpha \in \mathcal{T}$
- Note: (3) prevents action chaining
 - Analogous to a restriction in GDP
 - We could omit (3), but then we would need to figure out how to control the search

 $[0,t_1]$ leave(r1,d1,w1): $T_{i+1}[0,t_1] \log(r1):(d1,w1), A = \{[0,t_1] | loc(r1):(d1,w1),$ \rightarrow [0, t_1] occ(d1):(r1, \emptyset) $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset)$ *C*: adj(d1,w1) ϕ_0 : S: [0] loc(r1) = d1, $[0] \operatorname{occ}(d1) = r1$ $\alpha = \{ [t_1] | loc(r1) = w1 \}$ \mathcal{T} : $[t_1] \log(r1) = w1$ *C*: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 \leq t_h$

Chronicles as Planning Problems

- As in plan-space planning, need to resolve all *flaws*
- In TPS and TemPlan
 - Unsupported temporal assertion
 - e.g., [*t*₂,*t*₃] loc(r1):(w2,d2)
 - ► Goal: cause loc(r1)=w2 at time *t*₂
 - Resolver: a supported action
 - *Threats*: things that may interfere with chronicle's consistency
 - e.g., $[t_0,t_1] \log(r1):(d1,w1), [t_2,t_3] \log(r1):(w2,d2)$
 - if $0 < t_2 \le t_1 \le t_3$, r1 is at two places at the same time
 - Resolver: a new constraint $t_1 < t_2$
- To get something more like GDP and GoDel:
 - Need a current time *now* that we step left-to-right
 - Resolve flaws that can be resolved at time *now*

φ:

Flaws (2)

Flaw type 2: a pair of temporal assertions $\{\alpha,\beta\}$ that *possibly conflict*

• i.e., they can have inconsistent instances

e.g., if $t_3 < t_2$, r1 is in two places at once

- As in TPS and TemPlan, but resolvers must be usable at time *now*
 - Can't change the past
- *Resolvers* applicable at time *now*:
 - Various ways of adding constraints to resolve the inconsistencies
 - I'll skip them
 - Lots of special cases
 - I'm not sure I have all of them right

Planning Algorithm

- Variable *now* representing current time
- Step *now* through the time points in φ, in an order that satisfies the constraints in C
 - As we go, add time constraints to enforce the order we're creating
- ► For each value of *now*,
 - resolve some of the flaws that can be resolved at time *now*
 - *i.e.*, flaws having resolvers that are applicable at time *now*
 - Choose what time point(s) to use for the next value of *now*

TGN-Forward-Plan(ϕ, Σ) $now = \phi$'s starting time; $plan = \phi$ loop: if ϕ contains no flaws then return (ϕ , *plan*) if ϕ contains an unresolvable flaw then return failure nondeterministically choose $F \subseteq \{$ flaws that can be resolved at time *now* $\}$ if $F \neq \emptyset$ then for every $f \in F$ nondeterministically choose a resolver ρ for fthat can be used at time *now* $\phi = \text{Transform}(\phi, \rho)$ add ρ to *plan Next* = {time points in ϕ that may come next} nondeterministically choose $Next^* \subseteq Next$ if $Next^* \neq \emptyset$ then $next \leftarrow any \ t \in Next$ $C \leftarrow C \cup \{now < next\} \cup \{t=next \mid t \in Next^*\}$ $now \leftarrow next$

- S: [0] loc(r1) = d1, [0] loc(r2) = d2,[0] occ(d1) = r1, [0] occ(d2) = r2
- \mathcal{T} : $[t_b, t_c] \log(r1) = d2$, $[t_b, t_c] \log(r2) = d1$

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 < t_b$

Example

Variables:

 $r \in Robots = \{r1, r2\}$ $d, d' \in Docks = \{d1, d2\}$ $w, w' \in Waypoints = \{w1, w2\}$ $t, t', t_* \in Timepoints$

Method:

m-move(r,d,d',w,w') $\mathcal{T}: [t_s] \operatorname{loc}(r) = d$ $[t_1] \operatorname{loc}(r) = w$ $[t_2] \operatorname{loc}(r) = w'$ $[t_e] \operatorname{loc}(r) = d'$ $C: \operatorname{adj}(d,w), \operatorname{conn}(w,w'),$ $\operatorname{adj}(d',w'),$ $t_s < t_1 < t_2 < t_e$

• d1, d2 are loading docks

• only big enough to hold one vehicle at a time

Action templates:

leave(r,d,w): $\mathcal{T}: [t_s, t_e] \operatorname{loc}(r):(d,w),$ $[t_s, t_e] \operatorname{occ}(d):(r, \emptyset)$ $C: \operatorname{adj}(d, w), t_s + 2 \leq t_e$ enter(r,d,w): $\mathcal{T}: [t_s, t_e] \operatorname{loc}(r):(w,d),$ $[t_s, t_e] \operatorname{occ}(d):(\emptyset, r)$ $C: \operatorname{adj}(w,d)$

navigate(r, w, w'): $T: [t_s, t_e] loc(r):(w, w')$ C: conn(w, w') ϕ_0 :

- S: [0] loc(r1) = d1, [0] loc(r2) = d2,[0] occ(d1) = r1, [0] occ(d2) = r2,
- $T: [t_b, t_c] loc(r1) = d2, [t_b, t_c] loc(r2) = d1$
- C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 \le t_b$

Example

now = 0

Open goals that can be resolved: $[t_b,t_c] \log(r1) = d2, [t_b,t_c] \log(r2) = d1$

- Resolve both
- [0,*t_b*] m-move(r1,d1,d2,w1,w2) T: [0] loc(r1) = d1 $[t_1] \log(r1) = w1$ $[t_2] \log(r1) = w2$ $[t_b] \log(r1) = d2$ *C*: adj(d1,w1), conn(w1,w2), $adj(d2,w2), 0 \le t_1 \le t_2 \le t_b$ $[0,t_h]$ m-move(r2,d2,d1,w2,w1) \mathcal{T} : [0] loc(r2) = d2 $[t'_2] \log(r^2) = w^2$ $[t'_2] \log(r^2) = w^1$ $[t_h] \log(r^2) = d1$ C: adj(d2,w2), conn(w2,w1), $adj(d1,w1), 0 \le t'_1 \le t'_2 \le t_h$

 ϕ_1 :

- S: [0] loc(r1) = d1, [0] loc(r2) = d2, [0] occ(d1) = r1, [0] occ(d2) = r2, [t_b, t_c] loc(r1) = d2, [t_b, t_c] loc(r2) = d1
- \mathcal{T} : $[t_1] \log(r1) = w1, [t'_1] \log(r2) = w2,$ $[t_2] \log(r1) = w2, [t'_2] \log(r2) = w1,$ $[t_b] \log(r1) = d2, [t_b] \log(r2) = d1$

r1

0<mark>0100</mark>

• w1

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 < t_1 < t_2 < t_b$, $0 < t'_1 < t'_2 < t_b$

 $Next = \{t_1, t'_1\}$ $Next^* \leftarrow \emptyset$ now doesn'tchange

 $6 d2^{\infty}$

- ϕ_1 : S: [0] loc(r1) = d1, [0] loc(r2) = d2, $[0] \operatorname{occ}(d1) = r1, [0] \operatorname{occ}(d2) = r2,$
 - $[t_{h},t_{c}] \log(r1) = d2, [t_{h},t_{c}] \log(r2) = d1$
 - T: $[t_1] \log(r1) = w1, [t'_1] \log(r2) = w2,$ $[t_2] \log(r1) = w2, [t'_2] \log(r2) = w1,$ $[t_h] \log(r1) = d2, [t_h] \log(r2) = d1$
 - *C*: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 < t_1 < t_2 < t_b$, $0 < t'_1 < t'_2 < t_b$

 ϕ_2 :

loc(r2)

now = 0

Open goals that can be resolved:

- $[t_1] \log(r1) = w1,$ $[t'_1] \log(r^2) = w^2$
- Resolve both •

 $[0,t_1]$ leave(r1,d1,w1) $T: [0,t_1] \log(r1):(d1,w1)$ $[0, t_1]$ occ(d1):(r1,Ø) *C*: adj(d1,w1), $2 \le t_1$

 $[0,t'_1]$ leave(r2,d2,w2) $T: [0, t'_1] loc(r2):(d2, w2)$ $[0, t'_1] \operatorname{occ}(d2):(r2, \emptyset)$ *C*: adj(d1,w1), $2 \le t'_1$

 $Next^* \leftarrow \{t_1\}$ loc(r1) w1 $now \leftarrow t_1$ $t_2 t'_2 t_b t_c$ 0 $t_1 t'_1$ r2 d2 • w2 • w1 d1

S: [0] loc(r1) = d1, [0] loc(r2) = d2,

 $[0] \operatorname{occ}(d1) = r1, [0] \operatorname{occ}(d2) = r2,$

 $[t_b, t_c] \log(r1) = d2, [t_b, t_c] \log(r2) = d1$

 $[0,t_1]$ loc(r1):(d1,w1), $[0,t'_1]$ loc(r2):(d2,w2),

 $[0,t_1]$ occ(d1):(r1, \emptyset), $[0,t'_1]$ occ(d2):(r2, \emptyset),

 $[t_1] \log(r1) = w1, [t'_1] \log(r2) = w2,$

 $T: [t_2] loc(r1) = w2, [t'_2] loc(r2) = w1,$

C: adj(d1,w1), adj(d2,w2),

- $\phi_{2}: \\ S: \ [0] \ |oc(r1) = d1, [0] \ |oc(r2) = d2, \\ [0] \ occ(d1) = r1, [0] \ occ(d2) = r2, \\ [t_{b},t_{c}] \ |oc(r1) = d2, [t_{b},t_{c}] \ |oc(r2) = d1 \\ [t_{4}] \ |oc(r1) = w1, [t'_{4}] \ |oc(r2) = w2, \\ [0,t_{1}] \ |oc(r1):(d1,w1), [0,t'_{1}] \ |oc(r2):(d2,w2), \\ [0,t_{1}] \ occ(d1):(r1,\emptyset), [0,t'_{1}] \ occ(d2):(r2,\emptyset)$
 - $\mathcal{T}: [t_2] \log(r1) = w2, [t'_2] \log(r2) = w1, [t_b] \log(r1) = d2, [t_b] \log(r2) = d1$

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$

 $now = t_1$

Open goal that can be resolved:

 $[t_2] \operatorname{loc}(r1) = w2$

• Resolve it

 ϕ_3 :

- $\begin{array}{l} \mathcal{S}: \quad [t_b,t_c] \ \mathsf{loc}(r1) = \mathsf{d2}, \ [t_b,t_c] \ \mathsf{loc}(r2) = \mathsf{d1} \\ \quad [0,t_1] \ \mathsf{loc}(r1):(\mathsf{d1},\mathsf{w1}), \ [0,t'_1] \ \mathsf{loc}(r2):(\mathsf{d2},\mathsf{w2}), \\ \quad [0,t_1] \ \mathsf{occ}(\mathsf{d1}):(r1,\emptyset), \ [0,t'_1] \ \mathsf{occ}(\mathsf{d2}):(r2,\emptyset), \\ \quad [t_1,t_2] \ \mathsf{loc}(r1):(\mathsf{w1},\mathsf{w2}), \\ \quad [t_2] \ \mathsf{loc}(r1) = \mathsf{w2} \end{array}$
- $\mathcal{T}: [t'_2] \log(r^2) = w^1,$ [t_b] loc(r^1) = d^2, [t_b] loc(r^2) = d^1
- C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$

 $[t_1, t_2]$ navigate(r1,w1,w2): T: $[t_1, t_2]$ loc(r1):(w1,w2), C: conn(w1,w2), $t_1 \le t_2$

- ϕ_3 :
 - S: $[t_b,t_c] \log(r1) = d2, [t_b,t_c] \log(r2) = d1$ $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1,t_2] \log(r1):(w1,w2),$ $[t_2] \log(r1) = w2$
 - $\mathcal{T}: [t'_2] \log(r^2) = w_1,$ [t_b] loc(r1) = d2, [t_b] loc(r2) = d1
 - C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$

Example

 ϕ_4 :

 $now = t'_1$

Open goal that can be resolved:

 $[t'_2] \log(r^2) = w^1$

• Resolve it

4. S: $[t_b,t_c] \log(r1) = d2, [t_b,t_c] \log(r2) = d1$ $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1,t_2] \log(r1):(w1,w2), [t'_1,t'_2] \log(r2):(w2,w1),$ $[t'_2] \log(r2) = w1$

$$\mathcal{T}$$
: $[t_b] \operatorname{loc}(r1) = d2, [t_b] \operatorname{loc}(r2) = d1$

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$

 $[t'_1, t'_2]$ navigate(r2,w2,w1): T: $[t'_1, t'_2]$ loc(r2):(w2,w1), C: conn(w2,w1), $t'_1 < t'_2$

Nau – IntEx/GR, Oct 2020

- ϕ_4 :
 - S: $[t_b, t_c] \log(r1) = d2, [t_b, t_c] \log(r2) = d1$ $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1, t_2] \log(r1):(w1, w2), [t'_1, t'_2] \log(r2):(w2, w1),$ $[t'_2] \log(r^2) = w^1$
 - $T: [t_b] loc(r1) = d2, [t_b] loc(r2) = d1$
 - *C*: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$

Example

now =
$$t_2 = t'_2$$

Open goals that can be resolved:

 $[t_b, t_c] \log(r1) = d2$ $[t, t_1] \log(r^2) = d1$

$$[l_b, l_c]$$
 IOC(12) -

Resolve both

 $[t_2, t_b]$ enter(r1,d2,w2) **T**: $[t_2, t_b] \log(r1):(w2, d2)$ $[t_2, t_b]$ occ(d2):(Ø,r1) C: adj(d2,w2), $t_2 \le t_h$

 $[t'_2, t_b]$ enter(r2,d1,w1) $T: [t'_{2}, t_{b}] loc(r2):(w1, d1)$ $[t'_{2}, t_{b}] \operatorname{occ}(d1):(\emptyset, r2)$ *C*: adj(d1,w1), $t'_2 < t_b$

 ϕ_5 : S: $[t_b, t_c] \log(r1) = d2, [t_b, t_c] \log(r2) = d1$ $[0,t_1]$ loc(r1):(d1,w1), $[0,t'_1]$ loc(r2):(d2,w2), $[0,t_1]$ occ(d1):(r1, \emptyset), $[0,t'_1]$ occ(d2):(r2, \emptyset), $[t_1, t_2] \log(r1):(w1, w2), [t'_1, t'_2] \log(r2):(w2, w1),$ $[t_2, t_b] \log(r1):(w2, d2), [t'_2, t_b] \log(r2):(w1, d1),$ $[t_2, t_b] \operatorname{occ}(d2):(\emptyset, r1), [t'_2, t_b] \operatorname{occ}(d1):(\emptyset, r2),$

$$[t_b] \log(r1) = d2, [t_b] \log(r2) = d1$$

 \mathcal{T} :

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_h, 2 \le t'_1 < t'_2 < t_h, t_2 = t'_2$ ϕ_5 :

S: $[t_b,t_c] \log(r1) = d2, [t_b,t_c] \log(r2) = d1$ $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1,t_2] \log(r1):(w1,w2), [t'_1,t'_2] \log(r2):(w2,w1),$ $[t_2,t_b] \log(r1):(w2,d2), [t'_2,t_b] \log(r2):(w1,d1),$ $[t_2,t_b] \operatorname{occ}(d2):(\emptyset,r1), [t'_2,t_b] \operatorname{occ}(d1):(\emptyset,r2),$ $[t_b] \log(r1) = d2, [t_b] \log(r2) = d1$

\mathcal{T} :

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$, $t_2 = t'_2$ Example

 $now = t_b$

No flaws

S: $[t_b,t_c] \log(r1) = d2, [t_b,t_c] \log(r2) = d1$ $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1,t_2] \log(r1):(w1,w2), [t'_1,t'_2] \log(r2):(w2,w1),$ $[t_2,t_b] \log(r1):(w2,d2), [t'_2,t_b] \log(r2):(w1,d1),$ $[t_2,t_b] \operatorname{occ}(d2):(\emptyset,r1), [t'_2,t_b] \operatorname{occ}(d1):(\emptyset,r2),$

\mathcal{T} :

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_b$, $2 \le t'_1 < t'_2 < t_b$, $t_2 = t'_2$

Nau – IntEx/GR, Oct 2020

32

r1

• w2

r2

d1^{co}

• w1

⁶d2 [∞]

 ϕ_0 :

S: [0] loc(r1) = d1, [0] loc(r2) = d2

$$\mathcal{T}$$
: $[t_b] \operatorname{loc}(r1) = d2, [t_b] \operatorname{loc}(r2) = d1$

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $0 \le t_h$

• w2

r1

d1

r2

 ∞

dŹ

Example

Temporal plan:

 $\{[0, t_1] | eave(r1, d1, w1),$ $[0,t'_1]$ leave(r2,d2,w2), $[t_1, t_2]$ navigate(r1,w1,w2), $[t'_1, t'_2]$ navigate(r2,w2,w1) $[t_2, t_b]$ enter(r1,d2,w2), $[t'_{2}, t_{b}]$ enter(r2,d1,w1)}

S: $[0,t_1] \log(r1):(d1,w1), [0,t'_1] \log(r2):(d2,w2),$ $[0,t_1] \operatorname{occ}(d1):(r1,\emptyset), [0,t'_1] \operatorname{occ}(d2):(r2,\emptyset),$ $[t_1, t_2] \log(r1):(w1, w2), [t'_1, t'_2] \log(r2):(w2, w1),$ $[t_2, t_b] \log(r1):(w2, d2), [t'_2, t_b] \log(r2):(w1, d1),$ $[t_2, t_b] \operatorname{occ}(d2):(\emptyset, r1), [t'_2, t_b] \operatorname{occ}(d1):(\emptyset, r2),$

\mathcal{T} :

C: adj(d1,w1), adj(d2,w2), conn(w1,w2), conn(w2,w1), $2 \le t_1 < t_2 < t_h, 2 \le t'_1 < t'_2 < t_h, t_2 = t'_2$

Nau – IntEx/GR, Oct 2020

• w1

Contributions

- Temporal network formalism is mostly the same as in Ghallab, Nau, & Traverso
 - Two differences:
 - No tasks; temporal methods achieve goals
 - Will facilitate goal reasoning
 - Left-to-right planning algorithm (like GDP and GoDeL, but temporal)
 - Lower branching factor than plan-space planning
 - Always knows current state
 - Will facilitate
 - Online planning (integration of planning and acting)
 - Simulation-based planning (like RAE+UPOM)
 - Reasoning about uncertainty

Questions

- What's missing?
 - The actor
 - How to reason about uncertainty?
 - action outcomes; action durations; exogenous events
 - Generalize the state and action definitions
 - Incorporate Monte Carlo rollouts analogous to those in RAE+UPOM
 - Theoretical results: correctness, completeness, complexity, expressivity, ...
 - Implementation, testing
 - How to learn actions and methods?
 - Goal reasoning?
- Is TGN-Forward-Plan the right algorithm?
- Is it even the right approach?
 - Perhaps use something like Linear Temporal Logic
- Anything else?