
Game-Tree Search with Combinatorially Large Belief States

Austin Parker, Dana Nau, V.S. Subrahmanian
Department of Computer Science, University of Maryland

College Park, MD, 20742, USA
Email: {austinjp,nau,vs}@cs.umd.edu

Abstract

In games such as kriegspiel chess (a chess variant
where players have no direct knowledge of the op-
ponent’s pieces’ locations) the belief state’s sizes
dwarf those of other partial information games like
bridge, scrabble, and poker–and there is no easy
way to generate states satisfying the given observa-
tions. We show that statistical sampling approaches
can be developed to do well in such games.
We show that it is not necessary for the random
sample to consist only of game boards that satisfy
each and every one of a player’s observations. In
fact, we win 24% more often by beginning with
such completely consistent boards and gradually
switching (as the game progressed) to boards that
are merely consistent with the latest observation.
This surprising result is explained by noting that as
the game progresses, a board that is consistent with
the last move becomes more and more likely to be
consistent with the entire set of observations, even
if we have no idea what sequence of moves might
have actually generated this board.

1 Introduction
One of the biggest difficulties in using game-tree search al-
gorithms in imperfect-information games is that the game
trees have huge branching factors. Usually thebelief-state
size(the number of current states that are consistent with ev-
erything a player knows about the game) is combinatorially
large. Hence the number of moves that the opponentmight
be able to make, and the number of states that these moves
might lead to, are also quite large.

The best known way to circumvent this problem is to
do statistical sampling: to generate a set of random game
boards consistent with the current belief state, do a perfect-
information game-tree search on each of those game boards,
and average the minimax values. This has worked well in
games such as bridge[Smith et al., 1998; Ginsberg, 1999],
scrabble[Sheppard, 2002], and poker[Billings et al., 2003].

The success of statistical sampling in the above games
relates, at least in part, to several conditions that do not
hold in various other imperfect-information games, such as

kriegspiel chess, Civilization, StarCraft, Quake3, Counter-
Strike, and FreeCiv. More specifically:

• Belief-state size.Bridge, poker, and scrabble have rela-
tively small belief states. At the start of a bridge hand, the
size of each player’s belief state is about 10,000,000 after
the dummy’s cards have been exposed; and this number
decreases exponentially as the game proceeds. Although
10,000,000 may seem like a large number, it is dwarfed by
the belief-state sizes in several other games. For example,
in kriegspiel chess,1 the size of each belief state at mid-
game is well above1013; and in thesmall world map for
FreeCiv, the belief-state size is about1030.

• Uncertainty model.The uncertainty in bridge, poker, and
scrabble is due to external factors that can easily be mod-
eled stochastically: the random deal of the cards in bridge
or poker, and the random choice of a tile in Scrabble. Thus
it is easy to tell whether or not a states is consistent with
a belief stateb, and to assign a probability tos givenb.
In games such as kriegspiel chess, the uncertainty arises
from lack of observability of the opponent’s actions. This
uncertainty has no simple stochastic model. Instead,
telling whether a states is consistent with the current be-
lief stateb means checking whether there is ahistory(i.e.,
a sequence of moves) that is consistent withb and leads to
s. In the average case, this takes exponential time.

• Simplifying approximations.In bridge and poker, usually
the statistical sampling is not done on the game itself, but
on a simplified approximation in which the state space and
belief states are much smaller. In bridge, the approxima-
tion is done by treating various sets of states as if they
were equivalent, a technique that was first used in the game
of sprouts[Applegateet al., 1991]. In poker, a linear-
programming approximation has been used[Billings et al.,
2003]. In kriegspiel chess, it is unclear how or whether
such an approximation could be constructed.

To summarize, our objective is to determine how to make
game-tree search work successfully in imperfect-information
games that have huge belief states, no simple stochastic
model of uncertainty, and no obvious way to construct a sim-
plified approximation of the game. Our results are:

1Kriegspiel chess is like ordinary chess except that neither player
can see the other’s pieces. Section 3 gives a fuller description.

procedure Choose-move(S)
M ← {moves applicable to states in S}
for every s ∈ S and every m ∈M do

vs,m ← Evaluate-board(γ(s,m))
return argmaxm∈M

∑
s∈S vs,mP (s)

Figure 1: Abstract statistical-sampling algorithm for move eval-
uation. Evaluate-board is a perfect-information search algorithm
such as alpha-beta.

1. We describe several algorithms for generating the random
sample of game boards used in the tree search. AOSP
generates game boards that are consistent with the entire
sequenceO of observations that a player has made during
the game. LOS only requires consistency with the last
observationoi. HS behaves like AOSP at the beginning of
the game, but as the game progresses it gradually switches
over to behaving like LOS.

2. We analyze the performance of our algorithms theoreti-
cally. Surprisingly, our analysis suggests that there are
cases in which LOS will play well and HS will do better
than AOSP.

3. Our experimental tests in the game of kriegspiel chess
confirm our analysis’ hypotheses. In our experiments,
Timed LOS (LOS with a time limit) did much better than
random play, Timed AOSP did much better than Timed
LOS; and Timed HS did much better than Timed AOSP.

2 Game-Tree Search with Statistical Sampling
To describe how statistical sampling is used for game-tree
search in imperfect-information games, we need an abstract
model for the kinds of games where it is used. For simplicity,
we assume the game is zero-sum and there are two players
p1, p2 who move in alternation.

As the game progresses, the players’ moves will generate
a sequence of statesSi = 〈s0, s1, . . .〉 called thegame his-
tory. At each statesi, each playerpj will be able to make an
observationoij of si; usuallyoij will include complete infor-
mation aboutpj ’s position and partial information about the
other player’s position. Atsi, playerpj ’s observation history
is Oij = 〈o1j , o2j , . . . , oij〉, andpj ’s belief stateis bij = {all
states that satisfyOij}.

Our sampling algorithms will be based on the following
properties of a states: s is last-observation consistentif it
is consistent withoij , andall-observation consistentif it is
consistent withOij .

Figure 1 shows an abstract version of statistical game-tree
search.S is the sample set of states,γ(s,m) is the state pro-
duced by performing movem in states, Evaluate-board
is a perfect-information game-tree-search algorithm such as
alpha-beta, andP is a probability distribution over the states
in S. Some additional code must be added to handle the case
where a movem is applicable to some states but not others;
this code tends to be game-specific and we discuss it further
in Section 4.

We now can define four different sampling algorithms that
provide input forChoose-move. In each case,k is the de-

sired number of states in the statistical sample, andi is how
many moves the players have played so far.

• LOS (LastObservationSampling) If there are fewer than
k last-observation consistent states, then letS contain all
of them; otherwise letS containk such states chosen at
random. ReturnChoose-move(S).

• AOS (All ObservationSampling): LetS = ∅. Generate
a random history〈s1, . . . , si〉. If the history satisfiesOij ,
then addsi to S. Do this repeatedly until|S| = k. Return
Choose-move(S).

• AOSP (All ObservationSampling withPool): AOSP re-
turns both a move and a set of states (a pool) forpj to
use as input to AOSP next move. Every state in the
pool is to be consistent withOij , though we do not as-
sume that all such states are in the pool. LetS0 be the
pool AOSP returned last time, andM = {all of the
other player’s possible responses topj ’s last move}. Let
S1 = {γ(s,m) | s ∈ S0,m ∈ M , m is applicable
to s, andγ(s,m) satisfiesOij}. If |S1| < k, then let
S2 = S1; otherwise letS2 contain k states chosen at
random fromS1. Let m = Choose-move(S2). Return
(m, {γ(s,m) | s ∈ S1}).

• HS (Hybrid Sampling): Like AOSP, HS returns a move
and a set of states. ComputeS1 andS2 same as in AOSP.
If |S2| < k then letS3 be a set ofk − |S2| random last-
observation consistent states; otherwiseS3 = ∅. Let m =
Choose-move(S2∪S3). Return(m, {γ(s,m) | s ∈ S1}).

Analyzing the performance of these algorithms is impos-
sible without making simplifying assumptions, but there is
more than one set of assumptions one might make. Below we
do two analyses, based on two different sets of assumptions.
The differing assumptions lead to differing conclusions about
which algorithm will do better.
Analysis 1: Suppose each state has exactlyb children, for
some constantb. Suppose that we know all ofpj ’s moves but
not the other player’s moves. If the number of states is very
large (e.g.,1013 or 1030 as described earlier), then during the
early stages of the game, the number of states grows expo-
nentially, with roughlybi/2 possible states at thei’th move.
Suppose that for each states where it is the other player’s
move, the observation historyOij eliminates, on the aver-
age, some fraction1/c of that player’s possible moves, where
c > 1. Then the number of possible states at thei’th move
givenOij is (b/c)i/2. Thus the probability of any individual
state at depthi being consistent withOij is (1/c)i/2, which
approaches 0 at an exponential rate asi increases.

Thus, if the game continues to grow as a tree with a branch-
ing factor ofb, then our analysis suggests the following:

• AOS will be computationally intractable. The probability
of a random history being consistent withbi is likely to be
something like1/ci/2. Thus, in order to produce a sam-
ple of sizek, AOS will probably need to generatek · ci/2

histories, taking exponential time.
• AOSP is much more efficient computationally than AOS,

but its sample setS2 will decrease in size as the game pro-
gresses. The probability of a states’s successors being

consistent withbi is 1/c, sinces is already known to be
consistent withbi−1. Hence the amount of time needed
to generatek states forS2 does not increase as quickly as
it would if we generated the states from random histories
like AOS does. It is still the case, however, that as the game
progresses,S2 will soon become too small for the results
to have much statistical significance and AOSP’s play will
begin to resemble random play.

• Each board generated by LOS is unlikely to be consistent
with the current belief state; thus the values computed by
LOS are likely to be close to random.

• At the beginning of the game, HS will behave identically
to AOSP. As the game proceeds and the size ofS2 de-
creases, HS will put more and more randomly generated
boards intoS3, thus making the results more noisy. Thus
HS’s quality of play is likely to be worse than AOSP’s.

Analysis 2: If there aren possible states in the game, then
the number of moves at each level cannot continue to grow
exponentially, but will eventually flatten out. The game
“tree” will be a graph rather than a tree, withn nodes (at
most) at each depth, one for each possible state. There will
be b edges from each node at depthi to nodes at depth
i + 1, 1/c of which are consistent with any given obser-
vation; suppose these edges go to a random set of nodes.
Then for each states, the probability (under certain indepen-
dence assumptions) that it is reachable ini moves is about
min(1, (n − 1)i−3((b/c)/(n − 1))i−1). In other words, the
probability that a randomly chosen states has a history con-
sistent withOij approaches 1 at exponentially. This suggests
the following:

• As the game proceeds, the amount of time needed by AOS
will eventually level off; its upper bound will ben times
the amount of time needed by each call to the classical
game-tree search algorithm.

• Rather than degrading to random play as in Analysis 1,
AOSP’s quality of play will eventually level off at some
level above that, depending on the number of states avail-
able in the pool.

• As the game proceeds, the probability of a randomly gen-
erated board being consistent with the current belief state
will increase toward 1; thus LOS will produce increasingly
good quality of play. However, its play will be limited by
the fact that it has no good way to assign relative probabil-
ities to its randomly generated boards.

• At the beginning of the game, HS will behave identically
to AOSP. As the game proceeds and AOSP’s sample size
decreases, HS will fill up the rest of the sample with ran-
domly generated boards—but as the game proceeds, it will
become increasingly likely that these randomly chosen
boards are consistent with the current belief state. Thus
HS’s quality of play is likely to be better than AOSP’s.

Summary. With the first set of assumptions, AOSP is likely
to perform much better than LOS, and somewhat better than
HS. With the second set of assumptions, it is unclear which
of LOS and AOSP will be better, but HS is likely to perform
better than AOS, AOSP, and LOS.

Since both sets of assumptions represent extremal cases,
our hypotheses are that in many games the actual perfor-
mance is likely to be somewhere in between, such that HS
will perform somewhat better than AOSP. In other words, we
hypothesize that in many games, if last-observation consis-
tent boards are included in the statistical sample later in the
game, this will help rather than hurt the evaluations. Section
5 describes our experimental test of that hypothesis.

3 Kriegspiel Chess
As our test domain, we chose the game ofkriegspiel chess
[Li, 1994; 1995]. This game is like chess except that neither
player can see the other’s pieces. When playerx captures one
of playery’s pieces, a referee announces that he/she has made
a capture but not what piece was captured, and the referee re-
moves the captured piece fromy’s board but does not say
what piece captured it. Whenx tries to make a move that is
illegal (an attempted pawn take, or moving into check, or at-
tempting to jump an opponent’s piece), the referee announces
that the move is illegal but not why. Whenx putsy’s king in
check, the referee tells both players thaty’s king is in check,
and gives them partial information about how the check oc-
curred (namely by rank, file, long diagonal, short diagonal,
knight, or some combination of the above). Both players hear
all referee announcements.

Twenty moves into a kriegspiel chess game, a conservative
estimate is that at each node of the game tree, the current
sequence of observations is consistent with more than1013

board positions. Because of this uncertainty, kriegspiel chess
is a notoriously difficult game to win[Li, 1994; 1995]; most
games end in draws.

4 Implementation of the Algorithms
For Choose-move’s Evaluate-board subroutine, we took
the GPL’ed chess program provided by GNU and modified it
to return a minimax value for a particular board. Note that for
eachs ∈ S we call the evaluation function|M | times, where
|M | is the number of applicable moves (20-40 in kriegspiel).
The only exception to this is the case where a movem ∈ M
is not legal in some states ∈ S; in this case we omits when
computing the average value form. As shown in Figure 1,
we then return the move with the highest average value.

4.1 Algorithms with Time Limits
In order to make fair comparisons among LOS, AOSP, and
HS, they cannot be implemented in the exact way described
in Section 2. They must be modified so that one of the inputs
to the algorithm ist, the amount of time available to decide
on a move, so that the algorithm can do as well as it can in
that amount of time. The modified algorithms—Timed LOS,
Timed AOSP, and Timed HS—are described below.

We have implemented all three of these algorithms, using
a combination of C and C++. In the next few months, we in-
tend to make our implementations publicly available, both as
open-source software and as a kriegspiel-chess game server
running on our web site.

Timed LOS: Rather than taking the setS as input as shown
in Figure 1, Timed LOS generates the members ofS one at

a time and evaluates them as they are generated, so that it
can generate and evaluate as many boards as it can during the
time available. Once the time is up, it returns the move whose
average value is highest, as shown in Figure 1.

Timed AOSP: Timed AOSP maintains a pool of states
P = {s1, . . . , sp} that are known to be consistent with
the current belief stateb. Using an estimate of how long
Evaluate-board will take on each board, it calculates some
number of boardskt that it can evaluate during the available
time t. The estimate is deliberately a little low, to try to keep
Timed AOSP from running overtime and to ensure that there
will be time left over to attempt to generate more consistent
boards. There are three cases:

• If p ≥ kt then Timed AOSP callsChoose-
move({s1, . . . , skt

}), and returns the recommended move.
• If 0 < p < kt then Timed AOSP callsChoose-move(P),

and returns the recommended move.
• If p = 0 then Timed AOSP returns a random move.

During whatever remains of the available time, AOSP tries
to generate more histories that are consistent withb; and for
every such history, it adds the resultant board to the pool (see
section 4.2 below).

Each time the referee makes an announcement, Timed
AOSP must update the pool to be consistent with the an-
nouncement. This can cause the pool to either shrink (when
Timed AOSP is told a move is illegal) or to grow (when
Timed AOSP is told that the opponent has moved). This com-
putation occurs at the beginning of AOSP’s turn.

If the pool were allowed to grow unchecked, it could poten-
tially get quite large; hence we limit its size to 20,000 boards.
If the number of boards in the pool ever goes higher than
this, we remove enough boards to get to the number of boards
down to 10,000. Because the 30 second time limit allows only
enough time to callChoose-move on a set about 350 boards
from the pool, this is believed adequate.

Timed HS: Timed HS works the same as Timed AOSP,
with one exception. If0 ≤ p < kt, then Timed HS gen-
erates a setR of p − kt random boards that are consistent
with oij (calledlast-observationconsistent boards), and calls
Choose-move(P ∪R). This rules out the possibility of ever
having to make a random move. It also restricts the amount
of time that Timed HS can spend generating additional boards
to put into the pool.

4.2 Consistent History Generation
The algorithm for generating additional histories consistent
with b does a depth first search through the space of game
histories. At each node, the known game history (Oij) speci-
fies the possible branches. Whenever the algorithm reaches
a node with multiple branches (corresponding to an oppo-
nent’s hidden move in the game history), it randomly orders
the branches and proceeds searching according to that order.

5 Experiments
Our experimental hypotheses (based on the analyses in Sec-
tion 2) were that (1) Timed LOS would perform better than
random play, (2) Timed AOSP would perform better than

Timed LOS, and (3) Timed HS would perform somewhat
better than Timed AOSP. The third hypothesis caused some
controversy because it was based on a notion that not all
of the authors believed: that the computation time spent in-
troducing and evaluating last-observation consistent boards
would not be better spent trying to find and evaluate more
all-observation consistent boards.

To test our hypotheses, we played all three algorithms
against each other and against a player who moved at random.
Each player plays approximately half of the games as white
and half of the games as black. All experiments were run
on Xeon 2.6GHz chips with 500 MB RAM, running Linux.
Each player was allowed to spend 30 seconds deciding each
move, including moves which are decided after an attempted
illegal move.

Figure 2 shows the results for the algorithms versus
the random player, Figure 3 shows the results of head-to-
head tests of the three algorithms. The results include the
wins/losses/draws, and each player’s average material value
at each move of the game (using the standard chess value for
each piece). We observe the following:

1. All three algorithms played much better than the random
player, confirming our first hypothesis. The large number
of draws is unsurprising, since kriegspiel chess is a noto-
riously difficult game to win.

2. Timed AOSP and Timed HS both played much better than
Timed LOS, confirming our second hypothesis.

3. Timed AOSP and Timed HS played about equally well
versus a random player, but Timed HS did significantly
better than Timed AOSP when the two were played head-
to-head. Furthermore, as shown in Figure 4, Timed HS did
this using a substantial number of last-observation consis-
tent boards as the game progressed.

The third observation is very interesting, because it suggests
that our hypothesis about last-observation consistent boards
is correct: they become more useful as the game progresses,
because they are more likely to be consistent with the current
belief state. Even though we do not know what probabilities
to assign to them in the last line ofChoose-move, they still
provide useful information.

6 Related Work

The best-known work on imperfect-information games in-
cludes work on the games of bridge[Smithet al., 1998; Gins-
berg, 1999], scrabble[Sheppard, 2002], and poker[Billings
et al., 2003]; we discussed this work in Section 1.

The existing literature on kriegspiel chess is rather small,
and we believe ours is the first attempt to create a kriegspiel
chess program capable of reasonable play throughout the en-
tire game. Two books have been written on how to play
kriegspiel chess[Li, 1994; 1995]. [Wetherellet al., 1972]
have implemented a program to act as the referee who sees
the entire kriegspiel-chess game board and tells each player
the information described in the second paragraph of Section
3. [Sakutaet al., 2001] have implemented a search strategy
for some imperfect-information games that are simpler than

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

M
at

er
ia

l V
al

ue

Move

LOS v RAND Material Graph

LOS material when white
LOS material when black

RAND material when white
RAND material when black

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

M
at

er
ia

l V
al

ue

Move

AOSP v RAND Material Graph

AOSP material when white
AOSP material when black
RAND material when white
RAND material when black

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250

M
at

er
ia

l V
al

ue

Move

HS v RAND Material Graph

HS material when white
HS material when black

RAND material when white
RAND material when black

Algorithms Win (%) Loss (%) Draw (%) Runs
LOS v rand 39± 2 0± 0.3 61± 2 559
AOSP v rand 63± 2 0± 0.3 37± 2 560
HS v rand 65± 2 0.5± 0.3 35± 2 558

Figure 2:Wins/losses/draws percentages plus or minus a 95% con-
fidence interval and average material value at each move, in games
between Timed LOS, Timed AOSP, Timed HS, and a random player.
Material value is a heuristic measure of a player’s ability. We assign
material value as follows: queen is worth 9, rook 5, bishop 3, knight
3, and pawn 1. The sum of all a player’s pieces material value after
a particular move is the player’s material value for that move.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

M
at

er
ia

l V
al

ue

Move

AOSP v LOS Material Graph

AOSP material when white
AOSP material when black

LOS material when white
LOS material when black

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

M
at

er
ia

l V
al

ue

Move

HS v LOS Material Graph

HS material when white
HS material when black

LOS material when white
LOS material when black

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200 250 300 350

M
at

er
ia

l V
al

ue

Move

HS v AOSP Material Graph

HS material when white
HS material when black

AOSP material when white
AOSP material when black

Algorithms Win (%) Loss (%) Draw (%) Runs
AOSP v LOS 31± 4.8 0± 1 69± 4.8 190
HS v LOS 38± 5 0.5± 1 61± 5 190
HS v AOSP 13.3± 0.4 10.7± 0.4 76± 0.5 1669

Figure 3:Wins/losses/draws percentages plus or minus a 95% con-
fidence interval and average material value at each move, in head-
to-head comparisons of Timed LOS, Timed AOSP, and Timed HS.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300 350

P
er

ce
nt

ag
e

La
st

-O
bs

er
va

tio
n

bo
ar

ds
 u

se
d

Move Number

HS usage of Last-Observation Boards

Figure 4: The average percentage of last-observation consistent
boards that Timed HS used at each move in its games against Timed
AOSP.

kriegspiel, and[Bolognesi and Ciancarini, 2004] and have de-
veloped search strategies for kriegspiel-chess endgames.

7 Conclusion
In games such as kriegspiel chess, the belief states are huge
compared to those in bridge, scrabble, and poker. Further-
more, there is not a simple uncertainty model from which
to generate boards consistent with a belief state. Our results
demonstrate that statistical sampling approaches can never-
theless be developed that do well in such games.

Our results also show that to play well, it is not necessary
for the random sample to consist only of game boards that
satisfy all of a player’s observations. In fact, we were able
to win 24% more often by starting out with such boards, but
gradually switching over (as the game progressed) to boards
that merely are consistent with the latest observation.

The reason for our surprising result is that as the game pro-
gresses, a board that is consistent with the last move becomes
more and more likely to be consistent with the entire set of ob-
servations, even if we have no idea what sequence of moves
might have actually generated this board.

7.1 Future Work
The biggest limitation of our work is that we have not yet
been able to evaluate play against human opponents. To do
so will take some effort: we know of no rating system for
kriegspiel chess players, hence it is difficult to tell whether a
human player is good or bad. To overcome this obstacle, we
are currently building a kriegspiel-chess game server which
we will run on the web and will make available as open-
source software.2 The server will include a ranking system
so that we may compare our algorithms against humans.

We have yet to attempt any opponent modeling. For exam-
ple, we intend to extend our algorithms to assign a weight to
each game board by estimating how likely the opponent was
to make all of the moves leading to that board.

A well-known deficiency of statistical-sampling ap-
proaches is that they do not take into account the information-
gathering value of illegal moves[Frank and Basin, 1998]. We

2To construct our kriegspiel server, we are using the Generic
Game Server that is available as open-source software athttp:
//external.nj.nec.com/homepages/igord/gsa-ggs.htm.

have ideas for how to modify our algorithms to overcome this
deficiency, and intend to test these ideas in the near future.

It would be worthwhile to examine different search strate-
gies and evaluation functions. We currently rely on gnuchess
for both, but it is not entirely clear whether this is the best
approach for a game like kriegspiel chess.

Acknowledgments
This work was supported by the following grants, contracts,
and awards: ARO grant DAAD190310202, ARL grants
DAAD190320026 and DAAL0197K0135, the ARL CTAs
on Telecommunications and Advanced Decision Architec-
tures, NSF grants IIS0329851, 0205489 and IIS0412812, UC
Berkeley contract number SA451832441 (subcontract from
DARPA’s REAL program). The opinions expressed in this
paper are those of the authors and do not necessarily reflect
the opinions of the funders.

References
[Applegateet al., 1991] David Applegate, Guy Jacobson,

and Daniel Sleator. Computer analysis of sprouts. Techni-
cal report, Carnegie Mellon University, 1991.

[Billings et al., 2003] Darse Billings, N. Burch, Aaron
Davidson, Robert Holte, Jonathan Schaeffer, T. Schauen-
berg, and Duane Szafron. Approximating game-theoretic
optimal strategies for full-scale poker. InIJCAI-03, pages
661–668, 2003.

[Bolognesi and Ciancarini, 2004] A. Bolognesi and P. Cian-
carini. Searching over metapositions in kriegspiel. In
Computer Games 2004, 2004.

[Frank and Basin, 1998] Ian Frank and David A. Basin.
Search in games with incomplete information: A case
study using bridge card play.Artificial Intelligence, 100(1-
2):87–123, 1998.

[Ginsberg, 1999] Matthew L. Ginsberg. GIB: Steps toward
an expert-level bridge-playing program. InIJCAI-99,
pages 584–589, 1999.

[Li, 1994] David Li. Kriegspiel: Chess Under Uncertainty.
Premier, 1994.

[Li, 1995] David Li. Chess Detective: Kriegspiel Strategies,
Endgames and Problems. Premier, 1995.

[Sakutaet al., 2001] M. Sakuta, J. Yoshimura, and H. Iida.
A deterministic approach for solving kriegspiel-like prob-
lems. InMSO Computer Olympias Workshop, 2001.

[Sheppard, 2002] Brian Sheppard. World-championship-
caliber scrabble.Artificial Intelligence, 134(1-2):241–275,
2002.

[Smithet al., 1998] Stephen J. J. Smith, Dana S. Nau, and
Thomas Throop. Computer bridge: A big win for AI plan-
ning. AI Magazine, 19(2):93–105, 1998.

[Wetherellet al., 1972] C. S. Wetherell, T. J. Buckholtz, and
K. S. Booth. A director for kriegspiel, a variant of chess.
Comput. J., 15(1):66–70, 1972.

