
Interleaving Acting and Planning Using Operational Models

Sunandita Patra1, Malik Ghallab2, Dana Nau1, Paolo Traverso3

patras@cs.umd.edu, malik@laas.fr, nau@cs.umd.edu, traverso@fbk.eu
1Department of Computer Science and Institute for Systems Research, University of Maryland, College Park, USA

2Centre national de la recherche scientifique (CNRS), Toulouse, France
3Fondazione Bruno Kessler (FBK), Povo - Trento, Italy

Abstract

In (Patra et al. 2019) we proposed and implemented a frame-
work for planning with operational models, i.e., models that
describe how to perform actions, with rich control structures
for closed-loop online decision-making. As described in (Pa-
tra et al. 2019), the acting component RAE, inspired by the
well-known PRS system, calls the planner RAEplan, which
plans by doing Monte Carlo rollout simulations of the actor’s
operational models.
In this paper, we show how this framework can be used to
interleave acting and planning with operational models in
different ways. We extend the acting component RAE with
heuristics to decide when and how to call the planning com-
ponent RAEplan. This allows us to realize more or less reac-
tive behaviors. For instance, the acting component RAE may
decide to call the planner just when it fails or anytime a deci-
sion needs to be made. Moreover, RAE can decide whether to
bound the depth of the search during planning, and whether
to do acting and planing concurrently. The planning algo-
rithm in this paper takes into consideration the depth of the
search. We call the modified planning algorithm RAEplan-
LookAhead. We implement the RAEplan-LookAhead al-
gorithm and do its experimental evaluation on a simulated
domain called Search and Rescue.

Introduction
Several approaches for the integration of planning, acting,
and execution have been proposed so far, see, e.g., (Vaquero
et al. 2018). Some of them (e.g., lookahead methods, see
e.g., (Ghallab, Nau, and Traverso 2016) for a survey) are
based on the idea of generating a partial plan, for example
the next few “good” actions, and then acting, i.e., performing
all or some of the generated actions, and repeating these two
steps from the state that has been reached. In this way, the
planner knows exactly which of the many possible states of
the world has actually been reached, and the uncertainty as
well as the search space is significantly reduced. Moreover,
interleaving planning and acting provides the ability to deal
with dynamic environments and exogenous events.

Most of the previous approaches to interleaving planning
and execution perform planning with descriptive models,
which represent actions at a rather abstract level, e.g., with
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preconditions and effects. This representation is tailored to
efficiently compute, given some conditions on state variables
(the action preconditions), how the values of the state vari-
ables change (the action effects). However, when planning
needs to be interleaved with acting, most of the works highly
underestimate the problem of mapping descriptive models
to and from operational models, which describe how to per-
form actions, with rich control structures for closed-loop on-
line decision-making. The mapping between the descriptive
model and the operational model is often given for granted,
simply assuming that the acting/execution mechanism re-
turns the actual state (the values of state variables) at the
abstract level in which the agent can start to do planning
again.

In this paper we take a different approach. We build upon
our work presented in (Patra et al. 2019) (see also (Patra
et al. 2018)), in which we propose to use a single repre-
sentation, the operational model, for both acting and plan-
ning, and to do planning by reasoning directly with the ac-
tor’s operational models. In our approach, the agent does
not start from planning and then calls the execution platform
when needed. We rather start the other way around. The act-
ing component RAE, inspired by the well-known PRS sys-
tem, calls the planner RAEplan, which plans by doing Monte
Carlo rollout simulations of the actor’s operational models.
RAE uses a hierarchical task-oriented operational represen-
tation. A collection of refinement methods describes alter-
native ways to handle tasks and react to events. RAE calls
RAEplan to decide how to refine tasks or events. RAEplan
does Monte Carlo rollouts with applicable refinement meth-
ods.

In this paper, we extend this framework and show how
it can be used to interleave acting and planning in different
ways. We extend the acting component RAE with heuris-
tics to decide when an how to call the planning component
RAEplan. This allows us to realize more or less reactive be-
haviours. For instance, the acting component RAE can de-
cide to call the planner just when it fails or anytime a deci-
sion must be made, i.e., anytime one upon different applica-
ble methods must be selected. Moreover, our extended plan-
ning algorithm RAEplan-LookAhead, when called by RAE,
can decide whether to complete the Monte Carlo rollout,
or to bound the depth of the search according to different
heuristics, e.g., to save time. Finally, RAE and RAEplan-
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LookAhead can be run concurrently and interact in different
ways.

We implement different techniques for interleaving act-
ing and planning using heuristics and evaluate them on the
Search and Rescue domain. With this experimental evalua-
tion, we show the benefits of interleaving acting and plan-
ning with operational models.

The paper is structured as follows. In the next section, we
first provide some background on the key concepts described
in (Patra et al. 2019) to keep the paper self-contained. Fol-
lowing that, we describe different techniques for the inter-
leaving of acting and planning. We then describe the oper-
ational models for the Search and Rescue domain, and pro-
vide an experimental evaluation. We finally discuss the re-
lated and future work.

Background
In this section, we briefly review the key elements of the
approach presented in (Patra et al. 2019), to make the pa-
per self-contained. For the details of the acting component
RAE and of the planning component RAEplan, please refer
to (Patra et al. 2019).

RAE (Refinement Acting Engine) is from (Ghallab, Nau,
and Traverso 2016, Chapter 3). It is is based on a hierarchical
task-oriented operational representation with an expressive,
general-purpose language offering rich control structures for
closed-loop online decision-making. A collection of refine-
ment methods describes alternative ways to handle tasks and
react to events. Each method has a body that can be any
complex algorithm. In addition to the usual programming
constructs, the body may contain subtasks, which need to
be refined recursively, and sensory-motor commands, which
query and change the world non-deterministically. Notice
that we assume that methods, tasks, and subtasks are manu-
ally programmed. We believe this assumption is the practical
way to build agents that can behave reactively and deal with
realistic and complex applications.

RAE implements a reactive system. At each loop, it gets in
input a task or event that comes in from an external source,
such as the user or the execution platform, and it creates a
refinement stack, analogous to a computer program’s execu-
tion stack. An agenda keeps the set of all current refinement
stacks.

Task frames and refinement stacks. A task frame is a
four-tuple r = (⌧,m, i, tried), where ⌧ is a task, m is the
method instance used to refine ⌧ , i is the current instruction
in body(m), with i = nil if we haven’t yet started execut-
ing body(m), and tried is the set of methods that have been
already tried and failed for accomplishing ⌧ .

A refinement stack is a finite sequence of stack
frames stack = h⇢1, . . . , ⇢ni. If stack is nonempty, then
top(stack) = ⇢1; rest(stack) = h⇢2, . . . , ⇢ni; stack =
top(stack).rest(stack). To denote pushing ⇢ onto stack, we
write ⇢.stack = h⇢, ⇢1, ⇢2, . . . , ⇢ni. Refinement stacks used
during planning will have the same semantics, but we will
use the notation stack instead of stack to distinguish it from
the acting stack.

When an execution failure occurs with a method instance,
then RAE calls a Retry procedure. Retry tries another ap-
plicable method instance that it hasn’t tried already. Notice
that when a Retry is called, the failed method has already
been partially executed; it has changed the current state. In
many application domains it is important to minimize the
total number of retries, since recovery from failure may in-
cur significant, unbudgeted amounts of time and expense.
We call retry ratio the number of times that RAE had to call
the Retry procedure, divided by the total number of tasks to
accomplish.

Rather than behaving purely reactively, the agent inter-
leaves acting with planning to decide how to refine tasks
or events. Planning is performed by Monte Carlo rollouts
with applicable refinement methods. Planning is therefore
performed with all the same constructs and operations of
the operational model used to act, all but a simulation of
commands. Commands are indeed simulated when planning
and performed by an execution platform in the real world
when acting. During planning, when a refinement method
contains a command, the planner takes samples of its pos-
sible outcomes, using either a domain-dependent generative
simulator, when available, or a probability distribution of its
possible outcomes.

RAEplan does a recursive search to optimize a criterion. It
chooses a refinement method that has a refinement tree with
a minimum expected cost for accomplishing a task (along
with the remaining partially accomplished tasks in the cur-
rent refinement stack). It minimizes the expected cost, i.e.,
the expected cost of the plan for accomplishing all the tasks
in the refinement stack. In order to take into account possible
failures, which would have an infinite cost, cost minimiza-
tion is done by maximizing an efficiency criteria, which is
the reciprocal of the cost.

Efficiency. We define the efficiency of accomplishing a task
to be the reciprocal of the cost. Let a decomposition of a task
⌧ have two subtasks, ⌧1 and ⌧2, with cost c1 and c2 respec-
tively. The efficiency of ⌧1 is e1 = 1/c1 and the efficiency
of ⌧2 is e2 = 1/c2. The cost of accomplishing both tasks is
c1 + c2, so the efficiency of accomplishing ⌧ is

1/(c1 + c2) = e1e2/(e1 + e2). (1)

If c1 = 0, the efficiency for both tasks is e2; likewise for
c2 = 0. Thus, the incremental efficiency composition is:

e1 • e2 = e2 if e1 =1, else (2)
e1 if e2 =1, else e1e2/(e1 + e2).

If ⌧1 (or ⌧2) fails, then c1 is 1, e1 = 0. Thus e1 • e2 =
0, meaning that ⌧ fails with this decomposition. Note that
formula 2 is associative.

Moreover, RAEplan has two parameters b and k. Parame-
ter b denotes how many different method instances to exam-
ine for each task. Parameter k denotes how large a sample
size must be for each command. The estimated efficiency
E⇤

b,k(s, stack) calculated in a given state s for a refinement
stack stack depends on both b and k. The larger the values of
b and k in E⇤

b,k, the more plans RAEplan will examine. In the
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planning algorithm proposed in this paper called RAEplan-
LookAhead, we add an additional sub-script called d to effi-
ciency in order to bound the depth of Monte Carlo rollouts
that RAEplan-LookAhead examine. In RAEplan, d is always
infinite. As d ! 1, the behavior of RAEplan-LookAhead
becomes similar to RAEplan. Please see the next section for
details.

Interleaving Acting and Planning
In (Patra et al. 2019), the acting algorithm RAE always waits
for the planner RAEplan to complete its search and return a
refinement method for a task ⌧ . The time taken by RAEplan
to complete the search increases with the increase in size of
the refinement tree for ⌧ . However, because the planning is
happening online, this may create a long wait time before
the actor takes an action. We can have several strategies to
reduce the wait time of the actor and discuss them below.

Strategy 1: Active Planning. This is the simplest case
where RAE calls RAEplan every time it needs to refine a task
⌧ . RAE waits for RAEplan to complete its search and refines
⌧ according to what RAEplan suggested. This strategy is im-
plemented in the paper (Patra et al. 2019). The advantage of
this approach is that RAEplan returns the best possible sug-
gestion for given values of b and k. The disadvantage is that
the actor RAE need to wait until RAEplan returns. It has no
control over the wait time.

Strategy 2: Include Heuristics. The idea is similar to
a lookahead search. When RAEplan searches for the most
efficient method for a task ⌧ , it does several Monte Carlo
rollouts. Every such rollout corresponds to a complete re-
finement tree for ⌧ . Our idea is that instead of looking at
complete rollouts like RAEplan, RAEplan-LookAhead only
rolls out upto depth d. When the length of the rollout reaches
depth d, we estimate the efficiency of the remaining part of
the rollout using a heuristic function. The heuristic may be
domain dependent or domain independent. We call the mod-
ified algorithm RAEplan-LookAhead. The pseudocode is as
follows:

RAEplan-LookAhead(s, ⌧, tried, stack, d)
M  Candidates(⌧, s) \ tried
if d = 0 then return M [1]
else

mopt  argmaxm2ME⇤
b,k,d�1(s, (⌧,m, 0, tried).stack)

if mopt = None then return M [1]
else return mopt

Above, s is the current state, tried is the set of refine-
ment method instances which has been tried by RAE to ac-
complish ⌧ and failed. stack is the current refinement stack.
Candidates(⌧, s) is the set of applicable method instances
for ⌧ in current state s. d is the maximum search depth.
Note that d = 0 corresponds to the situation where RAE
acts purely reactively and no planning is done. RAEplan-
LookAhead optimizes a criterion called expected efficiency
which is based on the definition in the previous section with
an additional parameter d (in subscript). The expected effi-
ciency is calculated depending on whether the current step
is a task or command and also the current depth d. The defi-

nition of E⇤ is recursive and the value of d decreases by one
at every recursive call.

Estimated efficiency. We now define E⇤
b,k,d(s, stack) as an

estimate of expected efficiency of the optimal plan for the
tasks in stack stack when the current state is s. The parame-
ters b and k denote, respectively, how many different method
instances to examine for each task, and how large a sample
size to use for each command. d denotes how much further
RAEplan-LookAhead is allowed to search.

If stack is empty, then E⇤
b,k,d(s, stack) =1 because there

are no tasks to accomplish. Otherwise, let (⌧,m, i, tried) =
top(stack). Then E⇤

b,k,d(s, stack) depends on whether i is a
command, an assignment statement, or a task and whether
the current depth d is greater than 0:
• If i is a command and d > 0, then E⇤

b,k,d(s, stack) =

1
k

P
s02S0

1
cost(s,i,s0) • E

⇤
b,k,d�1(s

0, next(s0, stack)), (3)

where S0 is a random sample of k outcomes of command
i in state s, with duplicates allowed. next(s0, stack) is
the refinement stack after performing command i taking
into account the effect of control statements like if-else
or loops. Since S0 has the probability distributions of the
outcomes of the commands, it converges asymptotically
to the expected value of E⇤.

• If i is a command and d = 0, then

E⇤
b,k,0(s, stack) =

1

Heuristic-Estimate(s, stack)
(4)

• If i is an assignment statement, then E⇤
b,k,d(s, stack) =

E⇤
b,k,d(s

0, next(s0, stack)), where s0 is the state produced
from s by performing the assignment statement.

• If i is a task and d > 0, then E⇤
b,k,d(s, stack) recursively

optimizes over the candidate method instances for i. That
is:

E⇤
b,k,d(s, stack) = max

m2M 0
E⇤

b,k,d�1(s, (i,m, nil, ;).stack),

(5)
where M 0 = Candidates(i, s) if |Candidates(i, s)|  b,
and otherwise M 0 is the first b method instances in the
preference ordering for Candidates(i, s).

• If i is a task and d = 0, then E⇤
b,k,0(s, stack) is a heuristic

estimate of accomplishing the remaining stack. That is:

E⇤
b,k,0(s, stack) =

1

Heuristic-Estimate(s, stack)
. (6)

We have implemented RAEplan-LookAhead in this pa-
per for a simulated domain called Search and Rescue with
two domain dependent heuristics and various values of
depth d. As d approaches infinity, the behavior of RAEplan-
LookAhead should become similar to the RAEplan algorithm
in (Patra et al. 2019). The results are presented in the Exper-
imental Evaluation section.

Strategy 3: Lazy Planning. RAE calls RAEplan-
LookAhead the first time it receives a task. RAEplan-
LookAhead needs to be modified so that it returns the
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most expected refinement tree because this strategy requires
that we have a plan and not just one suggested refinement
method instance. RAE executes the refinement tree via in-
order traversal until it encounters a mismatch between the
current state and the state expected from the refinement tree,
or a command fails. The drawback of this approach is that
in an environment with dynamic events, our plan might be-
come too old and lead to dead-ends which we could have
avoided if we used Strategy 1. The advantage of this ap-
proach is that it saves the time of computing a similar plan
again in case their are no dynamic or exogenous events.
However, if commands are non-deterministic, the chances
of getting a similar plan are low and this is probably not a
good approach.

Strategy 4: Concurrent Planning. RAEplan-LookAhead
always runs in parallel to RAE and keeps track of the most
recent plan for the current task at hand. As explained in
the case of lazy Planning, RAEplan-LookAhead needs to
be modified so that it returns a refinement tree instead of
just a refinement method instance. Whenever RAE needs ad-
vice from RAEplan, RAEplan suggest the refinement method
from its current refinement tree. One drawback of this strat-
egy is that, the current refinement tree may not have taken
into account the most recent dynamic or exogenous events
of the environment. However, this should be better than the
lazy strategy because the planner is never idle. This method
can be useful when the actor has access to multiple cores
and can do multi-tasking.

One could use any one of the above strategies or a com-
bination of them depending on the domain and the nature of
tasks that need to be accomplished.

Domain: Search and Rescue
Consider that some natural disaster has happened in a 2D
area. People are trapped or injured at certain locations in
this area which has no particular graph or map. UAVs con-
tinuously survey the area and find people who need help.
The detection happens by capturing images via the front and
bottom cameras that the UAVs are equipped with. The clar-
ity of the image depends upon various weather conditions
and the altitude at which the UAV is flying. We assume that
a human expert or some computer vision algorithm identi-
fies correctly whether a person needs help or not from the
image. Once a person in need of help has been identified,
the UAV transfers control to the UGVs operating on the
ground. Ground locations are represented via integral coor-
dinates. The UGVs navigate following certain patterns. In
order to move from one location to another, UGVs may take
a straight route, a curved route or a Manhattan route. There
may or may not be obstacles in their path. If it finds an ob-
stacle, it needs to take a different route to reach its desti-
nation. UAVs always fly from one location to the other via a
straight route. They may fly in two different altitudes. UGVs
are useful for transporting first-aid and medicine to doctors
and volunteers or the person in need. First-aid and medicines
can be picked up from the base camp or taken from other
UGVs which have them. Once helper robot and/or human
experts have reached the location of the injured person, they
may not find the person immediately. They might need to do

some sensing and searching, which can involve removing
debris or looking around.
Example 1. Consider a set R of robots performing search
and rescue operations in a partially mapped area. The
robots have to find persons in some area and leave them a
package of supplies (medication, food, water, etc.). This do-
main is specified with state variables such as robotType(r) 2
{UAV, UGV}, r 2 R; hasSupply(r) 2 {>,?}; loc(r) 2 L,
for L = {(x, y)| x and y are integers}[{BASE}.

These robots can use commands such as DETECT(r, cam-
era, class) which detects if an object of some class appears
in images acquired by camera of r, TRIGGERALARM(r, l),
DROPSUPPLY(r, l), LOADSUPPLY(r, l), TAKEOFF(r, l),
LAND(r, l), MOVETO(r, l), FLYTO(r, l). They can address
tasks such as: search(r,area), which makes a UAV r
survey in sequence the locations in area, survey(r, l),
navigate(r, l), rescue(r, l), getSupplies(r).

Here is a refinement method for the survey task:
m1-survey(r, l)

task: survey(r, l)
pre: robotType(r) = UAV

body: if DETECT(r,“base-camera”,“person”)=> then:
if hasSupply(r) then rescue(r, l)
else TRIGGERALARM(r, l)

This methods specifies that in the location l the UAV r de-
tects if a person appears in the images from its base camera.
In that case, it proceeds to a rescue task if it has supplies,
otherwise it triggers an alarm event. This event is processed
(by some other methods) by finding the closest robot not in-
volved in a current rescue and assigning to it a rescue task
for that location.

Here are two possible methods for the task rescue(r, l):
m1-rescue(r, l)

task: rescue(r, l)
pre: robotType(r) = UAV

body: if hasSupply(r) then
if loc(r) = l then DROPSUPPLY(r, l)
else do

navigate(r, l)
rescue(r, l)

else do
navigate(r,BASE)
LOADSUPPLY(r,BASE)
rescue(r, l)

m2-rescue(r, p)
task: rescue(r, p)
pre: (robotType(r) = UGV) ^ hasSupply(r)

body: if loc(r) = l then DROPSUPPLY(r, l)
else do

navigate(r, l)
rescue(r, l)

Note that the above methods are recursive.

Experimental Evaluation
For our experiments, we generated 96 problems for the
search and rescue domain randomly. Every problem has one
incoming task, ‘survey’ or ‘rescue’ which arrives at a ran-
domly chosen time in RAE’s input stream. A problem may

49



have one to four robots (consisting of UAVs and UGVs).
The location of a robot consist of its x and y coordinates in
a 2D area. x and y are chosen to be random integers from
the range [5, 30]. The location from where a person needs to
be rescued is also generated randomly in the same way. Be-
cause our commands are nondeterministic, every problem
with a particular combination of parameters of RAEplan-
LookAhead is run 20 times. The experiments are run on a
2.6 GHz Intel Core i5 processor.

RAEplan-LookAhead has three main parameters: b, k and
d. We first did experiments by changing b and k with d set to
1. We measured the performance using three different met-
rics: efficiency, success ratio and retry ratio. It is not easy to
measure the performance of an integrated planning and act-
ing system. These three metrics were developed after much
thought and details can be found in (Patra et al. 2019). Ef-
ficiency is the same discussed in the previous section. Suc-
cess ratio is the number of successful jobs divided by the
total number of incoming jobs. A job is a task that arrives
in the input stream of RAE and does not include the sub-
tasks generated from it. Retry ratio is the number of times
RAE retries a task before succeeding (details can be found
in the Section Background). The results for efficiency, suc-
cess ratio and retry ratio are shown in Figures 1, 2 and 3
respectively.

Figure 1: Efficiency E for various values of b and k in the
Search and Rescue Domain. d is set to infinity.

From the plots of efficiency, success ratio and retry ratio,
we observe that k = 3 is the most optimal value of k. Now,
we fix k to the value 3 and do experiments by varying the
parameter depth d of RAEplan-LookAhead. We do this with
the following two heuristics:

1. Zero Heuristic: Heuristic is always 0.
2. Distance Heuristic: Heuristic is the distance of the agent

trusted with the rescue operation and the location where
the rescue operation needs to be performed.
We choose the value of depth d to be all values from the

set {0, 3, 6, 9, 12, 15}. We also choose b to be all values from
{1, 2, 3, 4} because there can be a maximum of four method

Figure 2: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and k in the Search
and Rescue Domain.

Figure 3: Retry Ratio (number of retries of RAE/ total num-
ber of jobs) for various values of b and k in the Search and
Rescue Domain.

instances for any task in this domain. We set k to 3 as ex-
plained before.

Experiments with Zero Heuristic
We expect to see an improvement in efficiency with increase
in depth d because the plans will be more accurate if we
examine rollouts till a higher depth before using a heuristic
estimate. It is indeed the case as observed in Figure 4. The
success ratio also increases for the same reason as observed
in Figure 5.

It is interesting to see that the retry ratio decreases upto
depth d = 6 but then starts increasing with increase in d. In
general, we would expect the retry ratio to decrease with in-
crease in d because RAE should be able to accomplish tasks
with fewer attempts when plans are more accurate. The in-
crease in efficiency and success ratio confirms that. How-
ever, note that retry ratio is measured and compared only for
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Figure 4: Efficiency E for various values of b and depth d in
the Search and Rescue Domain for Zero heuristic.

Figure 5: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and depth d in the
Search and Rescue Domain for Zero heuristic.

the successful jobs, jobs that succeed for all values of b and d
because it will be unfair to compare the retries of a failed job
to the retries of a successful job. For this set of sub-problems
in the Search and Rescue domain, it is possible that for some
sub-task, RAEplan-LookAhead finds a method which is more
efficient but not very reliable to succeed. The failure is not
very dangerous because the success ratio does not suffer as
seen in Figure 5.

Experiments with Distance Heuristic
Like in the case of Zero heuristic, the experiments with Dis-
tance heuristic also show that the efficiency increases with
increase in b and depth d. This can be seen in Figure 7. The
success ratio also increases with increase in b and d as seen
in Figure 8. The behavior of retry ratio shown in Figure 9
is similar to that of zero heuristic. It decreases upto d = 6
and then increases. We believe the reason for this behavior
is same as discussed in the case of zero heuristic.

Figure 6: Retry ratio for various values of b and depth d in
the Search and Rescue Domain for Zero heuristic.

Figure 7: Efficiency E for various values of b and depth d in
the Search and Rescue Domain for distance heuristic.

Depth and Running Time
Figure 10 shows how the acting time and the planning
time changes with depth for the zero heuristic. We mea-
sured the acting time and planning time separately with the
bolder lines denoting the acting time. We observe that acting
time decreases and planning time increases with increase in
depth d of RAEplan-LookAhead. This is expected because
the planner needs more time to roll out upto greater depths
and returns more efficient methods which in turn reduces the
acting time. The changes with depth are more pronounced
for b = 4 than b = 1 because RAEplan-LookAhead examines
for method instances for higher values of b. We also observe
that somewhere between d = 9 and d = 12, the planning
time starts to dominate the acting time. This is interesting
and may help one decide the ideal value of depth in their
domain. The acting time and planning time for the distance
heuristics is shown in Figure 11. The value of d may be cho-
sen depending on the desired trade-off between efficiency
and running time of RAEplan with respect to RAE. Note that
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Figure 8: Success ratio (number of successful jobs/ total
number of jobs) for various values of b and depth d in the
Search and Rescue Domain for distance heuristic.

Figure 9: Retry ratio for various values of b and depth d in
the Search and Rescue Domain for distance heuristic.

we also tried to observe patterns in the total time by taking
an weighted sum of the acting and planning times. However,
the results were not very meaningful in this domain.

Related Work
The approach to do planning in an operational model, RAE,
and RAEplan, have been presented in (Patra et al. 2019). In
this paper we discussed how the framework proposed in (Pa-
tra et al. 2019) can be used to easily interleave acting and
planning and provided a novel experimental evaluation that
shows the advantage of interleaving acting with planning.
Beyond our AAAI work, to our knowledge, no previous ap-
proach has proposed the integration of planning and acting
directly within the language of an operational model.

Our acting algorithm and operational models are based
on the RAE algorithm (Ghallab, Nau, and Traverso 2016,
Chapter 3), which in turn is based on PRS. If RAE and PRS
need to choose among several eligible refinement methods
for a given task or event, they make the choice without trying

Figure 10: This figure shows that using the zero heuristic,
the planning time (running time of RAEplan) increases with
depth and the acting time (running time of RAE) decreases
when it calls RAEplan with higher depth d. The time is mea-
sured in counter ticks. We do not show the plots for b = 2
and b = 3 here because they were similar to b = 4 and
adding them made the figure more cluttered.

Figure 11: This figure shows that using the distance heuris-
tic, the planning time (running time of RAEplan) increases
with depth and the acting time (running time of RAE) de-
creases when it calls RAEplan with higher depth d. The time
is measured in counter ticks.

to plan ahead. This approach has been extended with some
planning capabilities in PropicePlan (Despouys and Ingrand
1999) and SeRPE (Ghallab, Nau, and Traverso 2016). Un-
like our approach, those systems model commands as clas-
sical planning operators; they both require the action mod-
els and the refinement methods to satisfy classical planning
assumptions of deterministic, fully observable and static en-
vironments, which are not acceptable assumptions for most
acting systems.

Various acting approaches similar to PRS and RAE have
been proposed, e.g., (Firby 1987; Simmons 1992; Sim-
mons and Apfelbaum 1998; Beetz and McDermott 1994;
Muscettola et al. 1998; Myers 1999). Some of these have re-
finement capabilities and hierarchical models, e.g., (Verma
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et al. 2005; Wang et al. 1991; Bohren et al. 2011). While
such systems offer expressive acting environments, e.g.,
with real time handling primitives, none of them provide the
ability to plan with the operational models used for acting,
and thus cannot integrate acting and planning as we do. Most
of these systems do not reason about alternative refinements.

(Musliner et al. 2008; Goldman et al. 2016; Goldman
2009) propose a way to do online planning and acting, but
their notion of “online” is different from ours. In (Musliner
et al. 2008), the old plan is executed repeatedly in a loop
while the planner synthesizes a new plan (which the authors
say can take a large amount of time), and the new plan isn’t
installed until planning has been finished. In RAEplan, hier-
archical task refinement is used to do the planning quickly,
and RAE waits until RAEplan returns.

The Reactive Model-based Programming Language
(RMPL) (Ingham, Ragno, and Williams 2001) is a compre-
hensive CSP-based approach for temporal planning and act-
ing which combines a system model with a control model.
The system model specifies nominal as well as failure state
transitions with hierarchical constraints. The control model
uses standard reactive programming constructs. RMPL pro-
grams are transformed into an extension of Simple Tempo-
ral Networks with symbolic constraints and decision nodes
(Williams and Abramson 2001; Conrad, Shah, and Williams
2009). Planning consists in finding a path in the network
that meets the constraints. RMPL has been extended with er-
ror recovery, temporal flexibility, and conditional execution
based on the state of the world (Effinger, Williams, and Hof-
mann 2010). Probabilistic RMPL are introduced in (Santana
and Williams 2014; Levine and Williams 2014) with the no-
tions of weak and strong consistency, as well as uncertainty
for contingent decisions taken by the environment or another
agent. Our approach does not handle time; it focuses instead
on hierarchical decomposition with Monte Carlo rollout and
sampling.

Behavior trees (BT) (Colledanchise 2017; Colledanchise
and Ögren 2017) can also respond reactively to contingent
events that were not predicted. Planning synthesizes a BT
that has a desired behavior. Building the tree refines the act-
ing process by mapping the descriptive action model onto
an operational model. Our approach is different since RAE
provides the rich and general control constructs of a pro-
gramming language and plans directly within the operational
model, not by mapping from the descriptive to an opera-
tional model. Moreover, the BT approach does not allow for
refinement methods, which are a rather natural and practical
way to specify different possible refinements of tasks.

Approaches based on temporal logics and situation cal-
culus (Doherty, Kvarnström, and Heintz 2009; Hähnel, Bur-
gard, and Lakemeyer 1998; Claßen et al. 2012; Ferrein and
Lakemeyer 2008) specify acting and planning knowledge
through high-level descriptive models and not through op-
erational models like in RAE. Moreover, these approaches
integrate acting and planning without exploiting the hierar-
chical refinement approach described here.

Our methods are significantly different from those used in
HTNs (Nau et al. 1999): to allow for the operational models
needed for acting, we use rich control constructs rather than

simple sequences of primitives. The hierarchical represen-
tation framework of (Bucchiarone et al. 2013) includes ab-
stract actions to interleave acting and planning for compos-
ing web services—but it focuses on distributed processes,
which are represented as state transition systems, not opera-
tional models. It does not allow for refinement methods.

A wide literature on MDP-based probabilistic planning
and Monte Carlo tree search refers to simulated execu-
tion, e.g., (Feldman and Domshlak 2013; 2014; Kocsis and
Szepesvári 2006; James, Konidaris, and Rosman 2017) and
sampling outcomes of action models e.g., RFF (Teichteil-
Königsbuch, Infantes, and Kuter 2008), FF-replan (Yoon,
Fern, and Givan 2007) and hindsight optimization (Yoon et
al. 2008). The main conceptual and practical difference with
our work is that these approaches use descriptive models,
i.e., abstract actions on finite MDPs. Although most of the
papers refer to doing the planning online, they do the plan-
ning using descriptive models rather than operational mod-
els. There is no notion of integration of acting and planning,
hence no notion of how to maintain consistency between
the planner’s descriptive models and the actor’s operational
models. Moreover, they have no notion of hierarchy and re-
finement methods.

Finally, there has been a lot of work in robotics to inte-
grate planning and execution. They propose various tech-
niques and strategies to handle the inconsistency issues that
arise when execution and planning are done with different
models. (Lallement, De Silva, and Alami 2014) shows how
HTN planning can be used in robotics. (Garrett, Lozano-
Perez, and Kaelbling 2018a) and (Garrett, Lozano-Pérez,
and Kaelbling 2018b) integrates task and motion planning
for robotics. (Coste-Maniere et al. 2017) integrates planning
and execution for surgical planning algorithms used by sur-
gical robots for laporoscopic and other minimally invasive
surgery.

Conclusions and Future Work
In this paper, we discussed different ways to interleave act-
ing and planning using operational models. Our actor is RAE
and our planner is RAEplan-LookAhead. We came up with
simple domain dependent heuristics in a simulated domain,
called Search and Rescue and showed that performance im-
proves with depth but the cost is that it also takes more time.
Depending on the domain, the heuristics available and the
performance requirements, the set of experiments done in
this paper can help one identify the sweet spot.

In future, we plan to interleave acting and planning in
some other domains and observe the changes in the perfor-
mance of RAE and RAEplan-LookAhead. We also plan to
do experiments using the lazy and concurrent strategies dis-
cussed in this paper.
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