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Given the current widespread interest in exXpert systems, it is important to examine the
relative advantages and disadvantages of the various methods used to build them. In
this paper we compare three important approaches to building decision aids imple-
mented as expert systems: Bayesian classification, rule-based deduction, and frame-
based abduction. Qur critical analysis is based ona survey of previous studies comparing
different methods used to build expert systems as well as our own coliective experience
over the last five years. The relative strengths and weaknesses of the different approaches
are analysed, and situations in which each method is easy or difficult to use are identified.

1. Introduction

The importance of expert systems is growing in industrial, medical, scientific, and
other fields. Several major reasons for this are: (1) the necessity of handling an
overwhelming amount of knowledge in these areas; (2) the potential of expert systems
to train new experts; (3) cost reductions sometimes provided by expert systems and
(4) the desire to capture corporate knowledge so it is not lost as personnel changes
(Waterman, 1986). In medicine, for example, expert systems are beginning to actually
be used in practice (Reggia, 1982). An expert system named HELP is currently being
used at LDS Hospital in Salt Lake City and has been shown to reduce healthcare costs
(Nathanson, 1984; Pryor, Gardner, Clayton & Warner, 1984). HELP analyses patient
data whenever a test order or result is entered into the system, and it warns physicians
about such things as drug-drug interactions and drug contraindications. Studies showed
that 80% of HELP’s drug-drug interaction alerts were used by physicians to change
prescriptions, test orders, or other forms of treatment, and this led to shortened hospital
stays as well as improved quality of care (Pryor et al, 1984). Examples of expert
systems developed for industrial tasks include PROSPECTOR, which has successfuily
been used to locate mineral deposits (Campbell, Hollister, Duda & Hart, 1982},
Dipmeter Advisor, which is used for oil exploration (Davis, Austin, Carlbom, Frawiey,
Pruchnik, Sneidermain & Gilreath, 1981), and R1, which is used to configure computers
(McDermott & Steele, 1981). For further information and examples, see (Nau, 1983).

In spite of the widespread interest in expert systems, very little has been written
comparing the relative advantages and disadvantages of the intrinsically different
approaches available for building them. In fact, a number of authors, particularly in
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Artiﬁcial Intelligence {Al), have even suggested that this is a closed issue because of
the clear superiority of deductive approaches. For example, consider the following
statements:

“Ag a result, pattern-directed inference systems based on antecedent-consequent rules make

a strong claim to being the best available scheme for knowledge representation . ..” (Hayes-
Roth, Waterman & Lenat, 1978).

“There is only one language suitable for representing information, whether declarative or
procedural, and that is first-order predicate logic. There is only one intefligent way Lo process
information and that is by applying deductive inference methods” {Kowalski, 1980},

Although rule-based deduction may seem synonymous with expert systems to some,
it is actually only one of several widely used methods. Two other important approaches
are statistical pattern classification and frame-based ‘abduction.

In contrast to the opinions expressed by some, the authors believe that none of the
available methods is obviously “the best” method. This paper presents an analysis of
the relative limitations and trade-offs among the three methods listed above to provide
guidelines for those who are considering the development of expert systems, and to
identify areas where further research is needed. Our critical analysis is based on the
following: (1) a review of previous studies comparing different methods used to build
expert systems; (2) our own collective experience of over five years with developing
and analysing methods for expert systems and (3) several studies which we undertook
to evaluate different methods applied to the same application. In short, this paper is
intended to provide a fairly comprehensive overview of the advantages and disadvan-
" tages of several major methods for building expert systems as they are undersiood foday.

The rest of this paper is organized as follows. Section 2 provides a brief review of
the three expert-system methods discussed in the paper: Bayesian classification (a
statistical pattern classification method), rule-based deduction, and frame-based abduc-
tion. Section 3 summarizes past studies which have compared expert systems and
section 4 discusses the expert-system projects with which we have been involved to
give the reader an understanding of the basis for our conclusions. Section 5 then
discusses the comparative advantages and disadvantages of the three approaches, and
section 6 suggests considerations in selecting an appropriate method for building a
particular knowledge-based system. Finally, section 7 discusses current and future
research needs. :

2. Background: three methods for implementing expert systems

In general, an expert system consists of two basic components, a domain-specific
knowledge base and a domain-independent inference mechanism. The knowledge base
consists of data structures which represent general problem-solving information for
some application area. The inference mechanism is a computer program which uses
the information in the knowledge base along with problem-specific input data to
generate useful information about a specific case.

Various methods have been used to build expert systems in the past, and this section
briefly discusses three of them: one form of statistical pattern classification, rule-based
deduction, and frame-based abduction. The basic properties of these three approaches
are shown in Table 1, and the details are discussed below.
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TaBLE 1
Three methods for constructing expert systems

Method Representation Inference method Examples
Statistical pattern a priori and condi-  Calculation of pos-  Ben-Bassat et al {1980)
classification tional prob- terior prob- deDombal (1975)
{mainly Bayesian) abilities, dis- abilities, calcu- Gustafson ef al. (1977)
criminant lation of dis- Knapp, Levi, Lurie &
functions, etc. criminant score, Westphal (1977)
etc. Matthys, Fischer, Ulrichs

& Ruhle (1979)
Templeton et al. (1967)
Warner et al. {1964)
Zagoria, Reggia, Price &

Banko (1981)

Zagoria & Reggia (1983)

Rule-based : Conditional rules Deduction Campbell ef al. (1982)

deduction _ Davis et al (1977)

Fagan (1979)

Futo, Darvas & Szeredi

o (1978)

Kunz et al (1978}

Nathanson (1984)

Reggia (1978)

Reggia (1980)

Reggia & Perricone

{1981)

Reggia, Tabb, Price,

Banko & Hebel (1984)
Shortliffe (1976)
VanMelle et al (1981)
‘Weiss, Kulikowski &

Safir (1978)

Frame-based Frames, semantic Hypothesize-and- Aikins (1980)
abduction networks test Catanzarite & Greenburg
(1979)

Miller et al. (1982}

Mittal, Chandrasekaran
& Smith (1979)

Pauker et al. (1976)

Pople, Myers & Miller
(1975)

Reggia (1981)

Reggia, Nau & Wang
(1983)
Shubin & Ulrich (1982)

2.1. STATISTICAL PATTERN CLASSIFICATION

For our discussion of statistical pattern classification, we will focus on Bayesian
classification as the most widely used statistical approach. A more general discussion
of statistical pattern classification can be found in any of several existing texts on this
topic {e.g. Duda & Hart, 1973). Domain-specific problem-solving knowledge in
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Bayesian systems is represented as tables of probabilities, including (1) prior prob-
abilities of outcomes and (2) conditional probabilities of problem features given each
possible outcome. The inference mechanism applies Bayes’ Theorem to this informa-
tion to calculate the probability of each possible outcome when given a particular case.

More specifically, suppose we are given the problem features M for a specific case
and want to estimate the probability of each of n mutually exclusive and exhaustive
outcomes C,, C,, ..., C, which could occur. Let: '

P(C;) be the prior probability of C, (i.e. how commonly C, occurs in the general
population);

P(M|C;) be the conditional probability of M, given the presence of C; (i.e. how
often C; would be associated with the set of problem features represented by M);
P(C,|M) be the conditional probability of C; given the presence of M (i.e. how
often C; would occur given the particular set of problem features M, also called the
posterior probability).

Then Bayes’ Theorem can be invoked to generate P(Ci|M) for each C; given M, and
is written as: ,

P(CYP(M|C)
¥ P(GYP(M|C)

Formal derivations for Bayes’ Theorem can be found in Duda & Hart (1973) and an
example of a simple Bayesian knowledge base with a demonstration of how the
inference mechanism would work is found in Reggia (1982).

It is generally impractical in real-world domains to derive conditional probabilities
for P(M|C;) for every possible combination of problem features. In practice, therefore,
it is usually assumed that the m individual problem features in M (M, M,,...,M,)
are independent (i.e. that the presence of one problem feature does not influence the
probability that any other problem feature will be present). Using this independence
assumption, it follows that:

P(Mlci)= P(Mllci) * P(MZIC:') Froeck P(Mm[Ci)-

Therefore, assuming binary features, only m probabilities P(M,|C,) (one for each
M,.) are needed in the knowledge base for each outcome C; rather than the potentially
huge set of 2™ probabilities P(M|C,) which would be needed for each G if this
assumption was not made.

There are numerous examples of Bayesian classification systems, especially in
medicine. In one well-known example, a Bayesian expert system outperformed phy-
sicians in diagnosing the cause of acute abdominal pain (about 90% vs. 80% correct
diagnoses respectively) (deDombal, 1975). Other expert systems have been developed
to diagnose congenital heart disease (Warner, Toronto & Veasy, 1964), identify potential
suicide victims (Gustafson, Griest, Stauss, Erdman & Laughren, 1977), classify stroke
patients (Zagoria & Reggia, 1983), and diagnose solitary pulmonary nodules (Temple-
ton, Jansen, Lehr & Hufft, 1967).

P(CilM)=

22. RULE-BASED DEDUCTION

A second widely-used method for expert systems, and essentially the “standard” in
Al today, is rule-based deduction. In this approach, domain-specific problem-solving
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knowledge is represented in rules which are basically of the form:
“IF (antecedents) THEN {(consequents)”,

although the exact syntax used may be quite different (e.g. PROLOG). If the ante-
cedents of such a rule are determined to be true, then it logically follows that the
consequents are also true. Note that these rules are not branching points in a program,
but are non-procedural statements of fact.

The inference mechanism consists of a rule interpreter which, when given a specific
set of problem features, determines applicable rules and applies them in some specified
order to reach conclusions about the case at hand. Rule-based deduction can be
performed in a variety of ways, and rules can be chained together to make multiple-step
deductions. (For a fuller description, see Hayes-Roth et al, 1978). In addition, in
many systems one can attach “certainty factors” to rules to capture probabilistic
information, and a variety of mechanisms can be used to propagate certainty measures
during problem solving: MYCIN (Shortliffe, 1976} and PROSPECTOR (Campbell et
* al., 1982) are two well-known examples of expert systems which incorporate rule-based
deduction, and PROLOG successfully uses the fundamental ideas of this method
(implemented as a restricted form of resolution wih Horn clauses).

2.3. FRAME-BASED ABDUCTION

A third important method will be referred to in this paper as “frame-based abduction.”
Here, the domain-specific problem-solving knowledge is represented in descriptive
“frames” T of information (Minsky, 1975}, and inference is typically based on hypothe-
size-and-test cycles which model human reasoning as follows. Given one or more initial
problem features, the expert system generates a set of potential hypotheses or “causes™
which can explain the problem features. These hypotheses are then tested by (1) the
use of various procedures which measure their ability to account for the known features,
and (2) the generation of new questions which will help to discriminate among the
most likely hypotheses. This cycle is then repeated with the additional information
acquired. Reasoning from observed facts to the “best explanation” is sometimes referred
to as abduction (Reggia, 1985).

As an example, various studies have concluded that diagnostic reasoning is a
sequential hypothesize-and-test process {see Reggia, 1982 for a review), so it is not
surprising that many of the expert systems built with this approach are directed towards
diagnostic problem solving. INTERNIST (Miller, Pople & Myers, 1982), KMS.HT
(Reggia & Perricone, 1982; Reggia, Nau & Wang, 1983), PIP (Pauker, Gorry, Kassirer
& Schwartz, 1976), and IDT (Shubin & Ulrich, 1982) are typical systems using this
approach. For example, KMS.HT is a domain-independent expert-system generator
for diagnostic problem solving. In order to simulate hypothesize-and-test reasoning,
this system employs a generalized-set-covering model in which there is a universe of
all possible manifestations(symptoms) and a universe which contains all possible causes
(disorders). For each possible cause, there is a set of manifestations which that cause
can explain. Likewise, for each possible manifestation, there is a set of causes which
could explain the manifestation. Given a diagnestic problem with a specific set of
manifestations which are present, the inference mechanism finds all sets of causes with

1 Here, we are not referring to those expert systems in which each rule is a separate “frame.” These are
considered to be rule-based systems.
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minimum cardinalityt which could “explain’ {cover) all of the manifestations. For a
more detailed explanation of the theory underlying this approach and the problem-
solving algorithms, see Reggia et al. (1983); Reggia, Nau, Wang & Peng (1985b); Nau
& Reggia (1984); Peng (1986).

3. Previous studies

Several previous empirical studies have compared expert systems built using different
methods to solve the same problem. The expert systems in each study were compared
primarily by measuring the accuracy of each system on the same set of cases. We
review here those comparative studies which deal with medical problem solving (these
studies are summarized in Table 2). We feel these studies are also fairly representative
of other application areas. In addition, we describe another study which compares the
ease of implementation and the run-time efficiency of several expert systems.

One study compared three statistical models by applying them to screen for thyroid
disorders (Nordyke, Kulikowski & Kulikowski, 1971). The three models used were a
simple Bayesian model, a linear discriminant model, and a *pattern-recognition
method™.} Five systems were built for each of the three models based on the level of
completeness of available data. Each model performed best for one or more of the
five completeness levels, with the Bayesian method performing best when all of the
data were included (having no higher than a 13-7% misclassification rate). Thus, the
methods had comparable performance rates in which the differences depended on the
amount and the type of information given to the systems.

Ten discriminant function models of varying complexity, which had been suggested
for diagnostic problem solving, were compared in another study (Croft & Machol,
1974). Of the nine models which were applicable to the particular data set tested, all
produced relatively similar results. The authors concluded that the derivation of
increasingly complex mathematical models similar to the ten used in this study may
not be a worthwhile venture.

In another study, three expert systems which generated psychiatric diagnoses were
compared by measuring the agreement between the computer systems and clinical
diagnoses made on actual cases (Fleiss, Spitzer, Cohen & Endicott, 1972). The three
methods used were Bayesian classification, discriminant function classification, and
logical decision-tree analysis (branching logic). All three of the methods performed
about equally well on test problems derived from the same population that provided
the probabilities for the statistical systems. When compared with diagnoses made by
clinicians, agreement between programs was about as close as clinicians have been
found to agree among themselves. However, when a test sample drawn from a different
patient population was used, the decision tree method was found to be more accurate.
The authors thus recommend the decision-tree method because of its superior perform-
ance on the latter sample and the fact that statistics from a large sample are not needed
to develop an expert system using this method.

T Ockham’s razor, which states that the simplest explanation is usually the correct one, together with the
assumption of independence among causes motivate the requirement of minimum cardinality. For other
netions of parsimony, see Peng (1986).

% The “pattern recognition method” extracts the most characteristic features of each diagnostic category

and uses this as the general problem-solving information. A particular input case is then classified into the
category with which its data shares the most features.




COMPARISON OF METHODS FOR EXPERT SYSTEMS 481

TABLE 2
Previous studies comparing different methods for building expert systems

Compared methods Topic area Results Reference
Three statistical pattern Thyroid Comparable performance Nordyke et al.
classification tech- dysfunction rates (1971)
niques {Bayesian diagnosis

classification, linear
discriminant model,
pattern recognition

method)
Ten discriminant func- Liver disease All produced similar Croft & Machol
tion models diagnosis results (1974)
Bayesian classification, Psychiatric Similar performance on  Fleiss et al (1972)
discriminant function diagnosis one sample; branching )
classification, branch- logic performed better
ing logic on another sampie
Bayesian classification, Dyspepsia Both produced simifar Fox et al (1980)
rule-based deduction diagnosis results; rule-based sys-
tem needed less infor-
mation to.determine
diagnosis
Bayesian classification, Emergency Similar results when Solomon et al,
rule-based deduction medical normal operating cut- (1984)
: diagnosis off for each system was
applied :
Ruie-based deduction, Pulmonary Frame-based abduction  Aikins (1980}
frame-based abduction function performed better and
diagnosis generated fewer,

focused questions

In another study, two different expert systems which diagnosed dyspepsia (gastro-
intestinal pain) were compared (Fox, Barber & Bardhan, 1980). A successful Bayesian
system had previously been developed. A rule-based system was then developed with
the purpose of comparing the two systems and determining if this was a viable
alternative to the Bayesian method. The performance of the rule-based system was
found to be comparable to that of the Bayesian system, with 78% vs 76% correct
diagnoses respectively using an initial sample of 50 patient records, and 66% vs 68%
correct diagnoses using a somewhat more difficult, second sample of 50 patient records,
The use of well-known patterns to form the rules seemed to be able to compensate
for the loss of the quantitative precision of the statistics. In addition, the rule-based
system asked fewer, focused questions and therefore needed less information in order
to determine its diagnosis. _

Another experiment also compared rule-based and Bayesian approaches for medical
diagnosis (Solomon, Kenevan, Evens, Koschmann & Weil, 1984). A subset of the
MEDAS system ( Ben-Bassat, Carlson, Puri, Davenport, Schriver, Latif, Smith, Portigal,
Lipnick & Weil, 1980) for emergency medical diagnosis was used as the Bayesian
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system. A knowledge base in the form of rules with certainty factors was then construc-
ted with EMYCIN (VanMelle, Scott, Bennett & Peairs, 1981) to be equivalent to the
knowledge in the Bayesian system. Fifty-three test cases were selected from a set of
simulated cases prepared by physicians, and the results of test runs were compared.
Each system gave its best performance when normal operating thresholds (0.2 for final
certainty factors of outcomes in the rule-based system and 0.5 for final probabilities
of outcomes in the Bayesian system) were applied, and the systems gave results of
similar accuracy. '

In another study, rule-based deduction used in PUFF was compared against a
second-generation system called CENTAUR which used a frame-based hypothesize-
and-test method {Aikins, 1980). Both systems provided interpretations of pulmonary
function tests. CENTAUR’s diagnoses agreed more frequently with physicians than
did PUFF’s on 100 test cases. CENTAUR’s agreement with the physican who helped
create the systems was 91% while PUFF’s agreement was 85%. CENTAUR’s agreement
with a second physician was 84%, and PUFF’s was 74% . Furthermore, CENTAUR’s

" consultations were more focused with fewer questions being asked of the user, and
this allowed the physicians to understand better how the system was reasoning. The
descriptive organization of CENTAUR’s knowledge also allowed improved answer
justification and easier knowledge acquisition.

In the one study we are aware of in which criteria other than system accuracy were
used, four pilot expert systems were built to solve the problem of risk management of
a large construction project (Niwa, Sasaki & Ihara, 1984). The four types of models
were a simple rule-based deduction system, a structured rule-based deduction system,T
a frame-based system (which used a generalization hierarchy. supporiing inheritance
of attributes, Winston & Horn, 1981}, and a resolution-based logic system. The four
systems were compared subjectively in terms of the difficulties of implementing the
knowledge bases and inference mechanisms. They were also compared on the basis
of run-time efficiency. It was found that the use of structured knowledge representations
(structured rule-based deduction and frame systems) increased run-time efficiency, but
the implementation of these systems was more difficult.

In summary, most past studies involve the comparative evaluation of the accuracy
of multiple expert systems for the same application domain. In some studies, the
various expert systems being compared were built using very different techniques,
while in several other studies, the expert systems were built using similar techniques.
The major resuits from these studies indicate that none of the methods is significantly
superior to the others. Even where minor differences do exist, one can generally attribute
them to differences in the problem-specific information in the knowledge bases as
opposed to fundamental differences in the methods being used.

4. Our results

During the last five years, the authors have been involved personally in the development
and evaluation of a wide variety of expert systems. These systems are outlined in Table
3, and have involved problems ranging from “toy examples” to real-world systems

) # The production rules were divided into several units, based on the femporal order in the model of
domain knowledge relationships. Control functions were included in the inference mechanism which allowed
the proper unit to be accessed, thereby limiting the number of rules to be searched during usage.
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TABLE 3
Some expert systems constructed by our group during the last five years. (SPC stands
Jor Statistical pattern classification, RBD stands Jor Rule-based deduction, and FBA
stands for Frame-based abduction). :

Expert-system task Methods used Reference
(1) Medical _ .
Stroke diagnosis SPC -Zagoria & Reggia (1983)
Treatment of transient ischemic attacks RBD Reggia et al. (1984)
Prediction of arteriorgraphy risk SPC Reggia, Pula, Price
& Taylor (1981)
Prognosis following subarachnoid SPC, RBD Unpublished
hemorrhage
Neurological localization in coma RBD, FBA Reggia (1978)
Dizziness diagnosis FBA Reggia er al (1983)
Coma prognosis - RBD Unpublished
Acute quadraparesis diagnosis FBA Unpublished
Peroneal muscular atrophy diagnosis FBA Reggia er al (1983)
Cancer screening RBD Reggia & Perricone (1981)
Dementia diagnosis RBD Unpublished
(ii) Non-medical
Software acquisition advisor RBD Ferrentino (1983)
Software engineering advisor RBD, FBA Basili & Ramsey (1985)
Statistical test selection FBA Reggia (1981)
Plumbing disorder diagnosis FBA Reggia & Perricone (1982)
Chemical-spill diagnosis SPC, RBD, FBA Described in this paper
Process planning in automated RBD, FBA Unpublished
manufacturing
Nuclear reactor monitor RBD KES (19384)

intended for eventual use. As an example of the latter, a large rule-based system {about
400 rules) for the difficult medical problem of classifying and treating transient ischemic
attacks was implemented and evaluated in a clinical study involving 103 patients
(Reggia, Tabb, Price, Banko & Hebel, 1984), Development of other systems has involved
statistical pattern classification techniques, rule-based deduction, and frame-based
abduction. In addition, for a number of years we have developed and used a domain-
independent expert-system generator, and we have recently completed a study of the
use of this same software by 70 medical students to buijld small expert systems (many
of these students were computer-inexperienced) (Reggia, Tuhrim & Perricone, 1986).
While conclusions drawn from this work must necessarily be partially subjective, it
has clearly delineated the issues involved and provided a major influence on the
conclusions and recommendations in subsequent sections of this paper.

In addition to the work outlined above, we have undertaken a number of studies
specifically to compare the three methods for building expert systems discussed in this
paper. The goal in each study was not only to evaluate system performances compara-
tively, but also to evaluate the advantages and disadvantages of each method in terms
of ease of knowledge representation and acquisition. As noted earlier, most previous
empirical studies have not addressed these issues. Most of the applications which we
have used in this fashion were real-world problems including neurological localization,
stroke-related problems, estimating prognosis following subarachnoid hemorrhage,
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process planning in automated manufacturing, and software development management.
However, to illustrate clearly the approach to comparative analysis we used in each
case, we briefly describe below a collection of three small expert systems constructed
for the same “toy problem” of diagnosing the cause(s) of a chemical spill contaminating
a creek. This simple application is used to illustrate the basic approach we employed
to do comparative analyses because the domain-specific concepts involved should be
relatively easy for most readers. to understand.

In the chemical-spill problem, an expert syster receives as input a set of manifes-
tations such as high acidity of creek water or changed water color. The goal of the
expert system is to produce the name(s) of the chemical(s} responsible for the spill
(more than one chemical could be present). The knowledge for the expert systems was
originally given in a descriptive, natural-language format. Each type of spill which
could occur was listed along with the manifestations it might produce (see Appendix).

KMS (Reggia & Perricone, 1982), an experimental domain-independent system
which can be used to build Bayesian, rule-based, and frame-based systems, was then
used to construct the three expert systems for this problem. In order to keep the systems
consistent, the causes and manifestations used were identical in all three cases. Figure
1 shows a sample section of each knowledge base. The certainty factors used for rules,
the probabilities used for statistical pattern classification, and the measures of likelihood
used in frames were also kept fairly consistent. For example, given a specific chemical
spill, a manifestation with a “high” likelihood of being present in the frame-based
system was given a 0-75 conditional probability in the Bayesian system. The rule-based
system presented some problems because the number of times this manifestation could
appear as a result of other chemical spills also had to be taken into account. While
many other formulations of the rules could have been used, we elected for this toy
problem simply to use rules of the form shown in Fig. 1(b). (This was not the case in
most of the other comparative studies where the antecedents were composed of more
complex logical relationships.)

For the chemical-spill problem, it was observed that the abductive frame-based
systemn was, by far, the easiest and most natural io develop. This was not surprising
in that a diagnostic problem was involved, and the knowledge was originally presented
in a descriptive, frame-like fashion (see Appen'dix). The three expert systems were
each tested on a small set of simulated problems. All three systems worked about
equally well for simple test cases involving only one chemical spill, consistent with
the previous studies done by others that were described above. However, for test cases
where multiple chemical contaminants were present, the frame-based abductive expert
system clearly outperformed the other two approaches.

Unlike the chemical-spill study, our other comparative studies involved real-world
applications. In most cases, little effort was made to make the expert systems of these

F1G. 1. A small section of each of the three knowledge bases used in the chemical spill expert systems. (a),
Frame-based abduction—the letters enclosed in angular brackets indicate a likelihood factor. In the first
frame for example, the “(H)” next to «Acidic” indicates that there is a high likelihood that the pH is acidic
when there is a sulfuric acid spill. The other likelihood factors are A (always), N (never), M {medium),
and L (low). (b), Rule-based deduction—the numbers enclosed in angular brackets are certainty factors.
(¢), Bayesian classification—the number next to «Qulfuric Acid” is the prior probability of a sulfuric acid
spill occurring. The third row of conditional probabilities under “Sulfuric Acid” corresponds to the
acidic/alkaline manifestation. For example, the first probability of 075 indicates the probability that the
water is acidic given that there is 2 sulfuric acid spill.
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(a)
Sulfuric Acid
[Description:
Spill Alarm =0mn (A);
Month of Year=May {H}, June {H);
PH = Acidic (H);
Spectrometry Results = Sulfur {(A})],
Petroleum
[Description:
Spill Alarm = On {A);
Month of Year=July (H), August {H}, September (H};
Water Color = Black;
. Photometry Results = Qily;
¢ Spectrometry Resulis = Carbon {H);
Specific Gravity of Water = Decreased],

(b)
. PH1 IF PH = Acidic
THEN Type of Spill = Sulfuric Acid {0-37).
COL2 IF Water Color = Black
THEN Type of Spill = Petroleum {1-0}.
PHOTO1 IF Photometry Results = Qily
THEN Type of Spill = Petroleum {0-33),
SPECT1 IF Spectrometry Results = Carbon
THEN Type of Spill = Petroleum {(0-22}.
SPECT2 IF Spectrometry Results = Sulfur
THEN Type of Spill =Sulfuric Acid {0-55).
GRAY] IF Specific Gravity of Water = Decreased
THEN Type of Spill = Petroleum {0-34).

()
Attributes:
\INPUT ATTRIBUTES
Spill Alarm (SGL): on, off.
Month of Year (SGL):
April, May, June, July, August, September.

\INFERRED ATTRIBUTE
Type of Spill [DETERMINANTS:*] (SGL):
Sulfuric Acid {008}
1-000-00;
0-110-280-280-11 0-11 0-11;
0-750-24 0-01;
0-98 0-01 0-01;
“ 0-99 0-01;
0-99 0-01
0-99 0-01;
0-00 1-00;
0-99 0-01;
0-010-98 0-01,
Petroleum {(0-07)
1-000-00;
0-09 0-08 0-08 0-25 0-25 0-25;
0-010-98 0-01;
0-49 0-01 0-50;
0:500:50; -
0:990:01;
0:25075;
0-99 0-01;
0-99 0-01;
0-500-49 001,
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studies maximally consistent with each other as in the “toy” chemical-spill expert
system. Instead; the goal was maximum performance with each method, although in
fairness, an effort was made to incorporate the same information and scope in each
system for the same application. For example, two expert systems for predicting
outcomes following subarachnoid hemorrhage were implemented, one using Bayesian
classification and one using rule-based deduction. Both were based on the same
published data for this clinical problem (Yoshimoto, Uchida, Kaneko, Kayama &
Suzuki, 1979}, and both systems performed well when tested using data from 40 patients.

As another example, an ongoing comparative study involves the development of
two prototype expert systems to aid in software engineering management (Basili &
Ramsey, 1985). These systems work as follows. First, it is determined whether or not
a software project is following normal development patterns by comparing measures
such as programmer hours per line of code against historical, environment-specific
baselines of such measures. The “manifestations” detected by this comparison, such
as an abnormally high rate of programmer hours per line of code, serve as input to
each expert system, and each system then provides the causes, such as low productivity,
for any abnormal software development patterns. The knowledge bases consist of
relationships between various potential causes (such as poor- testing or uristable
specifications) and abnormal values of measures.

The two methods used to build these expert systers were rule-based deduction and
frame-based abduction. Furthermore, these two systems were intentionally built to be
as consistent with one another as possible; the causes and manifestations used were
identical in both cases, as were the relationships between them. The initial knowledge
was derived from empirical software engineering research and organized in a table
format, so the first sets of simple rules (which contained only one antecedent for each
rule) and frames were straightforward to develop. However, the situation became more
complex as additional knowledge was added, reflecting the fact that the science of
software engineering is still ill-defined. Also, an attempt was made to develop rules
with complex antecedents, but the more involved patterns necessary to develop these
rules are not known yet. :

A preliminary evaluation of the two expert systems was performed (Basili & Ramsey
1985). The method used to do the evaluation was to compare the interpretations
{causes) provided by the expert systems for particular projects against what actually
happened during the development of those projects, thereby obtaining a measure of
agreement. It was found that the rule-based system performed better, agreeing with
45% of the actual interpretations; the frame-based system agreed with 33% of the
actual interpretations. The expert systems were viewed as performing moderately well
given that (1} so much of the knowledge and relationships are unclear in the field of
software engineering and (2) only nine metrics (manifestations) were used to determine
the interpretations. Both expert systems provided the exact same interpretations for
seven out of nine projects. In the two cases where the expert systems differed, the
frame-based system provided very few interpretations which covered the entire set of
manifestations, while the rule-based system provided more interpretations and agreed
with more of the actual interpretations. Also, these differences resulted in 31% fewer
extra interpretations for the frame-based system. However, when dealing with uncertain
relationships, it is better to provide extra interpretations (and then to let the user decide
which are applicable) than to aim for the “one” correct explanation and thereby miss
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correct explanations. Therefore, the authors concluded that a rule-based deduction
system using simple rules seems more applicable to the field of software engineering
than does a frame-based abduction system which determines explanations of minimum
cardinality. This conclusion can probably be extended to include other ill-defined
application areas as well.

b. Comparative advantages and disadvantages

As a result of the work summarized in sections 3 and 4, we can state several conclusions
about the relative strengths and weaknesses of methods for building expert systems.
While we have attempted to be as comprehensive as possible, we make no claim to
completeness. Our intent is to provide a first attempt to organize the relative merits of
the different methods involved as a guide to the practitioner, and to provide a focus
for further research to confirm and extend the points made here.

5.1. GENERAL COMMENTS

There are common strengths and weaknesses for all three of the methods discussed in
this paper. All three methods can generally be adapted to any problem involving the
selection of different aiternatives. Furthermore, they have all shown reasonable per-
formances in various expert systems in a wide range of application domains.

A second strength which all the methods share is a strong theoretical foundation.
Statistical pattern classification is based on probability theory, rule-based deduction
is based on deductive logic (e.g. first-order predicate calculus), and frame-based
abduction can be based on the theory of set covering which provides a formal theory
of diagnostic inference (Reggia ef al, 1983; Reggia et al., 1985b).

Third, all three expert-system methods can support answer justification, the abiiity
to explain to the user how or why a certain result was derived. This ability is generally
perceived to be of major importance by potential expert system users who may be
reluctant to trust a machine-generated recommendation unless it is clear why that
recommendation has been made (Teach & Shortliffe, 1981). The conventional wisdom
in Al has been that rule-based systems, with their ability to support a limited form of
answer justification (Davis, Buchanan & Shortliffe, 1977), have a major advantage over
other methods for expert systems. However, it has recently been shown that Bayesian
classification systems can also support answer justification by analysing and presenting
the problem features most responsible for the relative ranking of outcomes {Reggia &
Perricone, 1985). Answer justification for frame-based abductive expert systems based
on an analysis of the causal associations in the knowledge base has also been described
recently (Reggia, Perricone, Nau & Peng, 1985a). Thus, it appears that many different
expert-system methods involving associative knowledge can support answer justifica-
tion, and that previous development of answer justification primarily in rule-based
systems simply reflected different research priorities. It might even be argued that
among the three methods discussed here, rule-based systems are the weakest with
respect to answer justification: for many domains, citing artificial program-specific
rules is far less educational than organizing and citing naturally occurring associations
between domain-specific concepts in Bayesian classification and frame-based abduction.

Just as all three methods have common strengths, all three are limited in their abiiity
to represent conveniently certain types of information such as spatial and temporal
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knowledge. In addition, all of the methods have a “shallow” nature, using simple
associative mappings between problem features and outcomes rather than a “deep”
reasoning mechanism which would involve many levels of mappings. None of these
models is an adequate model of human cognition, and none is especislly robust in
handling “noisy data”.

Although the three methods are similar in some respects, they are quite different in
other respects. We now turn our attention to the relative strengths and weaknesses of
each individual method.

5.2, STATISTICAL PATTERN CLASSIFICATION

A major advantage to statistical pattern classification is that it has been repeatedly
used with proven success. If one has the needed probabilities and a domain-independent
expert-system generator, these systems are very easy to organize and implement, For
example, one fully operational real-world example took a total of only 8h to create!
(Zagoria & Reggia 1983). In addition, these systems are based on real statistics gathered
from actual cases in the problem domain, so the knowledge base many contain
knowledge which the experts in the field are not aware of or cannot verbalize (Solomon
et al., 1984).

However, statistical pattern classification systems face several major disadvantages.
Perhaps the biggest disadvantage to this method is that it requires the availability of
exact probabilities. While these probabilities can often be measured, this is usunally a
time-consuming and very costly task, and estimations of probabilities by domain experts
has repeatedly been shown to be unsatisfactory for such systems (Shapiro, 1977;
Tversky, 1974; Leaper, Horrocks, Staniland & deDombal, 1972). Another problem is
that certain unrealistic assumptions must be made to use some statistical techniques.
For example, in Bayesian classification, the outcomes involved must be mutually
exclusive. Unfortunately, in many problems, multiple simultaneous outcomes may be
present (e.g. a patient may have multiple diseases). The Bayesian chemical-spill system
did not perform well for multiple chemical spills, an observation often made with
real-world expert systems {e.g. Zagoria & Reggia, 1983). Another assumption, not
required by Bayes’ Theorem per se but generally required in practice, is that the problem
features are independent. In very many application domains, problem features are not
independent, and making this assumption incorrectly can result in a degraded
performance and compromise theoretical claims of optimality (Fryback, 1978; Norusis
& Jacquez, 1975a). A modification of Bayesian classification to handle multiple
simultaneous outcomes has been suggested in Ben-Bassat et al (1980), and a variety
of solutions has been proposed for handling the problem of assuming that the problem
features are independent (Davies, 1972; Fryback, 1978; Norusis & Jacquez, 1975b).

Ancther disadvantage of most traditional Bayesian and statistical systems is that
one must have ALL of the relevant information about a case before one can use the
system. This can be unrealistic if one is working on such things as a diagnostic problem
where one would need certain (perhaps expensive) diagnostic tests only in certain
situations. Some solutions to this are that unknown attributes can simply be dropped
from the calculation {Reggia, Pula, Price & Perricone, 1980) or one can use an ¢elaborate
sequential application of Bayes’ Theorem (Gorry & Barnett, 1968).

Finally, geographic location may be an important factor when using statistical pattern
classification. The probabilities may be dependent on the specific environment from




COMPARISON OF METHODS FOR EXPERT SYSTEMS 489

which they were gathered and may not be transportable to other locations. However,
some evidence has suggested that some statistical systems may be more transferable
than previously suspected (Zagoria & Reggia, 1983; Zoltie, Horrocks & deDombal

1977).

5.3. RULE-BASED DEDUCTION

Rule-based deduction has also exhibited proven successes. Examples include PROS-
PECTOR (Campbell et al, 1982) and HELP (Nathanson, 1984; Pryor et al, 1934)
which were discussed earlier. This method provides the ability to chain associative
information to make deductions, a capability that can be very useful. Some say rules
provide a good model of human reasoning (Larkin, McDermott, Simon & Simon,
1980), but this is a controversial issue (Davis et al, 1977; Aikins, 1980). The use of
rules allows for non-numeric, judgemental knowledge because one does not need exact
probabilities.

One of the disadvantages of rule-based deduction is that it is often difficult to
represent knowledge in terms of rules, especially if one already has available descriptive
information, such as knowledge from texts and experts. This was true of the chemical-
spill system, and this type of problem has been encountered during many other attempts
to write rule-based systems in the past (Reggia, 1978; Shortliffe, 1976; Buchanan,
Sutherland & Feigenbaum, 1970). Rules are not a convenient way to organize knowledge
in many domains, and one often needs to introduce non-intuitive intermediate problem
features for bookkeeping purposes.

Part of this problem is due to the fact that the “dlrectlonahty of production rules
can present problems.t For example, the rules used in diagnostic rule-based systems
are typically of the form “IF (manifestations) THEN {cause)”. However, much of the
knowledge used to create such rules as it is familiar to domain experts is descriptive
and goes in the opposite direction: if some cause is present, then certain manifestations
will typically occur. As a result, many people claim that one is “thinking backward”
when using rules (Davis et al, 1977). For example, as part of a research project in
clectronic diagnosis (J. Miller, pers. comm.), a group of electronic technicians were
given a brief introduction to the concept of production rules. They were then asked
to write some production rules describing an electronic circuit for use in fault diagnosis.
The rules they produced were almost all of the form

“IF {cause) THEN (manifestations)”.

Presumably the technicians were specifying their knowledge in an intuitively familar
form, more along the lines of describing each cause rather tham providing fixed rules
for diagnosis.

Another source of difficulty with rule development is that one must include all of
the necessary context for a rule’s application in its antecedent clauses (Davis et al,
1977). Since all of the relevant factors for applying a rule are not always obvious, this
can resuit in errors of omission in the antecedents of rules. In addition, the interpretation
of some problem features can be very context-dependent. As an example taken from
neurology, the “meaning” of a unilateral dilated and fixed pupil depends on whether

T By “directionality”, we are not referring to the way in which the rules are vsed by the inference mechanism
(i.e. forward vs backward chaining).
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long-tract findings are present, whether a patient is awake or unconscious, whether
the neck is supple or rigid, whether topical eye medications are being used, etc. (Reggia,
1978). To encode adequately all of the necessary contextual information into antecedent
clauses could require a large number of rules which interact in complicated ways. This
problem is magnified in the presence of multiple simultaneous disorders. (For a further
discussion of these difficulties, see Nau & Reggia 1984). Furthermore, there are
generaily many ways to organize rules, and it is usually not clear a priori which way
is best. Often, one ends up rewriting the entire rule system (Reggia, 1978).

The *“directionality” of certainty factors can also present problems. As a simple
example, in the chemical-spill problem one may know that if a hydrochloric or other
acid spill occurs there is a high likelihood that the water will become acidic. If one
were asked to choose a conditional probability for this association, one might choose
0-95. However, the knowledge base would generally contain rules which go in the
opposite direction such as:

“IF {(creek water is acidic) THEN {chemical-spill is sulfuric acid) (CF1).”
“IF {creek water is acidic) THEN (chemical-spill is hydrochloric acid) (CF2).”
“IF {creek water is acidic) THEN (chemical-spill is carbonic acid) (CF3).”

Here, CF1, CF2 and CF3 stand for the certainty factors of drawing the consequents
if the antecedents are true. Now, if the creek water is acidic, how certain is one that
the spill is hydrochloric acid? If the prior probabilities of outcomes are available, one
could derive certainty factors from the given information, but without that knowledge,
it is often difficult to determine them, and subsequently the certainty factors used in
real-world expert systems are, at best, rather arbitrary.

54. FRAME-BASED ABDUCTION

One advantage of frame-based abduction is that for many applications, frames are
casy and natural to write. They can often be taken almost directly from descriptive
information in a textbook or paper. For example, the chemical-spill system was derived
from object-oriented descriptive knowledge, and the frames were therefore easily
written. Another advantage is that all of the information about each outcome is placed
in one frame so context-dependent information can be handled more readily. Further,
in dlagnostlc and other problems involving selection, this method can work very well
even when multiple causes/ disorders/selections are involved. This was apparent with
the chemical-spill system, and has been observed for a number of real-world expert
systems. Finally, the hypothesize-and-test algorithms often used in frame-based abduc-
tion focus on the most likely outcome, thereby typically generating fewer questions.
An obvious advantage to this is that less time is consumed in a question-answering
session with a user. In addition, people sometimes feel more comfortable using such
systems because they can understand the reasoning of the system (Aikins, 1980).
The major disadvantages of this method can be summarized by observing that it is
the most experimental of the three methodologies. Frame-based abductive inference has
not been studied or used sufficiently in real-world applications that have objectively
assessed accuracy, making it difficult to understand fully the strengths and weaknesses
of this approach. Even the relatively small empirical trials with real-world systems that
have been done have exhibited somewhat limited performance (e.g. Miller ez al., 1982).
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Many technical issues concerning this method also remain to be resolved. The
optimal point at which to terminate the question generation and decision-making
process remains to be determined. While hypothesize-and-test algorithms focus on the
most likely hypotheses/outcomes and thereby limit the questions being asked, such a
strategy may at times leave some important but unrelated information undiscovered.
For example, a diagnostic expert system may move along one direction and determine
a set of disorders which accounts for all of the symptoms it knows about. However,
it is very possible that a “pure” abductive system might never ask about some unrelated
symptom which actually exists, and therefore, its final set of diagnostic explanations
would be incomplete.

Secondly, how to select optimally the next question to ask the user remains to be
determined. A variety of heuristic approaches have been adopted for question gener-
ation (Miller et al, 1982, Reggia et al, 1983), but all of these approaches appear to
be limited in their completeness, naturalness, and theoretical basis.

Finally, the abductive inference mechanisms used with this approach involve rela-
tively complex algorithms and problem-solving techniques which potentially have
exponential time complexity (although real-world cases fall in the low, flat portion of
the exponential curve) (Reggia et al, 1983h)}. Even so, they are weak models of the
actual abductive inference methods used by people. It is not clear, for example, in
abductive diagnostic problem solving, exactly how a person decides that one set of
disorders is a plausible explanation for a given set of manifestations and another set
is not (see Peng, 1986 for further details).

6. Recommendations for method selection

Given that all existing methods for building expert systems face limitations to their
general applicability, an important question for the individual planning to develop
expert systems for various applications is which method(s) to select. There is surpris-
ingly little information on this topic in the literature, so in this section we describe a
set of criteria for method selection that we have found useful based on both our
experiences and that of others as outlined above. These criteria are based on three
main factors: the pre-existing format of the application knowledge, the type of
classification that is desired, and the amount of context-dependence inherently present
in a problem. These factors are discussed below.
One important factor in method selection is the pre-existing format of the application
knowledge. Since this format is often very natural for the particular knowledge involved,
" keeping the knowledge in that same format has a certain intuitive appeal. Furthermore,
it requires much less work to keep the knowledge in the original forin, rather than to
transform it into some other representation. This was true for the chemical-spill system
where the frames for the abductive system were easily derived from descriptive informa-
tion. The software engineering system referred to earlier was developed from informa-
tion which existed in a table format, and rules were easily derived from this information.
A second important consideration is the type of classification desired. Some problems
inherently involve probabilistic inferences. For example, predictions of outcome (e.g.
prognosis) can often only be done in a probabilistic manner. On the other hand, for
some problems one may desire to make predominantly categorical inferences, such as
for part selection in automated manufacturing or assignment of a patient to an artificial
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disease “‘stage”. Still other problems involve a significant mixture of probabilistic and
categorical inferences. For example, diagnostic problem solving and problems like
determining the type of chemical spill often require a combination of these two types
of classification. Clearly, one wants to select an approach to knowledge management
for a specific problem whose inference mechanism embodies the type(s) of classification
involved. :

A third factor is how context-dependent the inference process needs to be. If
inferences depend on just a few input features, then rule-based deduction may be very
appropriate. On the other hand, if inferences depend on numerous input features, then
frame-based abduction might be a preferable approach. Writing a set of rules would
be difficult in this latter case because all of the context for using each rule would have
to be included in the antecedents of that rule. Even assuming that one could identify
a priori all of this relevant context, the resulting knowledge base would be a potentially
huge set of rules. In contrast, by encoding the knowledge in a descriptive fashion, one
largely defers the problem of context until problem-solving time.

Given the above factors and the comparative advantages and disadvantages we have
cited, guidelines can be proposed for selecting an approach to building an expert

TaBLE 4
Method selection criteria (+ means positive influence, and — means negative influence.
SPC stands for Statistical pastern classification, RBD stands for Rule-based deduction,
and FBA stands for Frame-based abduction).

Factor SPC RBD FBA

Predominant pre-encoding organization of knowledge

Branching Logic - +++ +

Rules : - +4+ -

Description/tables : . + “++ 4+

Uncertain/ poorly formed : - ++ +
Probabilities

Available/easily collected +++ + +

Otherwise it + +

Predominant type of classification
Mutually exclusive outcomes

Probabilistic L +4+ + +
Categorical . ++ +
Mixed + +
Multiple simultaneous outcomes
Probabilistic .+ +
Categorical : - ++ ++
Mixed — + +
Context-dependence
© Small + + +
Large : - - +++
Some example application areas
Small diagnostic problems + + +
Large diagnostic problem —_ + ERONE
Course of action to take ++
Predicting outcome : + + -
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system for a specific problem. Table 4 summarizes these guidelines for method selection,
and they are briefly discussed in the following paragraphs.

Statistical pattern classification in the form of Bayesian classification would be
appropriate to consider when: (1} relevant probabilities, or the data needed to derive
them, are readily available; (2) the outcomes where probabilities are being estimated
are mutually exclusive; (3) input features are relatively independent of one another
and (4) predominantly probabilistic inferences are involved. In general, this method
seems to work best for limited size problems involving selection of one outcome from
a fixed set of alternatives (e.g. in medicine, small diagnostic or prognostic problems).
If non-Bayesian statistical methods are used, restrictions (2) or (3) might be relaxed,

Similarly, rule-based deduction may be most appropriate when (1) the underlying
knowledge is already organized as rules orin a table format, (2) the type of classification
involved is predominantly categorical and (3} there is not a large amount of context
dependence. The types of problems for which this method is suited thus include
“screening” for particular situations, categorizing a situation into well-defined artificial
categories (e.g. staging a disease), and selecting a course of action to be taken for an
established situation. :

Finally, the use of frame-based abduction should be considered when: ( 1) the
underlying knowledge pre-exists in a descriptive format such as that often found in a
textbook or review article; (2) there is a mixture of probabilistic and categorical
classification involved, particularly in situations requiring diagnostic problem solving;
(3) there is a large amount of context dependence and (4) there are potentially multiple
simultaneous outcomesto be selected (e.g. muitiple machining operations or diagnoses).
In medicine, for example, this approach to knowledge processing appears especially
suited for large general diagnostic problems.

7. Discussion

In contrast to some opinions expressed in the literature, this paper has argued that
there is not a single “best method” for building expert systems. The real issue for .
consideration is which methods are best suited for a specific application problem. We
therefore have tried to delineate the relative strengths and weaknesses of three important
methods in this paper, and to provide guidelines for the selection of an appropriate
method. Obviously, there are problems for which none of these methods is ideal and
for which no existing methods are ideal (see the discussion of common weaknesses
above).

While the observations and recommendations we have presented should be viewed
as preliminary, they provide at least initial guidelines for the potential expert system
developer, and they can serve as a starting point for further discussion and research
on this important topic. In addition to a need for fundamental research on methods
for knowledge representation and automated inference (such as methods for dealing
with spatial and temporal knowledge), further comparative studies of the various
methods used for expert systems need to be undertaken in an objective, controlled,
quantitative fashion. Most previous research has focused primarily on accuracy of
different methods for constructing expert systems. The few existing comparative studies
which have addressed the issues of knowledge acquisition and representational
adequacy, including the work described in this paper, are largely exploratory and
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therefore qualitative and subjective in nature. One could therefore take virtually any
conclusion reached in this or previous papers as a hypothesis to be studied quantitatively
in a controlled setting. Such a study would involve a group of individuals each building
the same expert system (e.g. in a classroom setting). Only through such future research
will the match between knowledge-processing method and application become clearly
defined and founded on a strong empirical basis.

The work described in this paper has involved the efforts of many individuals over the last
several years. Funding for the several projects described has been provided by NASA (NSG-
5123), NIH (P50-NS-16332) and NSF (DCR-8451430). Dr Nau is the recipient of a Presidential
Young Investigator award from NSE. Industrial sponsorship of the Department of Computer
Science is provided by Software Architecture and Engineering, AT&T Information Services,
General Motors, IBM and Martin Marietta.
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Appendix

CHEMICAL-SPILL EXPERT SYSTEM SPECIFICATIONS (FICTIONAL PROBLEM)

The AJAX Company maintains a number of manufacturing facilities along Willow
Creek. To protect the environment, the company has just set up an automated monitor-
ing station downstream from the manufacturing site to detect chemical spills. Tt now
wants to increase the sophistication of this moritoring station by embedding an expert
- system in it. Should a chemical spill occur, one or more monitoring instruments at the
station will detect an abnormal condition and a “spill alarm” will go off, activating
the expert system. The expert system shouid then analyse the situation, determine what
chemical or chemicais have inadvertently entered the creek, decide which manufactur-
ing facilities might be at fault, notify appropriate company personnel, make recom.-
mendations concerning emergency clean-up procedures, etc.

When a spill occurs and is detected, the expert system should analyse measurements
(water pH, spectrometry, etc.) of the creek water at the monitoring station to decide
what chemicals are likely to be contaminating the water. The company’s chemical
expert has given the following report which will form the basis for the knowledge base.,

Expert’s summary of relevant knowledge

The type of spill which has occurred depends on monitoring station measurements,
The monitoring station is only operational from April to September. One can assume
that unless noted otherwise, a particular chemical might contaminate the creek during
any of these months with egual likelihood. The other information that is relevant to
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determining the type of spill is the following data from the monitoring station:

whether the pH of the creck water is acidic, normal or alkaline;

whether the water color is its normal green or brown, or whether it is discolored
either red or black; :

photometry results, which indicate whether the water has its normal clear appearance
or whether it appears oily, _

whether or not radioactivity is present in the water;

spectrometry results, which are only capable of determining whether carbon, sulfur,
or a metal is present in the water; and

the specific gravity of the water.

The following are possible contaminants of the creck in that they are chemicals used
in the manufacturing facilities. Note that it is possible for more than one chemical to
contaminate the creek simultaneously. Also, only some of the possible manifestations
which may be caused by a chemical may be present when it contaminates the water
(e.g. whether the water becomes acidic when an acid is spilled in the creek depends
on how much acid is involved).

Sulfuric acid (H,80,), also called “oil or vitriol”. This can contaminate the river
at any time, but is especially likely in May and June (i.e. months of heavy use in
manufacturing). This is a very strong acid, so it can be expected to usually make the
water acidic. Spectrometry will always detect sulfur.

Hydrochloric acid (HCI). This is used all the time at the manufacturing facility, but
only a little is used in April while large amounts are used in August and September
(so spills are more likely during these latter months). It is also a strong acid.

Carbonic acid. This is heavily used in manufacturing during April to June, occasion-
ally in July, and never during other months. It is a relatively weak acid. Spectrometry
may detect carbon when this substance is a contaminant.

Benzene. This gives water an oily appearance that may be detected by photometry.
Spectrometry may detect carbon.

Petroleum. This is used constantly, but most heavily in the months of July, August
and September. It may turn the water black and give it an oily appearance and may
decrease the specific gravity of the water. Spectrometry usually detects carbon.

Benzenesulfonic acid. This is a weak acid that may give the water an oily appearance.
Spectrometry may detect carbon and/or sulfur. It decreases the specific gravity of the
water.

Thioacetamide. This may occasionally turn the water red. Spectrometry may detect
carbon and/or sulfur.

Chromogen R23 (red dye number three). This may make the water alkaline, and
usually colors it red. It may decrease the specific gravity of the water. Spectrometry
may detect carbon.

Hydroxyaluminum. This may make the water red or alkaline. Spectrometry may
detect metal, and the specific gravity may be increased.

Sulfur isotope. This may cause radioactivity to be detected and sulfur to be found
by spectrometry.

Carbon isotope. This is only used during July and August at the manufacturing
facilities. It may cause radioactivity to be detected and carbon to be found by spec-
trometry.
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Cesium. This is used heavily in manufacturing during May, rarely during April and
June, and never during any other months. It may make the water sufficiently radioactive
that it can be detected. The specific gravity may be increased, and spectrometry may
detect metal.

trometry may detect metal, radioactivity may be present, and the specific gravity of
- the water might be increased.

Radium. This is used in al months, but most heavily in August. It is extremely
radioactive, so when it is a contaminant, radioactivity will always be detected, Spec-
trometry may detect metal, and the specific gravity of the water may be increased.







