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Diagnostic Problems and Abductive Inference

In the past, most work on automated reasoning with plausible or default
agssumptions has conceﬁtrated on extending current methods for deductive
inference (e.g., (11, [2], [31, 41, [53]). While this research has in many
ways been quite successful, it has proven very difficult to adopt for solving
a number of real-world problems that invoelve non—monotonic reasoning.

As an example of these difficultries, comsider a diagnostic problem where
one is given a set of manifestations aud must explain why they are occurring
by postulating the presence of one or more causarive disorders. Problems of
this kind are very commén: they include diagnosing a patient's signs and
symptoms in medicine, determing why a computer program failed, deciding why an
automobile will not start, finding the cause of noises in a plumbing system;
localizing a fault in an electronic circuit, explaining why a child makes
arithmetic mistakes, etc. Diagnostic problem solving inherently involves many
features that have been said to characterize non-monotonic reasoning [2]. For
example, during problem solviﬁg one must handle ambiguity (alternative
causative disorders under consideration), use of causal associations (disorder
d causes manifestation m), making inferences based on inceomplete information
(the diagnostician starts with one or more initial manifestations and

formulates a tentative diagnosis), revision of beliefs in the face of



additional information (real-world diagnostic problem solving is typically a
sequential, hypothesize-and-test process [6]), etc.
which in its simplest form might be

Unlike deductive reasoning,

characterized by modus ponens

Given Fact "A" and Rule "A—>B", infer "B",
diagnostic problem solving inherently involves abductive inferences of the

form

Given Fact "B" and Association "A——»B", infer "plausible A".
Although the "e——3" in the deductive syllogism referslto logical implication,
in the abductive syllogism it refers to a causal association between A and
B: “disorder A is capable of causing symptom B, and symptom B is known to be
present, so perhaps disorder A is causing it."

Our approach to modeling abductive reasoning hés been to develop a simple
but formal abductive logic referred to as the generalized set covering (Gsc)
model {7]). This non~deductive theoretical model has been used as the basis of
a number of implemented diagnostic expert systems [8],}and has proven quite
powerful: it supports a descriptive knowledge representation and answer’
justification [9], and it avoids many of the difficulties that occur with
deductive reasoning in the context of multiple simultaneous disorders. The
GSC model is briefly summarized in the next section, and a discussion of its
inherently non-monotonic nature is then provided. A detailed discussion of
the relationships between deductive and abductive inference is available in
[10].

The GSC Model
In the GS5C model, a diagnostic problem P is defined to be a 4~tuple P =

-+ . . . . .
<p,M,C,M >. There are two discrete finite sets which characterize the scope

of the diagnostic problem: D, representing all possible disorders d; that can



occur, and M, representing all possible mani festations my (symptoms) that may
occur when ome or more disorders are present. The relation C ¢ D % M captures

"d: can cause

the intuitive notion of causation, where <di,mj> £ C represents i

mj" (this is the basis of the abductive syllogism described earlier). M+.E.M

represents those manifestations present in a specific problem.
Within this framework, the non—empty set of all possible manifestations
of any disorder d; is designated
man(d;) = {mj|<d;,m;> € c}
and the non—empty set of disorders which can cause any manifestation oy as
causes(mj) = {di|<di,mj> e Cl.
This concept can be generalized to a set of disorders Dy and a set of

manifestations My as

man(DI) = \u} man(di) and causes(MJ) = \v/ causes(mj).
d; € Dy my € My

i
Also, man+(di) is used as an abbreviation for man(d) A M.
Given P = <D,M,C,M+>, E ¢ D is defined to be an explamation for Mt if

(i) M+_g man(E), or in words: E covers Mf; and

(ii) E is parsimonious.
Tﬁis definition captures many features of what one means by "explaining” a set
of manifestations. Part (i) specifies the reasonable constraint that an
explanation E must be ??}e to cause all manifestations known to be present In
the case being diagnosed. The "reasonableness” of this first constraint comes
from the following theorem (from [10]]: """
Theorem (Principle of Abduction for Diagnostic Problems}. Suppose that M is
a set of manifestations which can be cauéed by any of the sets of disorders
_Dl’DZ""DN’ and there are no other sets of disorders cépable of causing M+-
Suppose also that the wmanifestations in MY can never occur without being

caused. Then if these manifestations are present, one of the sets of

disorders DI,DZ,_...DN must be present.



Part (ii) specifies that E must also be "parsimonious,” reflecting

"Ockham's Razor™: the s%mplest explanation is the preferable one. Thus,
given the Principle of Abduction, the real issue raised by the definition of
an explanation is how one should go about formalizing the notion of parsimony
or simplicity. For example, if one replaces (ii) in the definitiomn of an
explanation with
(ii') lE' < lD' for any other cover D of M+

then one has equated simplicity with minimal cardinality, and an explanation
with a minimal cover [11].

While this is a very plausible concept of explanation in some situations,
in others it is inadequate. For example, two very common disorders might be a
more plausible explanation than a single rare disorder in some applications
[12]. 1In such situations, (ii) in the definition of an explanation might be
replaced with

(ii") no proper subset of E covers '
equating simplicity with irredundancy (E contains no “redundant” disorders)
and an explanation with an irredundant cover.

Other notions of parsimony are possible, and the interested reader is
referred to the appropriate references [10,12,13]. For concreteness, in this
paper we will restrict our attention to parsimony as defined in (ii').

In general diagnostic problem solving, for any given manifestation there
may be more than one disorder which can cause that manifestation, reflecting
the interpretive ambiguity of manifestations as diagnostic clues. The
diagnostician is therefore generally interested in identifying all plausible
explanations which might be present, at least during the early stages of
problem solving. Thus, in the GSC model, the solution to a diagnostic problem

is defined to be the set of all explanations for Mt. Rather than represent



the solution to a diagnostic problem as a simple list of explanations, it

turns out to be advantagequs (see [7]) to represent these explanations as a

set of generators. A generator is a collection of sets of "ecompeting”

disorders that implicitly represents a set of explanations in the solution and

can be used to generate them. A generator is analogous to a Cartesian

product, the difference being that the generator produces unordered sets
rather than ordered tuples. For example, the generator (dy,dp) x (d3,d,) =
(d5,dg,d7) represents 12 explanations: {dl,d3,d5}, {d;,dg,dg}, etc. (We use
round parentheses to designate sets of disorders in generators for clarity).

More than one generator may be needed to represent the solution to a

diagnostic problem.
Given just the above formulation, it is possible to prove a number of

interesting properties of diagnostic problems [7]. Criteria for considering

disorders to be "competitors" or alternatives to one another cam be étated.
For example {assuming (i) and (ii')}, the following holds:

Theorem (Competing Disorders Theorem}. Let E be am explénation for M+, and
let man+(dl)l£_man+(d2) for some dj, dy € D. Then:

(a) d; and dp are not both in E;

(b) if d; € E, then E' = (E-{d;}) v {dy} is also an explanation for M.

As another example, criteria cam be given for decomposing diagnostic
problems into independent subproblems based on a notion of connectedness of
manifestations {7].

We have presented in detail elsewhere a formal algorithm for solving
sequential diagnostic problems, and proven its correctness [7]. This
algorithm (called BT, for tgypothesize—andjgpst") is initially given a
(usually incomplete) set of manifestations which are known to be present, and

derives a set of generators representing a temtative solution. This tentative



hypothesis is then used to guide the “question generation” process which

uncovers additional manifestations until M* is completely discovered. During
this process the hypothesized solution is repeatedly modified in the light of

new information so that it continues to represent all explanations for the

known manifestations.
Algorithm HT uses three principle data structures:
1. MANIFS_E_M+, the set of manifestations known to be present so far;
2. SCOPE c D, the set causes(MANIFS); and
3. HYPQTHESIS, a set of generators representing the tentative solution Zfor
MANIFS with the assumption (usually incorrect) that MANIFS = M.
Roughly, the top-level structure of algorithm HT is:
function HT
MANIFS := SCOPE: = {J;
HYPOTHESIS := {¢#};

while not all of M is known do
discover a new manifestation m € M+;

MANIFS := MANIFS v {m};
SCOPE: := SCOPE v causes{m)};
adjust HYPOTHESIS to accomodate m
endwhile
return HYPOTHESIS
end HT.
The adjustment of the HYPOTHESIS is based on set operations involving
causes{m) and the sets in the generators in HYPOTHESIS [7]. 1In adopting HT to
real-world problem solving, many issues must be addressed: question
generation to guide manifestation discovery, termimation criteria, detection
and handling of "unexplainable manifestations,” Incorporation of probabilistic
information, etec. Our approach to these issues is described in [81.
Non—-Monotonic Aspects of the GSC Model
As dimplied earlier, the GSC model inherently incorporates a number of

features characteristic of non-monotonic logics [2]: ambiguity, use of causal

associations, the closed-world assumption, making inferences in the context of



incomplete informatiom with subsequent revision of heliefs, etc. Perhaps the

most striking feature of the GSC model when compared to deductive logics 1is

that the derivation of individual "“theorems” (by which we mean inferences

about the presence or absence of individual disorders) at any point in problem

solving is a global property of available information. Unlike deductive

approaches where "local” inferences like "fact) + rule ==pfactp” or "clause; +
clause,==resolvent” occur, in the abductive GSC model a “fact + association”

does not in isolation result in a theorem.

During problem solving, the logical status of each possible d; € D

dynamically changes between four mutually exclusive states as illustrated
below:
categorically dorqant —— gctive plauFible
rejected ; H '
A - - p
= — imn mn am  ar me — o — e - - -

The left-to-right ordering of the logical states dbove is meant to indicate a
scale from “false" (leftmest) to "presummed true” (rightmost). The status of
any disorder in the context this scale vepresemfs the abductive equivalent
of theorems in deductive logicsy. Pemmissible tramsitfons in logical status
are indicated by arrows. Initially, every disovder dg is derwant, and it
becomes active only when some my € man(d;) is discovered to be present. If a
disorder is part of the current hypothesized solution, it becomes "plausible”
(i.e., its possible presence is inferred). As subsequent manifestations are
discovered, the logical status of dj may oscillate between being active and
plausible, representing a revision of belief in the face of additional
information. This non—-monotonic behavior, represented by the paired,
oppositely directed arrows above, is even more striking in that the very form

‘of the hypothesis or “beliefs” may change during problem solving. For



example, at one point it may be believed that a single disorder is present
(which disorder it is may not be certain), but as additional information is
uncovered this belief may be revised to reflect that two disorders must be

present. All of these inferences occur "automatically” and are a consequence

of the basic definitions of the GSC model.

As a simple example, suppose that a diagnostic problem P = <D,M,C,?> is
given where D = {d;,d;,d3}, M = {my,my,my,my,m5}, and C is dmplicitly
specified by knowing that man(d;) = {mj,m3}, man(dy) = {m3,m4}, and man{ds) =
{mz,m4,m5}. Initially all d; € D are dormant . Suppose algorithm HT first
discovers that mg is present. Then it would construct SCOPE = {d19d2} and the
initial HYPOTHESIS would be the generator (dlsdz)’ representing the belief
that either {d;} or {dy} is a plausible explanation for the known
manifestation. At this point in problem solving, both d; and dy would be
plausible, and d3 would be dormant.

'If HT next discovered that m, 1is present, it would form BSCOPE =
{dl,d2,d3} and the HYPOTHESIS would be the generator (dz), which generates the
single explanation {dy}. At this point, only dy is plausible, while d; and dg
are active but not plausible (recall that we are using criteria (ii') as our
notion of parsimony). Fipally, if HT then discovered that m; is present, the
SCOPE would be unchanged while the HYPOTHESIS would be represented by the
generator (d;) x (dy,d3). All three disorders would be plausible now, and if
no further manifestations occurred, it could be said that algorithm HT had
inferred the plausible presence of d; and one of dy or dj.

We do not discuss “categorical rejection,” the fourth possible logical
state of disorders here (see [7,8]), but only indicate that it provides omne
example of deductive abilities that can be captured within the framework of

the GSC model.



Conclusion

In this paper we hayeiindicated that diagnostic problem solving involves
many aspects of non—monotonic reasconing, and we have described the GSC model
of diagnostic inference and its non~monotonic features. Perhaps surprisingly,
many real-world problems that upon superficial examination do not appear to be
"diagnostic problems" per se seem amenable to solution with abductive
inference using the GSC model. For example, we have studied the use of our
model for selection of which statistical tests to use for data analysis [14],
selection of machining operations during process planning in manufacturing
[15), and construction of models of nerve cell growth [16}. The common factor
in all of these application areas seems to be the need to select a
parsimonious set of choices from alternatives. TFor that reason, we believe
that many of the basic concepts introduced in the GSC model go beyond
diagnostic inference and apply to common seanse reasoning in a mich broader
context.

Our work on abductive inference Iim general and the GSC model in
particular.has just scratched the surface of what we believe is an important’
aspect of non-monctonic reasoning. We are currently studying the extension of
the GSC wmodel to a much broader range of issues: support of answer
justification [9], non-minimal covers, non-independent disorders, causal
chaining, incorporation of probabilistic information, relationship to
deductive inference [10], ete. The interested reader is referred to [13] for
dgtails of these issues. We believe that this approach to non-monoctonic
inference holds great promise for the future, both from a theoretical and a

practical point of view.
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