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ABSTRACT

This paper and a preceding, companion paper present the generatized set-covering (GSC)
formalization of diagnostic inference. In the current paper, the GSC model is used as the basis
for algorithms modeling the “hypothesize-and-test” nature of diagnostic problem solving. Two .
situations are addressed: “concurrent” problem solving, in whmh all occurring manifestations
are already known, and sequential problem solving, in which the manifestations are discovered
one at a time. Bach algorithm is explained and its correctness within the GSC framework is
proven. The utility of the GSC model is illustrated by using it to describe and analyze some
recent abductive expert systems for diagnostic problem solving: The limitations of the basic
form of the GSC model are then discussed. A more general notion of “parsimonious covering” _
that includes the GSC model as a special case is then 1denufled and some important directions
for further research are presented.

INTRODUCTION
1
In Part I [41], a formalization of diagnostic problems and their solution was
presented. The resulting model, called the GSC model, is based on a generaliza-
tion of the set-covering problem. It extends the “classical” problem in. two ways:
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by permitting the covering to be inexact, and by finding all minimal covers
rather than a single one. This latter extension involved introducing the notion of
“generator sets” for the solution of a diagnostic problem and operations on
them.

To complete the GSC model of diagnostic inference it is necessary. to go one
step further and model the underlying problem-solving process that is involved.
This is done in the current paper by specifying algorithms that use the GSC
model to find solutions for diagnostic problems. These algorithms model the . :
hypothesize-and-test nature of human diagnestic reasoning, and have been used
to build functioning expert systems.

As noted in Part I, empirical studies have shown that diagnostic reasoning - -
involves a sequential hypothesize-and-test (abductive) process during which the
diagnostician conceptually constructs a model of what is wrong. This model,
referred to as the hypothesis, is based largely on what manifestations are known

. to be present. The hypothesis postulates the presence of one or more disorders

that could explain these manifestations, and is constructed in a sequential
fashion during problem solving. For example, on seeing a patient a physician
does not initially know all of the manifestations which are present. Rather, given
information about a few manifestations, the physician first constructs an initial
hypothesis. Then, based at least in part on this hypothesis, the physician
generates “questions™ that test its validity (hence the term “hypothesize-and-
test”). These questions uncover the presence or absence of additional manifesta-
tions, thus possibly intreducing new disorders into the hypothesis, confirming or
eliminating disorders already suspected to be present, or discriminating among
disorders that are alternatives to one another. _

The algorithms presented in the current paper provide a formal model of this
sequential hypothesize-and-test process. First, it is shown how to derive the
solution to a “concurrent” diagnostic problem where all of the manifestations
are known initially. Next, a more realistic sequential diagnostic approach is
developed where the manifestations which are present are not all known initially
but must be discovered in a sequential fashion. After each algorithm is de-
scribed, a proof of its correctness is given. The sequential algorithm is then
compared with some existing Al programs claiming to model diagnostic rea-
soning. Finally, the limitations of the GSC model are discussed and a more
general notion of “parsimonious covering” is introduced. Directions where
further research is needed are also presented. As in Part I, an appendix contains «
the proofs of all assertions made in this paper. :

CONCURRENT PROBLEM SOLVING

In “concurrent” problem solving one is given a diagnostic problem P =
{D,M,C,M"}, ‘where M™ is completely known. The goal is to derive a
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1. function SeclvelP]
2. variables n integer, s generator—set;
3. begin
i, n:=0; s5::=0; (* initialize n € order(P}; s = £ indicates solution unknown *)
5. while sz do
6. begin
7. si = Genset[causes(M™), M*.n};
(* s is assigned @ if n < order(P), generator
. set for Sol{P) if n = order{P) *)
8. niz n+l (* increment n and try again *)
9. end; -
10. return s {* return generator set for Sol{P) ¥)
v 11 end. !
1. funetion CGenset[scope,manifs,n]
2. variables I set—of-disorders, F G !l generator-set;
3. if n=0
4, then i
S if manifs = @ (* check if order(R) = 0, where R = prob(scope,manifs} *]
6. then return {2} (# generator set for Sol(3) where order(R)=0 *
7. else return 0 (*n < order(R) so fail ¥
8. endif
g, else -
10. if iscopel < n }
. ! thenm return @ {® no explanations of size n possible in R *
12. else . [* recursively try to.construct Sol(R) *
13. - select d € scope,
14, It {d' e scopelman(d’) A manifs = man(d) A manifs }
15, F:z Gensetilscope=I,manifs,n], S
16, Hi= Genset[scope~I,manifs=man{d),n~1];
17, Gr= {H; * (I)iHy e Hfs : :
18, . return’ G v F (* return € if n < order(R) or generator
set for Sol{R) if n = order(R) ¥)
19, endif ! '

20. endif.

Fig. 1. Formalized algorithms for solving concurrent diagnostic problems. Reserved words are
in bold type. Comments are enclosed in (*...%). :

generator set for Sol(P) While real-world diagnostic problems are generally
more sequential in nature, development of a concurrent problem-solving al*
gorithm is useful in that it is conceptually simpler and it introduces concepts
and procedures that will be used during sequential problem solving. '

Figure 1 presents two formalized algorithms, Solve and Genset, which solve
concurrent diagnostic problems. The real work during problem solving is done
by the recursive function Genset, which takes three input parameters:

scope; a set of disorders,
manifs: a subset of M*, and
n > (: a nonnegative integer.

Informally, Gensetfscope,manifs,n] attempts to. find a generator set which
represents all explanations (if any) in scope of size # for manifs. If # is less than
the actual size of an explanation for manifs, Genset returns & indicating failure.
If # is equal to the actual size of an explanation for manifs, Genset will succeed.
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Genset is not permitted to be called with »n greater than the size of an
explanation for manifs. The function Solve takes a diagnostic problem P and
starts with n =0, calling Genset with scope = causes(M" } and manifs = M*.
The value of 7 is subsequently incremented in Solve until Genset succeeds and
returns Sol(P) in the form of a generator set.

The heart of Genset is the second nested if statement. The else part of this
statement (lines 13-18) first finds a set I of disorders which all cover the same

subset of manifs. Two recursive calls are then made to Genser. The first of these _ ;

calls (line 15) finds the generator set F for all explanations in scope for manifs
of size n which do not include 7. The second of these calls (line 16) finds the

generator set H for the “reduced” problem having manifestations manifs-man(J) . .

and explanations of size n—1. Generators in H are then composed with the
generator (1) to form G (line 17). G will be shown later to be the generator set.
for all explanations in scope for manifs of size n which do include /. Hence,
G U F (line 18) is the desired result.

In establishing: the correctness of functions Solve and -Genset, we will
frequently discuss more than one diagnostic problem at a time. In such
situations it often proves useful to use the problem names as subscripts to avoid
ambiguity. 'Ihus, the components of diagnostic problems P and ¢ would be
identified as P=(Dp,M,,Cp, M7 ) and Q= (DQ,MQ,CQ,M(}r 3. Similarly,
the abbrewahon man, (D) will be used for “man(D) in- P> where DC D,,
causesQ(M) will be used for “causes(M) in Q” where MCM g» €tc. In
situations where the meaning is clear from context we will omit such subscnpts
{e.., in Figure 1, line 14, we refer to man,(d) without a subscript, since P is
the ‘only diagnostic problem in the figure).

The following lemmas and corollaries will be used in the proofs of cor-
rectness for functions Solve and Genset.

LEMMA 2.1, Let P=(Dp,M,,Cp, M} ) and Q= (Do, My, Cp, M§ ) be di-
agnostic problems, and let DEDpNDy, and M c M, nMQ If CQCCP, then:

" (a) mang (D) € man,(D);
(b) causesy (M) C cansesp(M); _
(©) if D covers M in Q, then D covers M in P; and
(d) if D is an explanation for M in P and D covers M in Q, then D is an
explanation for Min Q.

COROLLARY 2.2, Under the conditions of Lemma 21, if Cp= CQ then

(a) man,(D)=man,(D);

(b) causes,(M) = causes,(M);
. () D covers M in P if and only if D covers M in Q; and _

(d) Disan explanattan for M in P if and only zf Dis an explanatton for M
Cin Q..
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Using these results, we can now state fairly general conditions under which
we can extract a portion of a diagnostic problem such that the extracted portion
is itself a well-formed diagnostic problem.,

EEMMA 2.3, Let P=(Dp,M,,Cp, MZ) be a diagnostic problem, and let
D,cD,, M, = manP(DQ), Co=CoN(Dy XMy), and M CM,. Then Q =
(DQ,MQ,CQ, Mg ) is a diagnostic problem if and only if Dy, is a cover for M
in P.

A general result like this is needed in.analyzing the many calls to the
recursive function Genset during concurrent problem solving (see line 7 in
Solve, lines 15 and 16 in Genset, in Figure 1). If P = (D,,M;,,C;, M7 ) is the
initial diagnostic problem given as an argument to Solve, then each subsequent
call to Genset involves Dy, C D, and M; € My C M, as the first two argu-
ments. The arguments D, and Mg in Genset[Dy, M, n] thus represent a
substructure of the original problem P, which we define formally as follows.

DEFINITION. Let P = (Dp,M,,Cp, M} ) be a diagnostic problem, and let
D, C D, and M € My . Then the problem represented by D‘2 and MQ , written
prob(DQ, Mg ), is _ :

prob(Dy, My ) = (Dy, My, Co, My )

where My = man,(Dg) and C, = Cp N(Dy XMy).

By Lemma 2.3 prob(Dy, M) is a well-defined diagnostic problem if and
only if Dy, is a cover for My in P. Furthermore, the following holds.

LemMA 2.4, Let P = (D;,M,,C,, M" ) be a diagnostic problem, DC D, a
cover for M' in P, and Q= prob{D,M*). Then ¥D'C D, man, (D)=
man,{D’).

In the following, we will therefore omit the subscnpt to “man” when Lemma
2.4 applies.

We now turn to establishing the correctness of function Genset by £1rst
showing that its two recursive calls (lines 15,16) work as described earlier in this
section. The first call to Genset[scope-I, manifs, n] in line 15 finds a generator
set F for all explanations in Sol(prob(scope-I, manifs)) of size n (assuming the
prob(scope-I, manifs) is a diagnostic problem of order ). From the previous
lemmas it can be shown that this is the same as all explanations in Sol(prob
(scope,manifs)) of size » which do not contain an element of 7. If F is assigned
@, it is either because prob(scope-I,manifs) is not a diagnostic problem, or
because its order is greater than n; in either of these cases there are no
explanations in Sol(prob(scope,manifs)) of size n that do not include an
element of I. This result, formalized in the proof of correctness of Genset, is
based on the following proposition. -
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LeMMA 2.5. Let R=(Dy,M,,Cp, M"Y be a diagnostic problem, D C Dy

a cover for M* in R, P=prob(D,M*), and n=order{P). Let d€D, I=

{d’ € Diman* (d’) = man* (d)}, and S{={E€Sl(PYENT=0)}. Let Q=
prob(D — I, M),

(a) If S+, then Q is a diagnostic problem, order(Q) = n, and Sol(Q) = Sj.
(b} If Sf=1, then either Q is not a diagnostic problem or order(Q) > n.

The second recursive call to Genset[scope-I, manifs-man(d), n —1] in line 16 -
finds a generator set H for all explanations in Sol(prob(scope-I, manifs-man(d)))
of size n —1. Generators in H are then composed with the generator (I) in
line 17 to form G. It can be shown that G is the generator set for afl explan-
ations in Sol(prob(scope;manifs)) of size » which include an element of 1. If
prob(scope-I, manifs-man(d)) is of order n, then H=¢, so G wiil also be
empty, indicating that there are no explanations in Sol(prob(scope, manifs)) of
size n which include an element of I. This argument, which forms part of the
proof that Genset is correct, is based on the following proposition.

LEMMA 2.6. Let R=(Dg,Mg,Cr, M*) be a diagnostic problem, D C Dy
a cover for M* in R, P=rprob(D,M*), and n=ordex(P). Let de D, I=
{d’ € Diman* (d')=man" (d)}, and S;={E&SoP)[ENI+#2}. Let Q=
prob(D — I, M*-man(d)). Then: T

{a) @ is g diagnostic problem.
(b) If .S"r #* @, then

(1) order(Q)=n—1, and
(2) G={H,-()|H, €H} is a generator set for S; whenever H—
{H,H,,..., H.} is a generator set for Sol(Q)
(©) If §;, =3, then order(Q)=n.

From Lemmas 2.5 and 2.6, it can be shown that the set GU F returned from
Gensetscope,manifs, ] at line 18 is a generator set for Sol(prob(scope, manifs))
whenever prob(scope,manifs) is a diagnostic problem of order n. This result,
formalized in Theorem 2.7 below, is then used to prove the correctness of
function Solve in Theorem 2.8.

THEOREM 2.7 (Correctness of Genset). Let a diagnostic problem
{D,M,C, M* ) be given, and lef scope C D; manifs € M* and N be a nonnega-
tive integer. Let R = prob(scope, manifs). If R is a diagnostic problem of order N,
then Genset[scope, manifs, N] terminates and returns a generator set for Sol(R).
If R is not a diagnostic problem, or if order(R)> N, then
Genset{scope,manifs, N] terminates and returns & . .

THEOREM 2.8 (Correctness of Solve). Let P be any d:agnostzc problem. Then
Solve[ P] will terminate and return a generator set for Sol(P).. .
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1. Funection. HTED,M,C]
2. variables n integer, m manifestation,
manifs manifestation-set, scope disorder-set,
hypothesis generator-set;

3. begin
4, n o= 0;° [* Initially assume that order{P)=0, *
5. manifs ;= @ [* that no manifestations are known, *
6, scope 1= .Bj [“ so no disorders have been evoked, *
7. hypothesis := {B); [* and hypothesize a generator set for Sol(P) = (¢}. *
8. while Moremanifs do (* wnile another manifestation exists *
9. mn-:= Nextman; ¥ call the new manifestation m ¥
10, E manifs := manifs v {m}; * augment manifs known present ¥)°
11. séope := scope v causes(m); [* augment evoked disorders ¥
12, hypothesis := an element from hypothesis/causes(m),

: ) ’ (* update hypothesis *
13, if hypothesis =z @ (* no exiplanations for manifs of stze n #
14, then n=n+l; (*® therefore increment order(P) ¥J
15, hypothesis:= Gensetiscope,manifs,n]

(* and reconstruct hypothESLS *)

16, endif; ’
i7. . .endwhile
18, return hypothesis [* generator set for Sol(P) *)
19. end . -

F1g 2. Formal algorithm for solving sequential diagnostic problems. Reserved words are in
bold type. Comments are enclosed in (*...*).

SEQUENTIAL PROBLEM SOLVING

In sequential problem solving one is given a diagnostic problem P where
M* is not completely known at first. The goal is to discover M* and derive a
generator set for Sol{ P) simultaneously. This situation corresponds to real-world
diagnostic problem solving where the diagnostician is given an initial set of
manifestations that are present, and uncovers additional manifestations while
accounting for the initial ones. As noted earlier, human diagnosticians use a
sequential hypothesize-and-test approach during this process.

Figure 2 presents a formalized algorithm HT, for “hypothesize—and—test,”
which solves sequential diagnostic problems formulated in the GSC model.
Given a partially specified diagnostic problem P = (D,M,C,?), function HT is
called with three arguments: D, M and C. Although these arguments do not
appear directly in the body of HT, they are used implicitly at a number of points
[e.g., the reference to causes(m) in line 11}. As explained below, Hr eventually
dlscovers M7 and returns a generator set- for Sol(P) :

The followmg data structures are used in HT:

n = the presum_ed value of order(P) at any point during problem
solving;
m = a newly discovered mamfestatmn
manifs = the set of manifestations known to be present so far;
scope = canses(manifs), the set of all disorders d; for which at least
one manifestation is already known to be present; and
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hypothesis = a generator set for the solution of prob(scope, manifs); i.e., the
solution for those manifestations already known to be present,
assuming (perhaps falsely) that no additional manifestations
will be discovered subsequently. This represents the function
HT's tentative or hypothesized solution at any point during
problem solving, and in the end is returned as Sol( P) at line
18.
The initial assumption used in HT (lines 4-7) is that n = order(P)=0, with
manifs =@, scope = causes(manifs) =@, and hypothesis = { @}, representing a
generator set for the solution to prob(@, ).

The rest of the body of HT is a single while loop on lines 8-17 whose -
execution is controlled by Moremanifs (line 8). Moremanifs is a predicate which,
when called, returns “True” if additional manifestations exist in M* that are
not already in manifs, and “False” if no additional maniféstations remain
undiscovered. The function Nextman then assigns one such manifestation as the
value of the variable m (line 9). Moremanifs and Nextman roughly correspond
to question generation in diagnostic expert systems. Our specification of Next-
man is nondeterministic: we do not specify at present how or in what order the
elements of M* are discovered (more on this later). Our only specific require-
ment is that when Moremanifs returns “False”, alf elements of M have been
found by Nextman.

As each manifestation m; that is present is discovered by Nextman and
assigned to m_(line 9), mamfs is updated simply by adding m; to it (line 10).
Scope is augmented to include any possible causes 4, of m; which are not
already coritained in it (line 11). Finally, hypothesxs is adjusted to accommodate
m; (lines 12-16).

The key step in this process is the adjustment to the tentative hypothesm in
lines 12-16. The generator set representing the old hypothesis i is_divided by
causes(m,) at line 12, and an element of this division is taken to be the new
hypothesis (division of a generator set by a set of disorders was defined after
Lemma 1.14 in Part I). Recall that division of a generator set G by a nonempty
set of disorders D produces a generator set H such that [H]={ E€[G]lEN D
#@} (Part I, Lemmas 1.19 and 1.20). Thus, the new hypothesis created in line
12 represents exactly those explanations represented by the old hypothesis that
can also cover the new m;. If hypothesis =@ (line 13), then it must be because
no previous explanations of size n can cover the new manifs (which includes
m;). We shall shortly prove that in this situation, explanations for the new
mam'fs must be of cardinality n +1. Thus, n is incremented in line 15 and a
generator set representing all explanatlons for the new manifs is derived in line
15.

A brief example should clarify the process used in function HT. Recall the
example diagnostic problem P, given in Part I, where M* = {m,, m,, m; }
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Events 1in
order of their
discovery by

Nextman h manifs scope hypothesis
initially 0 8 g i 9}
my present 1 {m) {dy,dp,d3,dy} {{{2q,42,d3,dy 1)}
ay present . 1 {my,my} {dy.dp,d3,dy,d5,dg} {(1d5921) ]
g presentr 2 {my,my,mg } .{d1,d2,n‘3,du,' {({aq,92}, {d7,d5,4q}),
d5.1d7,dg, dg} (19g)s (43,043)}

Fig. 3. Sequential problem solving with the GSC model.

Suppose that the sequence of events occurring during problem solving is as
illustrated in Figure 3. (The order in which manifestations are “discovered” here
is arbitrary; any other order would have resulted in the same final hypothesis.)

Initially, manifs and scope are empty, # = order(P) is taken io be zero, and
the corresponding hypothesis { @ } contains a single generator @ which repre-
sents the sclution to prob( 2, 2) (first line in Figure 3). This corresponds to the
state of function BT after execution of lines 4-7. When m,; is discovered to be
present by Nextman (line 9 of uT), m; is added to manifs, and the new scope is
the union of the old scope with causes(m, ). Since hypothesis = { &}, division of
hypothesis by causes{m, ) gives @. In lines 14-15 of the function HT, n is then
incremented and Genset assigns to hypothesis a generator set representing
Sol(prob({d,, d,, d;, d, },(m; }). Thus, at the end of one pass through the while
loop of HT, the variables have the values shown on line 2 of Figure 3. The
hypothesis shown here contains a single generator ({d,, d,,d;,d,)) and thus
‘tentatively postulates that there are four possible explanations assuming M* =
{ m, }, any one of which consists of a single disorder. The hypothesis asserts that
“d, ord, or d, ord, is present.”

On the next pass through the while loop m, is discovered to be present, so
manifs and scope are augmented appropriately. Using generator division, a new
hypothesis is developed, which represents the intersection of causes(m,) with
the single set in the only preexisting generator set in the hypothesis. Note that
the resulting generator ({d,, d, }) represents precisely all explanations for the
new manifs. This new hypothesis also illustrates another important point. As
information about each possible manifestation becomes available, the hypothe-
sis typically changes incrementally with a decrease in the number of explana-
tions it represents (with- the exception of situations where the hypothesis
becomes empty). Line 3 in Figure 3 shows the variable values after the second
pass through the while loop in HT. :

When m; is discovered to be present on the next pass through the while loop,
manifs and scope are again adjusted. appropriately. However, in this case



266 JAMES A, REGGIA ET AL.

division of hypothesis by causes(n;) makes hypothesis =@ because none of the
previous explanations represented by the old hypothesis can now cover all
known manifestations. Thus, # is incremented and Genset is called. At the end
of the third pass through the while loop the variable values are as shown on lines
4 and 5 of Figure 3.

‘When Moremanifs is called again, it returns “False,” as no further manifesta-
.tions exist, so the while loop is not executed again, HT returns the final
hypothesis (line 4 and 5 of Figure 3), which represents Sol(#,), as was demon- o
strated in Part I

Having presented the algorithm HT, we now direct our attention towards

demonstrating its correctness. We begin by establishing that the hypothesized
order of a diagnostic problem remains the same or increases by one as each new
manifestation is incorporated into those known to be present. (The subsequent
three lemmas could be stated more generally by permitting m € M*, but we
restrict m & M* to emphasize the use of these results in sequential problem
solving.)

LeMMA 2.9 (Incremental order increase). Let P = (D,M,C,M") be a dz-
agnostzc problem with order(P)=n, and let m € M such that m & M*. Then
= (D,M,C, M* U{m}) is a diagnostic problem of order n or n +1.

The following two lemmas show how generator division can be used to
update a hypothesis whenever a new manifestation is discovered during sequen- -
tial problem solving,

LEMMA 2.10. Let P=(D,M,C, M" ) be a diagnostic problem of order n, and
let G={G,,G,,...,Gy} be a generator set such that [G]=Sol(P). Let me M-
M, andlet He G /causes(m). Then Hisa generator set with [H]j={Ee€ [G]|E
covers m}.

Lemma 211, Let P, G, m, andeeas in Lemma 210, and Iet Q-
(DMCM*’U{m})

(a) If H=92, then Q is a diagnostic problem of order n +1.
(b) If H¥2, then Q is a diagnostic problem of order n, and [H]= Sol(Q).

We can now proceed to the analyms of: algonthm HT. We adopt the followmg
notational convenience.

DEFINITION. If V is a variable used in algorithm HT, then if i=1,...,|M"|, .
¥, is the value of ¥ after the ith execution of the while loop; and ¥, is the value
of V just before the first execution of the while loop. Similarly, P, =
prob(scope;, manifs; ) is the problem represented by scope and manifs after the
.ith execution. of the while loop, and P, = prob(scope,, manifs,) = prob(&, &)
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is the problem represented by scope and manifs just before the first execution of
the while loop.

LemMa 2.12. Fori=0,...,|M*|

(2) manifs;="{m;, m,,...,m;}, where m, is the ith manifestation returned by
Nextman; :
(b). scope; = causes(manifs,); and
(c} P, is a diagnostic problem.

The major results of this section can now be stated and proved, verifying the
correctness of algorithm HT.

THEOREM 2.13. For i=0,...,|M+ l, r;=orderl(P)) and [hypothcsis,-}_=_
Sol( 7,). . :

COROLLARY 214. Let P= (DM, C,M") be a diagnostic problem Then
HT{D,M, C] terminates and returns a generator set Jor Sol(P).

APPLICATIONS TO DIAGNOSTIC EXPERT SYSTEMS

One of the purposes of the GSC formalization is to provide a framework that
captures the basic idea of abduction as used in recent diagnostic expert systems
which often claim to model human abductive reasoning. This section therefore
briefly illustrates the relationship between some of these computational models
and the formal GSC model presented here,

In contrast to the GSC model, most diagnostic expert systems that use a
hypothesize-and-test inference mechanism or which might reasonably be consid-
ered as models of diagnostic reasoning depend heavily upon the use of produc-
tion"rules (e.g., [17, 32]). These systems use a hypothesis-driven approach to
guide the invocation of rules, which in turn modify the hypothesis. While a
rule-based hypothesize-and-test approach may produce good performance, such
a process does not provide a convincing model of what has been learned about
human diagnostic reasoning in the empirical studies cited in Part I. Further-
more, invocation of rules to make deductions or perform actions does not
capture in a general sense such “abductive” concepts as coverage, parsimony, or
explanation as defined earlier. i E

In conirast to these rule-based systems, several recent computational models
of diagnostic reasoning are more “purely abductive” in nature. Three of these
systems, namely INTERNIST, EMS.HT, and IDT, will be considered further here.
The goal is to illustrate how the GSC model formalizes the basic abductive
aspects of inference used in these systems, and to show in what ways they differ
from the GSC model. We divide this comparative analysis into two parts based
on whether multiple or single hypotheses are assumed. . ,
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MULTIPLE-HYPOTHESES ASSUMPTION

A number -of abductive diagnostic expert systems assume that multiple
disorders or hypotheses may occur simuitaneously, and we consider two of these
here: INTERNIST and KMS.HT. INTERNIST is a large medical expert system
developed and evaleated earlier by others on an intuitive basis [12, 36].

INTERNIST uses diagnostic knowledge organized in a descriptive fashion and

does not rely on production rules to guide its hypothesize-and-test process. It is
based on roughly the same principles as the GSC model: it attempts to account
for M™ with the minimum number of disorders. In contrast to the GSC model,
however, INTERNIST makes the assumption that the equivalent of a single
generator is sufficient to represent the solution to a diagnostic problem. As we
have seen (e.g., Figure 3), this is not always the case, raising the possibility that
INTERNIST might at times omit some relevant explanations. Furthermore, the
INTERNIST inference mechanism uses a heuristic scoring procedure to guide the
construction and modification of the single generator it constructs. This process
is essentially serial or depth-first, unlike the more parallel or breadth-first
approach in the GSC model. INTERNIST first attempts to establish the presence
of one disorder and then proceeds to establish others. This roughly corresponds
to constructing and completing a single set of disorders in a generator in the -
GSC model, and then later returning to construct the additional sets for the .
generator. The serial approach used by INTERNIST proved to be a significant
limitation when dealing with real-world diagnostic problems [12], reflecting its
“inability to perceive the multiplicity of problems in a case all at once” [37].

In addition, using the GSC model to analyze the INTERNIST approach to
grouping together competing disorders (those disorders forming a set in the
generator it constructs) shows that even in some situations where a single
generator could generate the entire solution, INTERNIST will apparently fail to
find this generator. This is explained below. ' .

INTERNIST uses the following simple but clever heuristic to group competing
disorders together: “Two diseases are competitors if the items not explained by
one disease are a subset of the items not explained by the other; otherwise, they
are alternatives (and may possibly coexist in the patient)” {12]. In terms of the -
GSC model, this corresponds to stating that &, and d, are competitors if
M*-man(d,) contains or is contained in, M*-man(d,). Suppose that M*-
man(d;} € M*-man(d,). Then it follows that man™ (d,) C man* (d,), so the
competing-disorders theorem (Part I, Theorem 1.8) applies to &), and 4,. This
makes it quite reasonable to intuitively view d; and d, as “competitors” in the
GSC.model, and to group them together as is done in INTERNIST. However, the
GSC model also shows that there are situations where the INTERNIST heuristic
would fail to group together disorders as competitors which should clearly be
considered as such if one is using a generator to represent the solution to a
diagnostic problem.
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For example, suppose M* = {m,, m,,..., mgy} and only d,, d,, and d, are
in causes(M™), so scope={d,,d,,d;}. Suppose man* (d,)= {my, my, mg,
Mg, My, mg}, man'(dy) = {mj, my, ms, mg, m,, mg), and man” (d;) =
{my,m;, my}. In the GSC model, Sol(P) = {{4,, d, }, {d,,d;}}, which can be
represented by the single generator ({d,,d, }, {d;}), where d; and d, are
grouped together as competitors. Suppose that d, was ranked highest by the
INTERNIST heuristic scoring procedure. Then M*-man(d,)= {m;, my}, and
- M"-man(d,)= {my, m,}, neither .of which is contained in the other. Thus, in
this situation where a single generator could correctly represent the solution,
INTERNIST would apparently fail to group 4, and 4, together as competitors
- (exactly what INTERNIST would do in this situation is unclear),

- INTERNIST has introduced many innovative and influential concepts for
building diagnostic expert systems, and our comments above should not be
viewed as a criticism of the pioneering effort which it represents. Rather, our
comments are intended to reinforce the validity of the formal GSC model by
showing that its results correspond to those arrived at independently by others
on an intuitive basis, In addition, the comments above illustrate the utility of a
theoretical foundation for analyzing current computational models, so that a
careful assessment of their limitations can be made. ' _

The second computational model of diagnostic reasoning assuming the
possibility of multiple simultaneous disorders is a more recent domain-indepen-
dent system called kMs.HT [21]. The inference mechanism in KMS.HT essentially
is algorithm Hr (Figure 2) with a variety of enhancements designed to make this
approach more robust in the real world (see below). KMs.HT antedated by years
and in part motivated the development of the formalization in the GSC model,

The following paragraphs provide some examples of the kinds of enhance-
ments to the GSC model that exists in KMs.HT. The reader should keep in mind,
however, that in spite of these embellishments the fundamental driving force
in KMS.HT is a sequential GSC-like approach to diagnostic problem solving. It
is in this sense that the GSC model is an abstraction of an implemented expert
system such as has been advocated by Nilsson [16]. Example real-world expert
- systems developed with kMs.HT are described elsewhere (see [21]). e

One type of enhancement to the function HT as it'is described in Figure 2 (HT
also calls Genset, Figure 1) is to make the nondeterministic steps deterministic
in a reasonably cfficient manner, For example, in Genset the nondeterministic
selection of 4 € scope (line 13, Figure 1) is based on the foltowing, criterion
(simplified);

. If there exists m € manifs that is pathognomonic for some d’ e scope, let

d = d’. Otherwise, use d € scope such that jman(d)Nmanifs| is maximized.

The reason for selecting a d’ which causes a pathognomonic manifestation is
that by Part I, Lemma 1.23, such a 4’ must be in any explanation for manifs,
Furthermore, by Part I, Theorem 1.24, the recursive call to. Genset in line 15 of
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Genset can therefore be omitted and F assigned @, potentially a significant
computational saving. The alternative, selecting 4 &scope that maximizes
jman(d )N manifs|, is a useful heuristic because during real-world problem solv-
ing this alternative usnally (but not always) selects a disorder that will be in an
explanation for manifs, thus making the call to Genset in line 16 likely to be
successful.

Another enhancement made to the algorithm HT as it is used in KMS.HT is the

partitioning of diagnostic problems into independent subproblems using the - -

concept of connected manifestations introduced in Part I. Each subproblem has
its own manifs, scope, and hypothesis. Perhaps surprisingly, constructing and
maintaining independent subproblems in this fashion turn out to be relatively -~
easy. Whenever a new manifestation m, is found to be present, the set
causes(m;,) is intersected with the scope of each preexisting subproblem. When
this intersectién is nonempty, we will say that m, is related to the correspond-
ing subproblem in that m; is connected to at least one other manifestation in
that subproblem. There are three possible results of identifying the subproblems
to which m, is related. First; m, may not be related to any preexisting
subproblem. In this case, a new subproblem is created with manifs= {m,},
scope = causes(m,), and hypothesis = {(causes(M,))}, e.g., the second row in
Figure 3. Second, m; may be related to exactly one subproblem, in which case
m; is assimilated into that subproblem as dictated by algorithm HT (e.g., the last
two rows in Figure 3). Finally, m, may be related to more than one existing
subproblem. In this situation, these previously independent subproblems are
“joined” together. The manifs (scope) for the new subproblem is constructed by
appending together the manifs (scope) sets of the related subproblems. The
hypothesis for the new “joined” subproblem is constructed by first composing
the generators from the hypotheses of the refated subproblems and then dividing
the resultant generator set by causes(m;). At the end of the problem-solving
process, the generator set for the solution to the entire original diagnostic
problem is constructed by appropriately composing the generators from the
subproblems. That this approach is correct follows directly from I.emma 1.25(b)
and Theorem 1.26 of Part I; that it is reasonably efficient follows from the
reduced order of each diagnostic subproblem and from the fact that generator
composition in this context is relatively fast.

Several other issues are addressed and resolved in adopting the algorithm HT
for use in KMS.HT, including question generation methods, termination criteria,
ranking of competing disorders, and adjustment of the hypothesis in the context
of information about nonmanifestations (such as a patient’s age in medical
problem solving). Generally, a heuristic approach is taken to resolving each of ’
these issues. For example, the GSC model involves a nondeterministic approach
to question generation and termination of the problem-solving process (line 8
and 9 in function Hr, Figure 2). The only requirement is that when Moremanifs
returns “False” in line 8, Nextman has already previously found all of M*. In
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the KMS.HT implementation, Nextman is a heuristically guided function of the
current hypothesis, resulting in focused and directed questioning of the user.
The current implementation of Nextman in KMS.HT is such that it might not
discover all of M* by the time the termination criteria are reached (a knowl-
edge-base author can alter this), although this would be very easy to change. For
further details on these issues and others, as well as example expert systems built
with KMS.HT, the interested reader is referred to [21].

SINGLE-HYPOTHESIS ASSUMPTION

In some diagnostic problems of more limited scope it proves convenient and
appropriate to make the single-hypothesis assumption: that only one discrder
- can occur at a time. IDT, for intelligent diagnostic tool, is an expert system for
diagnosing faults in PDP 11 /03 computers that makes this assumption [27]. In
IDT a computer is viewed as composed of a number of “atomic units” (con-
trollers, interfaces, disk drives, etc.). A disorder d; represents the hypothesis that
the /th atomic unit is broken. Diagnostic k.uowledge is represented as deductive
formulas associated with test results, e.g., “~d, > d, v dy” or “d, = ~dg.”
These formulas are not restricted to be Horn clauses. The goal of the dlagnosuc
process is to prove a formula of the form “d;vd;Vv --- vd,,” where the
members of the set {d;,d,,...,d,} are all inside a single rep]aceab]e computer
module. The developers of IDT prove that if one makes the “extralogical
single-fault assumption,” then any formula E associated with a test result can
be transformed into a disjunctive formula {a clause) containing only positive .
literals (nonnegated d;) that is equivalent to E [27]. Furthermore, if one
represents each such clause “d, v d, Vv --- v d,” by its corresponding set of
literals {d,,d,,...,d,}, then it can be shown that set intersection is the only
operation necessary for combining test results {27].

From the perspective of the GSC model, each IDT test result corresponds to a
manifestation m, and the set of positive literals associated with that test result
corresponds to causes(). Furthermore, the inference mechanism used in 1DT,
namely set intersection, can be shown to be a special case of generator division
that occurs when the smgh—hypothesm assumption is made. This can be stated
as the following :

ProOPOSITION 2.15. Set infersection is a special case of generator set division.
More precisely, let P= (D,M,C,M* ) be a a'iagnostzc problem where order(P)
=1. Then the sequence of steps

1' = {(D)})

2. for me M"* do G= a division of G by causes(m);

produces a generatbr set G = {(D")}, where D’ =[\,, o 5+ causes{m). ' o
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Thus, the inference mechanism in 10T, roughly captured in the above steps,
can be viewed as a special case of algorithm HT where order(P) =1. Note that in
line 1 of the above sequence, D could be replaced by causes(m) for any
me M" and thé proposition would still hold.

KMS.HY, described in the -preceding section, can also operate in a special
mode where the single hypothesis assumption holds. In this mode two tnwal
changes exist in algorithm HT (Figure 2): -

(i) Line 7 is replaced with
hypothesis:= {(D)}.
(ii) Lines 13-16 are replaced with
.il hypothesis =& then efror endif;.

Change (i) represents the initial hypothesis that exactly one disorder is present,
ie., that order(P)=1. Change (ii) calls function error to generate an error
message and return, reflecting that a violation of the single disorder assumption
has occurred. In real-world expert systems built with KMS.HT, such an etror
might be caused by “noisy data,” incorrectness of the single disorder assump-
tion, or an errorful knowledge base (see [21} for further discussion). It should be
evident to the reader that the modified algorithm HT is correct within the GSC
model if the smglé-hypothems assumphon holds.

TOWARDS A. GENERAL THEOQORY OF ABDUCTION

This and the previous paper have presented a formalization of the basic
abductive reasoning processes used in a number of contemporary diagnostic
expert systems. The definitions in Part I of a diagnostic problem, an explana-
tion, and the solution to a diagnostic problem effectively represent the basic
postulates of the GSC model. The validity of all subsequent theorems and the
correctness of the algorithm BT are consequences of these fundamental defini- .
tions. As discussed above, the “results” of the GSC formalization capture in a-
domain-independent fashion many featurés of expert systems like INTERNIST,
EMS.HT, and IDT. Further, the GSC model has provided imsights into the
methods used in such application-oriented programs that were not obvious in
advance. For example, the recognition that there are situations where INTERNIST
might not behave as expected is an important insight derived from the GSC
model. The demonstration that the deductive formulas and set-intersection
method used in IDT can be viewed as a special case of the GSC model {under the
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“single hypothesis” assumption) is also significant, To the extent that one
accepts the position, suggested by others [33], that intersection search is of
fundamental importance in knowledge-related areas of intelligence, it seems
useful to explore any generalization of this concept.

Still, a great deal remains to be done to achieve a truly general theory of
abductive diagnostic problem solving, We therefore outline below a number of
issues awaiting exploration and resolution in this area, in the hope that such
work will lead to more robust diagnostic expert systems in the future. Qur intent
is to clarify the limitations of the existing GSC model, and perhaps entice others
to join in solving some of the difficult problems involved. Additional. issucs
'related to the basic GSC model are discussed first, and this is followed by an

outline of an extended notion of “parsimonious covering” as a generalization of
the GSC model. C R

FURTHER DEVELOPMENT OF THE EXISTING GSC MODEL

At present, there is clearly a need for further development and investigation
of the existing GSC model. The issues of concern here do not require fundamen-
tal changes to the GSC model, but represent elaborations of the existing theory:
For example, it would be valuable to determine optimal criteria for generating
questions (i.e., criteria for selecting the next manifestation whose presence or
absence is to be determined) and for deciding when to terminate sequential
problem solving. The integration of probability theory within the GSC model to
permit ranking of competing explanations would strengthen the model. Such an
integration would permit more detailed analysis of scoring mechanisms in
existing abductive expert systems and the possibility of identifying and handling
noisy data in real-world systems. Also, it would be an important advance if
criteria could be specified whereby the number of generators in a generator set
could be minimized. At present, this is done heuristically in the KMSHT .
implementation, and the authors know of some criteria which, when satisfied,
permit a generator set to be collapsed into another generator set having fewer -
generators. Unfortunately, finding necessary and sufficient conditions to
guarantee that there is no generator set of smaller cardinality for the solution
has proven to be an elusive goal. " '

“  Another issue is the relationship between abductive inference as formalized
in the GSC model and deductive inference as used in many rule-based expert
systems. Some initial work has been done in this area {27, 34], but we suspect

“that the issues involved are just beginning to be understood. Particularly of
interest-is the relationship between the GSC model and recent theoretical
developments in default reasoning and nonmonotonic logics. The GSC formal-
ization clearly represents a nonmonotonic logic [38): Each cycle through func-
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tion HT involves making inferences in the context of incomplete information and
under the default assumption that no additional manifestations exist. Whenever
this assumption is found not to hold (a new manifestation is discovered),
hypothesis revision occurs. Unlike deductive logics, inferences cannot be made
“locally” (e.g., via modus ponens) but are inherently a global property of the
causal relation C. Furthermore, unlike deductive models, there is no absoluie
“truth” in the GSC model, only a notion of plausibility [38]. A better under-
standing of these and related properties should lead to expert systems that -
effectively and correctly integrate deductive and abductive inference methods
during problem solving, .

Finally, we have recently investigated experimentally the support of answer ™~
justification methods in abductive expert systems [39). A corresponding theoret1~-
cal extension to the GSC model would enhance its generality. T

* PARSIMONIQUS COVERING: GENERALIZING THE GENERALIZATION

As noted in Part I, the GSC formulation makes certain simlifying assump-
tions. These include the assumptions that disorders are independent of one
another, and that disorders and their associations with manifestations are of
roughly equal likelihood. In the real world, such assumptions do not always
hold, especially as one moves from restricted domains to more general diagnos-
tic problems. Thus, for example, one disorder might directly or indirectly cause
another, and therefore disorders would not be independent of one another. Or,
as pointed out in Part I, there are situations where a. nonminimal cover (e.g.,
consisting of two very common disorders) might be a more plausible explana-
tion for a set of manifestations than a minimal cover (e.g., consisting of one very .
rare disorder). :

To. study these and related questions, we are currently investigating a
significantly generalized formalization of the GSC model that we will refer to
simply as “parsimonious covering” [35]. Within this framework, a diagnostic
problem is formalized as a 4-tuple (H,C,D, H'), where H is a finite nonempty
set of entities (hypotheses), CC HXH is a causality relation, DCH is a
distinguished set of “ultimate disorders,” and H’ is a distinguished set of
entities said to be present. The set H includes both D and M of the GSC model
as well as any intermediate abnormal states. H’ comresponds to M~ in the GSC *
model, but may also include volunteered information about preexisting abnormal
states or disorders. A generalized notion of “covering” has been formalized that
involves “causal chaining”: situations where h; causes #;, and k; causes k;, so K
h; causes k, indirectly. Representations of parsimony other than minimality are
under study, such as the notion of “irredundancy,” which handles some
situations involving nonminimal but highly plausible covers (a cover of H’ is
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(d) Type 3. (1ayered) but not 4 (e) Type 4 (blpartlte) )

Fig. 4 A taxonomy of parsimonious covering models. {a) Type 0 (unrestncted) prob]ems
include all parsimonious models. (b) Type 1 {acyclic) problems are those where € imposes an
acyclic digraph on H. (¢} Type 2 (hyperbipartite) impose DNM = with no causal associa- -
tions between ultimate disorders in D). {(d) Type 3 (layered) problems partition H into disjoint
layers with causal associations only between elements in ad_;acent layers. (g) Type 4 {bipartite)
problems consist only of two layers,
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irredundant if none of its proper subsets is also a cover of H’). Peng has
proposed a taxonomy of diagnostic problems within the parsimonious covering
framework [35], and this is illustrated in Figure 4. Note that the GSC model is a
special case of Type IV problems, which are themselves the simplest class of
parsimonious covering models.

Finally, we observe that the GSC model as an abstraction of abduction
occupies the same level as propositional logic does with respect to deduction.
The GSC model does not incorporate variables or quantification. We have done * -
some preliminary experimental work with the use of variables in the GSC model
[40], but the formal introduction of such concepts into an abductive logic
remains an important area for future research. o

APPENDIX. PROOFS

Lemma 2.1. (2): If m € many(D), then there exists d € D such that (d, m)
€ Gy, s0 {d,m) €C,, and therefore m € man_ (D).

(b): Analogous to (a)

{c): Since D covers M in Q, wehave m€ man, (D) Vm € M. Then by (a),
meman,(D)VmeM, so D covers M in P.

{d): Suppose there is a cover D' for M in O such that |D’| <|D}. Then by
{c), D’ covers M in P, contradicting that D is an explanation for M in P.
Thus, there is no cover D’ for M in Q such that |D’| < |D|, so since D covers M
in Q, it follows that D is an explanation for M in Q.

Corollary 2.2. Immediate from Lemma 2.1. -

Lemma 2.3. “If”: Suppose D, is a cover for M} in P. To show that
¢ is a diagnostic problem we show that (i) DQ —domam(CQ), (i) M, =
range(Cy ), and (iii) M C M.

(i) Since C,=C, N{Dy XM,), it follows that domain(C,)c D,. Con-
versely, if d €Dy, then d €D,, so by the definition of a diagnostic problem
there exists an m €M, such that (d, m) ECP Thus m € man,(d), so m€
man, (Dy)=M,. Hence {(d,m) € CN(Dy XxM,)=C,, 50 d edomam((]Q),
whereby Dy, € domain(Cy). Thus, Dy = domain(C,).

(i) Since. Gy = CpN(@Dy XM,), it follows that range(C,) C MQ Con-
versely, if m € M, = man,(D,), then there exists d € D, such that (d, m) &
C,. But (d,m) EDQ XMy, so (d,m) € C,N(Dy XMy)=C,. Hence, me
range(CQ) and therefore M, = range(Cy). ’

(i) M; c man,, (D, ) because Dy, is a cover for M in P. Hence, M+ cM,
by the conditions of this lemma,
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“Only if"": Suppose @ is a diagnostic problem, Then

My;cM, by the definition of a diagnostic problem
—many(D,) by Part], Lemma1.1(d")
G man, (D,) by Lemma 2.1a.

" Thus, Dy, is a cover for M} in P.
Lemma 2.4. For any d € D,

mang (d)={mj(d,my € C,} by definition of man
={m|{d,m) E_C_rJ N(D Xman,(D))} by definition of prob

={m(d,m) €C,}
N{m|(d,m) € D Xman, (D)}

=man,(d)"man,(D) sincedeD’'cD
=man,(d) since d € D,

Lemma 2.5. Note that by Lemma 2.3, P is a diagnostic problem. .

(a): Suppose §;#@, and let E Sf. Then by the definition of §7, E is an
explanation for M* in P and E€ D —I. Thus, M* ¢ man(E)C man(D — I)
=man(D,), so Q is a diagnostic problem by Lemma 2.3. But by Lemma 2.4,
man, (E) = man,(E), so E covers M* in Q. Hence, by Lemma 2.1(d), E is an
explanation for M™ in @, so order(Q)=|E|=order(P)=n. Also, since the
above reasoning holds VE € §7, it follows that S; C Sol(Q). It remains to show
that Sol(Q) C §7. '

Let E’€Sol(Q). Then E’ is an explanation for M* in @, so by Lemma
21(c), E’ covers M* in P. Then, since order(P) = order(Q), E’ is also an .
explanation for M* in P. But since domain(C,)=D— I, we have E‘'c DI,
so E'NI=¢ and thus £’ € §/. Hence, Sol(Q) C S7, so by the last line of the
preceding paragraph, Sol(Q) = §j. _

' (b): Suppose Sf =2 . By Lemma 2.3, Q is a diagnostic problem if and only if
M* C man,(D—I).

Case I: M*Z man,(D ~1I). Then Q is not a diagnostic problem, -
Case 2: M* Cman,(D—1). Then Q is a diagnostic problem, Let E<
Sol(Q). Since domain((;,) =D — I, we have EN =42, so E & Sol( P) because
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S;=@. But by Lemma 21(c), E covers M™ in P because C, € C,. Thus it
must be that |E| > order( P) = n. Hence, order(Q) = |E|> n.

Lemma 2.6. (a): By Lemma 2.3, P is a diagnostic problem, since D C Dy is
a cover for M". We can also use Lemma 2.3 to show that Q is always a '
diagnostic problem by proving that D — I covers M*-man(d). First note that
since P is a diagnostic problem, D covers M™ by Lemma 1.1 and the definition
of a diagnostic problem Thus, M* € man(D). Also, man™* (d’)=man*(d)
vd’' €1, so man* (I)= man* (4). Thus

M"-man(d)= M*-man™ (d) _ by definition of man*
= M*-man™* (I) by the above
= M*-man(T) ' by definition of man™
C man( D)-man(7) by the above
€ man(D — I) by Part I, Lemma 1.1(f).

Since D ~ I covers M*-man(d), Q is a diagnostic problem by Lemma 2.3.
(b): Suppose S; #@. Then there is a explanation E for M* in P and a
d’ € I such that d’ € E. Note that |E| = n, and E contains no other member of
I other than d’ by Part I, Theorem 1.8(a). Thus E—{d’} C D~ I = DQ
(1) It follows that
M} = M*-man(d)
< man* (Ey-man(d) since E covers M* in P~
= man* (E)-man™ (d) by definition of man*
=man™* (B)}-man* (d") by definition of 7
cman*(E~{d’}))  byPart], Lemma11(f).
Thus, E —{d’} covers M. Furthermore, E — {4’} is a minimal cover, for if
there were a smaller cover D', D' U {d"'} would cover M [by Lemma 2.1(c)),

contradicting the minimality of E in P. Thus, E—{d’} is an explanation for
M*-man,(d)= M in Q, so order(Q)=|E ~{d'}|=n—1.

~
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(2) Let G and H be as defined in the statement of the lemma. To show that
G is a generator set, we must show that each H,-(I) is a generator, and that
[H,-(DIN{H, (D] =7 Vix j.

Note that (1) and each H, are generators, and by the definition of ¢, none
of the H, can contain any member of I. Thus, by the definition of composition,
H-(I) is a generator for each i. Furthermore, if i < j then :

[HADIN[HA(D] = {Eu{d}|E€[H]N[H] and &' € T}

by Part I, Lemma 1.14

={EVU{d’'})|Ec® and d' €1} because H is a generator set
-3,

It remains to show that [G}=S,. To show that [G]C §;, let E €[G]. Then
Ee€[H;-(I)] for some i, so E=D'U{d’}, where D'€[H]CSol(Q) and
d’'el. Thus M*-man(d)= M} ¢ man(D’), so M*Cman(D)Uman(d)=
man({ D YUman(d’) = man(D’ U {d’}) = man( E), so E covers M"*. But |E|=
|D’|+1=order{Q)+1=n. Thus E is an explanation for M* in P, s0 E€ ;.
Therefore, [G] C S;. '

To show that $; C [G], let E € 5;, and let 4’ € EN I. From the proof of (1)
above we see that E —{d’} is an explanation for M, so E—{d’} €[H;] for
some {. Thus E € [H,-(I)], so E €[G] and §; C[G]. Combined with the result
from the previous paragraph, this implies that [G] = 5; '

{c): Suppose S; =@, and let E€Sol(P). Then ENnI=@,s0 ECD—-I=
Dy,. Thus, M *-man(d) € man(E), so E covers M*-man(d). Hence, if D’ isan
explanatlon for M*-man(d), then |D’|<|E|= n. Furthermore, if D’ is an
explanation for M*-man(d), then

M* c [ M*-man(d)]Uman(d)
C man{ D')Uman(d)  since D’ covers Mg
=man(D’U{d}), -

so D’ U{d} covers M* in P. Now if | D’| were less than n, then | D’ U {d}| < n,

" making D’ U{d)} an explanation for M* in P. But since d € D' U{d}, we

would have D' U{d} € §;, contradicting S; =& . Hence, order{@) = [D’| > n.
Combined with the result of the preceding pa.ragraph we therefore have

order( o ) n.
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Theorem 2.7 (by induction on N + |scope| ).
(1) Base case: N =|scope|=0.

Case la: manifs #@. Then scope is not a cover for manifs, so R is not a
diagnostic problem by Lemma-2.3. The test at line 3 of Genset succeeds, and the
test at line 5 fails, so Genset terminates and returns @.

Case I1b: manifs=@. Then R is a diagnostic problem by Lemma 2.3, and as
noted in Pari I, Sol(R) = { @ }. Thus, order(R) = 0 = N. The tests at lines 3 and- -
5 of Genset succeed, so it terminates and returns a generator set { @ }. Note that
[{2}1= {2} =Sol(R).

(2) Induction step: Let k> 0, and suppose that the theorem hold whenever .
N + |scope} < k. Now let N and scope be such that N + [scope] = k.

Case 2a: R is a diagnostic problem of order N. Let E €Sol{R). Then by
Lemma 1.6, the definition of prob, and Lemma 2.3, E & causes(manifs) C scope,
50 |scope| = |E} = N. Thus, the tests at lines 3 and 10 of Genset both fail, and
lines 13-18 are executed. In line 13, 4 € scope is selected, and at line 14,
I = {d’ € scope|man , (d’)Nmanifs = man ,(d) "manifs}. By Lemma 2.4, it im-
mediately follows that 7= {d’ & scopejman}, (d’) = man}, (d)}. Let S;={E &
Sol(R)|[EnI=@}, and §/={E€Sol(R)|JENI=@}. Since S, Sf=Sol(R
#@ by [4], Lemma 1.3}, §; and Sf cannot both be empty. ‘
Case 2al: 5, =% and S§;{+#@. Then Sol(R)=S/. By Lemma 2.5, prob(scope-
I,manifs) is a diaghostic problem of order N, and Sol(prob(scope-7, manifs)) =
S{ But I+#@ since del, so N+ |scope-I] < N + scope] = k. Thus, by the
induction hypothesis, line 15 of Genset assigns F to be a generator set for Sj.
Similarly, by Lemma 2.6, prob(scope-{, manifs-man(d)) is a diagnostic problem
of order N, so by the induction hypothesis H is assigned the value & on line 16.
Hence, G is assigned @ on line 17, and line 1% returns FUG=F and
terminates. Note that [ F] = Sf = Sol(R).
Case 2a2: S; =@ and Sf=@. Then Sol(R)=S,. By Lemma 2.5, either
prob(scope-f, manifs) is not a diagnostic problem, or order(prob(scope-
I, manifs)) > N, so by the induction hypothesis F is assigned @ on line 15. By
Lemma 2.6, prob(scope-J, manifs-man(d)) is a diagnostic problem of order N-1,
s0 by the induction hypothesis H is assigned a generator set for Sol(prob(scope-
I, manifs-man(d})) in line 16. Thus, by Lemma 2.6, G is assigned a generator set
in line 17 such that [G]=S; = Sol(R). Then GU F=G is returned in line 18 -
and Genset terminates.
Case 2a3: S;#@ and S} +@. Then as in case 2al, F is set to a generator set
for 5/, and as in case 2a2, G is set to a generator set for ;. Therefore in line 18,
Genset returns a generator set for §; U §/ = Sol( R) and terminates,
Case 2b: R is not a diagnostic problem. Ther by Lemma 2.3, scope is not a

cover for manifs, so scope-f is not a cover for either manifs or manifs-man(d ).
Thus, from Lemma 2.3, both prob(scope-f,manifs) and prob(scope-7, manifs-
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man(d)) are not diagnostic problems, If |scope] < N, then Genset will return @
and terminate at line 11. Otherwise, from the induction hypothesis, F and H
will be set to @ in lines 15 and 16, respectively, whence Genset will return &
and terminate at line 18.

Case 2c: R is a diagnostic problem but order(R) > N. By reasoning similar to
the beginning of case 2a, lines 13-18 of Genset will be executed. Let d, I, S;
and S/ be as defined in case 2a. If S/=@, then by Lemma 2.5 either
prob(scope-I, manifs) is not a diagnostic problem, or order(prob(scope-
I, manifs)) > N +1. If S§f#@, then order(prob(scope-I, manifs)) > N. In either
case, it follows from the induction hypothesis that F will be assigned @ in line
15. From Lemma 2.6, if S; @ then prob(scope-J, manifs-man(4)) is a diagnos-
tic problem with order N or greater, and if $; =@ then prob(scope-I, manifs-
man(d)) is a diagnostic problem of order greater than N. In either case, it
follows from the induction hypothesis that H will be set to @ in line 16, and
thus G will be set to @ in line 17, Hence, Genset returns @ and terminates at
line 18.

Theorem 2.8. Let P=(Dp,M;,Cp, M" ) and let k = order(P). Note that
P =prob(Dp, M*). Let R = prob(causes,(M*), M" )= (Dp,Mg,Cps, M*),
where Dy = causes,(M*), Mg =man, (D), and Cp=C, N(Dy XM;). Let
D’ = Dp-causes(M ™).

Case 1: D'=0. Then R=P, so R is a diagnostic problem of order k and
Sol(R)= Sol(P).

Case 2: D’ +@. Note that Vd’ € D', man}(d)=@, and Vvd”
causesp(M™), many(d”)#@. Select any de D, and let I={d e
Dymany (d’) = man} (d)}. Then I = {d’ € D,jman; (d’) =@ } = D’. Also note
that for any E € Sol(P), E C causesp(M* ) by Lemma 1.6, so ENI=En D’
=@ . Thus if §7= { E € Sol(P)|EN I =2}, then S/ = Sol(P). Thus, by Lemma-
2.5(a), R is a diagnostic problem of order k£ and Sol( R) = Sol( P).

In cither case, Sol( R) = Sol( P), so it suffices to prove that Solve[ P] returns a
generator set for Sol( R) and terminates.

When Solve[ P] is called, # is initialized to zero, so n < order(P) = order( R)
= k. Since s =@ initially, the test on line 5 is successful. If n =k =0, then s
will be assigned a nonempty generator set for Sol(R) at line 7 by Theorem 2.7, -
and the while test on line 5 will subsequently fail. Thus, line 10 will return s and
Solve will terminate, If n < k, then by Theorem 2.7, Genset[causes(M ), M*, n]
will terminate and return @, so # will be incremented and the while test will
succeed again, as s =@ . This will continue to occur until » =%, which must
eventually happen because k is finite by Part I, Lemma 1.4. When »n = k, then
by Theorem 2.7, Genset[causes(M ™), M, k] will terminate and assign a non-
empty generator set for Sol(R) as the value of 5. Hence, the while loop will
terminate at line 10 after returning s = Sol( R) = Sol( P).
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Lemma 2.9. O is a diagnostic problem by definition, since P is a diagnostic
problem and Mj; C M. There are two cases:

Case 1: There exists £ € Sol(P) such that MY U {m)} C man(E). Then E is
a minimal cover of M¥ U {m}, because if not (since it covers M™) it would
contradict the fact that E was an explanation in P. Hence, order(@)=n.

Case 2: There does not exist E €Sol(P) such that M* U{m) C man(E).
Select any E € Sol( P). Since E covers' M but not M* U {m}, it must be that
m¢ man{E), so {m}Nman{E)=g&. By Part I, Lemma 1.2, it follows that
causes(m)MN E=2. Select any d € cavses(m), and Iet D=EU{d). By the
preceding, 4 & E, so |D|=|E|+|{d}|=n+1. Furthermore, M*U{m}C
man({ EYUman(d) = man(D), so D covers M* U{m}. Suppose D were not a
minimal cover of M™ U {m}. Then there would be a D that covered MU {m}
with |D’| < n. But since D’ covers M*, |D’| = order( P) = n. Thus, |D’|=n, so
D’ € Sol( P), contradicting the assumption of case 2. Therefore, D must be a
minimal cover for M* U {m}, so order(Q) = |DV|=n+1. -

Lemma 2.1{. Since causes{m)+# @ by Part I, Lemma 1.1(2), G /causes(m) is
defined, and H is a generator set by Lemma 1.19. By Lemima 1.26, [H]={E €
[G]|E ncauses(m)+@ }. Let E’ € [H]. Then E’ € [G], and there exists 4 € E’
such that m € man(d) € man(E’), so E’ covers m. Hence, [H]C { E€[G]|E
covers m}. Similarly, let E'€ {E€[G]/E€ covers m}. Then there is a
d € E' such that m € man{d), so by Part I, Lemma 1.1(g),
d € causes(m). Hence, E'nNcauses{(m)#@, so E'€[H], and {E<[G]|F
COVETS m} C[H). Thus [H]= {E €[G]|E covers m}.

Lemma 2 11. @ is a diagnostic problem by defnutlon since P is a dlagnostlc
problem and M; C M.

(a): Since H— ,» [H]=%. But then by Lemma 2.10, [H]={E€[GlE
covers m}={Ee€ [G]}E covers M*U{m}}=@. Thus there can be no covers
of M*U{m} of cardinality n, so order(Q) # n, so by Lemma 2.9, order(Q) =
n+1.

(b): Since H + &, it follows from Lemma 2.10 that [H] = { E € {G]| E covers
m} = {E€[G]|E covers Mt U{m}}+d, so order(Q) = n. For every E’ € [H],
|E'}=n and E’ covers M*U{m} in O, so E’€Sol(Q). Thus [H]c Sol{Q).
For every E” € Sol(Q), E” covers M* U{—m} so E” covers M* in P. Thus
since |E”|=n, E” is an explanation in P, so  E” & 8ol(P)=[G]. Hence,
E” € { E€[G]|E covers m} [H]. Thus, So¥Q)C[H], so by the above,

[H]=Sol(0).

Lemma 2.12. (a), (b) Immediate from mductlon and the defmmon of mamfs

and scope,.
~ (c): Immediate by induction using Lemma 2.3
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Theorem 2.13 (by induction of i).

Case ! (Base case). i=10. Then Fy=prob(2,2)=(2,2,8,),
order(F;) = 0 = n,. Also, Sol{ F)) = { @} = [{ @ }] = [hypothesis, ].

Case 2 (Induction step). Let T> 0, and suppose the theorem holds for i < I.
Consider the case where i =I. From the induction hypothesis, we know that
n;,_; =order(P,_,) and [hypothesis, ,]=Sol(P,_,). From the definition of
Nextman we know m; & manifs,. Thus, by Lemma 2.9 there are two cases,

‘Case 2a: order(F;) =order(P,_;)=n,_,. Since order(P,)+ n,_, +1, then by

Lemma 2.11(a) (contrapositive), hypothesis; ; /causes(sm,)+ @. Thus, the test
on line 13 of HT fails and lines 14-16 are not executed, so n,=n, ; and
hypothesis, = hypothesis, _, /causes(m,). It therefore follows from Lemma
2.11(b) that n, = order(F,), and [hypothesis,] = Sol{ P,).
Case 2b: order(P,) = order(P,_)+1. Then, since order(P,) + n,..,, by Lemma
2.11(b) (contrapositive), hypothesis,_, /causes{m;) =@ at line 13 of HT, so lines
14-16 are executed. Line 14 assigns n, = n;_, +1 = order(P,_,}+1 = order( #,).
By Theorem 2.7, the call to Genset[scope,, manifs,, #;] assigns hypothesis; to a
generator set for Sol( £,). '

Corollary 2.14. By the definition of Moremanifs, the while loop in HT is
executed |M™ | times. Thus, by Theorem 2,13, HT returns hypothesis;;,+| at line
18, a generator set for Sol( R), where R = Py = prob(scopel M ma.mfsI )=
prob(causes(M* ), M* ). By reasoning similar to that in the proof. of Theorem
2.8 (first four paragraphs), it follows that Sol(P)=Sol(R), so HT returns a
generator set for Sol( P) at line 18 and terminates.

Proposition 2.15. Proof by induction on N=|M"|.

Base case: N=1. Then M*={m} and the sequence of steps produces
G = g division of {(D)} by causes(m). By Part I, Lemma 1.19, G is a gener-
ator set. Let D' = causes(m)+@. By the definition of C and the division
operation, G = {(D N causes(m))} = {(causes(m))} = {(D’)}. Here, D’ =
N, & p+ causes(m) trivially.

Induction step. Assume that the proposition is true for all subsets of M™ of
cardinality N —1, and let M* have cardinality N. Let m’ be the last member of
M?* to be chosen in the for loop, and let M =M" —{m’}. Then |M|=
By the inductive hypothesis, the first N — }.steps of the for loop give a generator
set {(.D"")}, where D" =0, . ,,causes(m) and D" #@. Then by the reasoning
immediately above the definition of the division operation, on the last pass
through the for loop G is assigned {( D" Ncauses(m’))} = {(D")}, where D’ =
M, < ae+ CAUSES(m). Note that this last assertion makes implicit use of the
single-disorder assumption.
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