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This chapter describes the GSC medel, a -new theoretical
framework for diagnostic expert systems which supports
approximate reasoning. The model captures several
intuitively plausible features of diagnostic inference,
handles multiple simultaneous causative disorders,
supports sequential preoblem solving and °©  answer
‘justification, and is readily formalized. = This chapter
summarizes the GSC model, describes its applications, and
addresses a number of issues raised by this work.
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" INTRODUCTION

‘A diagrostic problem is a problem in which one is given a set of manifestations
(symptoms, signs, laboratory test results) and must explain why those findings
are present. Problems of this kind are very common: they include diagnosing a.

.. patient's signs and symptoms in medicine, determining why & computer program
- failed, deciding why an automobile will not start, finding the cause of nolses.
"ih a plumbing system, localizing a fault in an electronie circuit, explaining
why a child makes arithmetic mistakes, ete. This ubiquity has prompted several
“empirical. studies of the underlying reasoning processes involved as well as
numerous expert systems for dlagnostlc problem solving [1,4]. :

This chapter desecribes a new theoretical basis for diagnostic expert systems
which emulate the reasoning processes used by human diagnosticians. Cur model,
called the GSC.model because it generalizes the set covering problem well known
. .in mathematics, captures several intuitively plausible features of diagnostic
. inference. It also directly addresses such issues as the handling of multiple
“.simultaneous causative  disorders, diagnostic ambiguity;, non-monctonic
©inferénces, and - sequential problem- solving in the context of incamplete
-information. ) : ’

This chapter is divided into three main sections. The first section briefly
- ' summarizes previous studies of diagnhostic reasoning and past work on diagnostic
. expert -systems with ah emphasls on how .the GSC Model fits into this work. The
'_second section introduces the basic concepts of the GSC.Moédel in an intuitive
fashion. - The. thlrd section discusses applications of the model in expert
systems, raises.a number of more advanced issues, and describes p0551b1e future
.researeh directions. Although space limitatiocns prevent us from exploring somef_'-
- of the topies presented here in complete detail, the interested reader 13.
referred to other sources for: further information when approprlate.
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DIAGNOSTIC PROBLEM SOLVING

During the last decade, a great deal of effort has gone into obtaining a better
understanding of the reasoning processes involved in diagnostic problem
solving. As an example, medical diagnostic reasoning, which is presumably
typical of diagnostic reasoning in general, has been relatively well studied by
cognitive psychologists ([2], [3]1; see [43 for a review]. This empirical work
has shown that diagnostic reasoning involves a sequential hypothesize-and-test
process during which the physician conceptually constructs a "model" of the
patient. This model or hypothesis postulates the presence of one or more
diseases that could explain the patient's manifestations, To. construct and
modify the hypothesis, the physician relies on his medical "knowledge base,"
which ideally includes the set of all possible causative diseases for each
manifestation, and the set of all possible manifestations for each disease.

The reasoning process involved in diagnostic. problem selving is sometimes
referred fo as abductive inference, and it involves many issues which
characterize non-monotonic reasoning in general [see [5]]; In particular, as
explained below, diagnostic problem solving 1involves a great deal of

"approximate reasoning" (by which we mean reasoning involving several
alternative possibilities), and thus the didgnostician's hypothesis may at
times be relatively complex. Not only may it contain a great deal of

uncertainty about which of several disorders account for a certain
manifestation, but it might also presume the simultaneous presence of multiple
. disorders. The empirical evidence suggests that the hypothesis can best be
viewed as a resolution of two conflicting goals:

Coverage Goal: the goal of explaining all of the manifestations that are
present;

Parsimony Goal: fthe goal of miniﬁizing the ecomplexity of the explénation.

The second goal is sometimes referred to as "Occam's Razor."

.It is important Gtoc appreciate both the sequential and approximate naturé of
diagnostic reasoning. As the diagnostician gradually learns information about
a problem, his hypothesis repeatedly changes to reflect this new information.
For example, if a patient complains of sudden onset of chest pain, the
physician's initial hypothesis might be something like '

HYPOTHESIS 1:

"heart attack, gﬁ_pulmonary embolus, or . . .".

As further details becane available, some of these disorders considered-

initiaily might be eliminated. In the above example, if it was next learned
that the patient also had a chronic cough and was a heavy snoker, -the
hypothesis might change to ) ’ ’ o :

HYPOTHESIS 2:

"heart{ attack, or pulmonary embolus, or . . ."

and
"pronchitis, or asthma, or, . . .",

reflecting the physician's belief that at Ieast two diseases must be present to

- .aceount for this patient's symptoms. AL this point the hypothesis contains .
“both uncertainty or approximation (indicated by "of") and the presumptlon that.

'_multlple 51mu1taneous dlsorders are present {indicated by "and")
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Expert System Method Theoretical Basis

Statistical Pattern Classification Probability Theory
{e.g., Bayes' Theorem)

Rule=Based Deduction Deductive Logie
(e.g., first-order predicate caleoulus)

Description-Based Abduetion ?

Table 1: Three examples of common methods used for implementing diagnostic
expert systems along with the corresponding theoretical basis for each method.

Many methods have been used to build expert systems for dizgnostic problem
solving in the past T4]., Table 1 (left column) lists three prominent examples
of such metheds, Expert systems using statistical pattern classification have
a knowledge base consisting of %ables of probabilities, and they make
inferences by calculating the probabilities of varicus diaghostic possibilities
once the occurring manifestations are known {(e.g., by using Bayes' Theorem).
Although statistically-coriented expert systems have produced impressive
performance at times, they face a number of theoretical and practical
- limitations [43, Not the least of these limitations is the unavailability of
the prerequisite probabilities for most real-world diagnostic problems, making
" knowledge acquisifion a difficuit task.

Expert systems using the second method listed in Table 1, rule-based deduction,
have a knowledge-base of IF-THEN rules aqf typlcally use a deductive approach
" to making inferences [13. This approach™ can be characterized by the simple
syllogism of modus ponens:

'

Given Faet ™A™ and Rule "A——B", infer "Bv“,

While rule-based systems have also produced impressive performance at times and
are the most widely used AI approach in expert systems today, they too face
significant 1limitations [4]. Knowledge acquisition is again a difficult
problem because many diagnostic cues are context-dependent, and because much
domain-specific diagnostic knowledge 1s arranged deseriptively and thus is not
available a pricori in the form of rules.

Expert systems using the third method listed in Table 1, description-based
abduction, have a knowledge hase of deseriptive information and use an
abductive approach to making inferences. This approach can be characterized by
the simple syllogism . .

Given Fact "B" and Rule "A——B", infer "plausible A."
Whereas the "——" in the deductive syllegism above refers to logical
implication, that in the abductive syllogism refers %o a causal association
between A and B. For example, the latter syllogism could be interpreted as
"Disorder A is capable of causing manifestation B, and manifestation B is known
to be present, so perhaps disorder A is causing it.,"

Abductive expert systems make the claim to being cognitive models in the
following sense. "The knowledge base in these systems is typieally organized
around data structures that cognitive psychologists believe are models of human
memory ‘organization (semantic networks, frames, etc.; see [6] for example).
. Figure 1 shows 'a "frame" describing a disorder in a simple abductive expert
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system. The descriptive organization of diagnostie knowledge in abductive
systems is an important factor in easing the knowledge acquisition problem: it
permits one to organize information in a textbook-like fashion often familiar
to the domain expert. In addition, the inference method in these systems is a
sequential hypothesize-and-test process that models the abductive reasoning of
the human diagnostician [2,3]. Abductive diagnostie expert systems (e.g.,
[7,8}] appear to bhave great potential, but they are the most experimental
approach - considered here and face several unresolved 1issues (How should
nypotheses be tested? When should problem solving terminate? See [81.)

benzenesulfenie acid
[description:
pH = acidic;
appearance = ¢ily;
detected on spectometry = carbon, sulfur;
speeific gravity = decreased]

Figure 1: A frame-like description of the manifestations that could occur from

water pollution by benzenesulfonic acid. Taken from a "“toy"™ expert system

puilt with KMS [9] that diagnoses the cause(s) of a chemical spill into a creek

downstream from a manufacturing plant. Benzenesulfonic acid is seen to cause

five manifestations: acidie pH, oily appearance, detection of carben by

spectometry, detection of sulfur by spectometry, and a decreased specifice
gravity,

In the context of the above perspective on diagnostic expert systems, the goals
of the G3C model are twofold. First, the GSC model is intended to provide a
new inference method for use in abductive expert systems. If .is an attractive
model in that it supports a descripbive knowledge representation that does not
require . the elicitation of IF=THEN rules f{rom application experts. ~1In
addition, the GSC medel is context sensitive and supperts "approximate
reasoning" (reasoning involving several possible alternatives) in the presence
of multiple simultaneous disorders. For example, we will see that hypotheses
such as HYPOTHESIS 2 above are readily captured as "generators" in the GSC
model,

The second purpose of the GSC model is to serve as a theoretical basis for
abductive diagnostiec expert systems, and as a formal framework for research on
diagnostic reasoning in general, Various researchers (e.g., [10]] have
criticized previous work on abduetive experf systems as being ad hoc because of
a lack of such a theoretical underpinning. As Table 1 (right column) suggests,
this is in marked contrast to other types of diagnostic expert systems such as
those using statistiecal pattern classification (based on probability theory) or
rule-based deduction (based on deductive logic). While recent work on non-
monotonic logies provides some concepts important in diagnostic problem
solving, these logics are largely deductive 1n nature [11,12] and do not
directly address the issues of coverage and parsimony described earlier, The
GSC model attempts to dissipate this criticism of abductive expert system work
by replacing the "2?%" in Table 1 with a formal theory of abductive inference.

. THE BASIC GSC MODEL

We now turn to describing the "basice" GS5C model informally to provide an
‘introduction to the Ffundamental concepts involved. 4 formal detalled
presentation of the theory is available elsewhere for the interested reader
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In the basic GSC model the underlying knowledge for a diagnostic problem is
organized as pictured in Figure 2a. There are two discrete finite sets which
define the scope of diagnostie problems: D, representing all -possible
disorders d; that can occur, and M, representing all possible manifestations m.
that may occur when one or more disorders are present. For example, in
medieine, D might represent =sll known diseases (or some relevant subset of all
diseases), and M would then represent all possible symptoms, examination
findings, and abnormal laboratory test results that can be caused by diseases
in D. We will assume that D A M = 4. .

a) b)

@ V4 D

Figure 2: Organization of diagnostic knowledge (a) and problems (b).

To capture the intuitive notion of causation, we assume knowledge of a relation
L o D x M, where <d;, m;> € C represents "d; can cause,mj." Note that dy, mj>
€ G does not imply that m; always occurs when d; is present, but only that m;
may occur., For example, 'a patient with a heart attack may have chest pain,
numbnress in the left arm, Ioss of conseiousness, or any of several other
symptoms, but ncne of these symptoms are necessarily present,

Given D, M, and C, the following sets can be defined:

man{d;) = {m;l<d;, my> e ¢} ¥d; e D, and
causes(mj) =" {d; 1<dy) mj> e C} ¥ mj e M.

* These sets are depicted in Figure 2a, and represent all possible manifestations

caused by d;, and all possible disorders that cause my, reapectively, These
concepts are intuitively familiar to the human diagnostiecian. For example,
medial textbooks frequently have descripticons of diseases which inciude, among
other  facts, the set man(di) for each disease dj. Physicians often refer %o
the "differential diaghoesis" of a symptom, which corresponds bto the set

~ causes(m;). Clearly, if man{d;} is known for every disorder d;, or If

causes(m) is known for every manifestation m;, then the causal relation € is

completeiy determined We \p}
will use man(Dp) = diLEIDI man(d;) and causes(M;) = nj HJ.causes(mj) to

indicate ali possibie manifestations of a sef of disorders Dy and all possible

-causes of any manifestation in M;, respectively.

Finally, there 1s a distinguished set ut ¢ M which represents those

‘manifestations which are known te be presént (see Figure 2b). Where as D, M,

and C are general knowledge about a class of diagnostic problems, M represents
the manifestations occurring in a specific case,

Using this terminology, we can now make the following definitiocn:

463
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Definition: A diagnostic problem P is a Y4-tuple <D,M,C,M™> where these
compenents are as described above.

We will assume in what feollows that diagnostic problems are well-formed in the
sense that man(d;} and causes(mj) are always nhon-empty sets,

Having characterized a diagnostic problem in these terms, we now turn to
defining a solution to a diagnostic problem by first introducing the concept of

an explanation.
Definition: For any diagnostic problem P, E ¢ D is an explanation for MY if

(i} M* ¢ man{E), or in words: E covers M*; and
(ii) }E] j_IDI for any other cover D of ¥*, i.e., E is minimal,

This definition captures what one concept of what one intuitively means by
"explaining™ the presence of a set of manifestations, Part (i) specifies the
reasonable constraint that a set of disorders E must be able to cause all known
manifestations MY in order to be considered an explanation for those
manifestations. However, that is not enough: part (1i) specifies that E must
also be one of the smallest sets to do so. Part {ii) reflects %he Principle of
Parsimony or Ockham's Razor described earlier: the simplest explanation is the
preferable one. This principle 1is generally accepted as  valid by human
diagnosticians, Here, we have equated "simplicity" with minimal cardinality,
reflecting an underlying assumption that the occurrence of one disorder d; is
independent of the occurrence of another, {The general nature of "parsimony"

obvicusly involves more than just minimality, an issue to which we will refurn.

‘in the next section, In the meantime, we ask that the reader accept the
definition abeve - as a plausible first-approximation %o the motion of an
explanation.)

With these concepts in mind, we can now define the solution to a. diagnostic
problem. '

Definition: The solution fo a diagnostic problem P, designated Sci(P), is
the set of all explanations for M*-

The concepts defined above are illustrated in the following example.

Example: Let P = <D,M,C, M*> where D = {d 3d2,4 44 ,dg Yo M= {my;...mgl}, and
man(d ) are as specified in Table 2. HNote that Table 2 implicitly defines the
relatlon C, because ¢ = {<d , my>lmy e man(d ) for some d; } Table 2 alse
implicitly defines causes(mj) for all"m; £ M. Let Mt {m1,m4,m }. Note that
no single disorder can covér (account %or) all of M+ but that some pairs of
disorders do cover MY. For instance, if D = {d1,d 1 then Mt ¢ man(D), Since
there are no covers for MY of smaller cardinality than D, it follows that D is
an explanation for M'. Careful examination of Table 1 should convince the

reader that
Sol(P) = { {dy , dg} , {dy , dg} , {dy , dg} ,
{dy » dp}l , {dn dg} » lds, dgl o,
{d3 » 68} ’ {dﬂ L] 8}

is the set of all explanations for M¥,
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4y man(d, )
dq g my

ds my Mg Ty
d3 ) mp my

dy my mg

dg _ my ;3 my
dg my my

d7 ) Ry g

dg ' my g mg
d9 my Mg

Table 2:; Knowledge about a olass of diagnostic problems. The relation € is
~implicitly defined by this table, as is causes(mj) for 1 < j < 6.

It is of interest to compare the model of diagnostic problems presented here
with the classic set covering problem in mathematics. The set covering problem .
is typically stated along the following lines: :

"For a finite set 3§ of elements and a family F of subsets of S, a cover € of. 3
from F is a subfamily C ¢ F such that \J(C) = 8. A cover C is called minimum
if its cardinality is as small as possible,"™ [i5]

‘In this definition, S corresponds to MY and F corresponds to D in the sense
that each d; e D labels a subset of MY (the intersection of man(d Yy with M%),
A minimum cover C corresponds roughly to the -idea of an explanatlon E in the
GSC model, except man(E) is required only to contain M* rather than be equal to
Mt. Thus, even the "basic"™ GSC model as defined so far is seen to represent
two generalizations over the more traditional set covering problem: it does
not requlre an exact ecovering of M*, and itz solution requires finding all
covers of M' rather than a single cover. )

Having defined the structure of a diagnostic problem and its solution, we now
turn to designing an algorithm that can solve diagnostic problems, The inbtent
of such an algorithm is to model the sequential hypothesize-and-test reasoning
process of the human diagnostician. Given an initial set of manifestations, we
want our algorithm fo construet a tentative hypothesis about the cause of those
manifestations, and then to seek further information (e.g., discover additiecnal
manlfestatlons) guided by its working hypothesis.

To capture this sequential problem solving paradigm in the context of the GSC
Model, the tentative hypothesis at any point during problem solving is defined
to be the solution for those manifestations already known to be present,

assuming, perhaps falsely, <that no additional manifestations will be
'subsequently discovered.” ' To construct and maintain a tentative hypothesis
like this, three simple data structures prove useful:

MANIFS: . . the set of manifestations known to be present so far;

SCOPE: -causes(MANIFS), the set of all disorders d; for which at
S least one manlfestatlon is already known: to be present- and
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FOCUS: the tentative solution for just those manifestations already
in MANIFS; FOCUS 1is represented as a colleetion of
generators, .

The %term "generator" used here needs further definition. Rather than

representlng the scolution to a diaghostic problem as an explieit list of all
possible explanations for M* or MANIFS, it is advantageous to represent the
disorders involved as a collection of explanationh generators. A&n explanation
generator is a collection of sets of "competing™ disorders that implicitly
represent a set of explanations in the solution and can be used to generate
them, A generator is analogous to a Cartesian set produet, the difference
being that the generator produces unordered sets rather than ordered tuples.
To illustrate this idea, consider the example diagnostic problem presented
earlier (Table 2). Two generators are sufficient to represent the solution (o
that problem: {d; , dp} «x {d » dg , dg} and {d3 . dytr x {dg}. The second
generator here implicitly represents the two explanations {d3 , 68} and
{dy » dB}' while the first generator represents the other six explanations in
the solution.

There are at least three advantages to representing the solution to a
diagnostic problem as a set of generators. First, this is usually a more
compact form of the explanations present in the sclution. Second, generators
are a very convenient representation for developing algorithms to process
explanations sequentially (see below). Finally, and perhaps most important,
generators are closer te the way the human diagnostiecian organizes the
possibilities during problem solving (i.e., the "differential diagnosis™). For
example, HYPOTHESIS 2, which we used to illustrate the approximate nature of a
medical diagnosis involving multiple dlsorders in a form intuitively plausible
to a physiecian, is a generator,

Using the three data structures MANIFS, SCOPE and FOCUS, a hypothesize-—and-test
algorithm can be derived to perform diagnostic problem solving in the framework
of the G3C model. The FOCUS represents the tentative or working hypothesis at
any point during problem solving. The algorithm, described informally, is:

(1) Get the next manifestation m;.

(2) Retrieve causes{m.) from the knowledge base.

(3) MANIFS €«—MANIF 1v3 {m;}.

(4) SCOPE €——-SCOPE v causes(mj).

(5} Adjust FOCU3 to accomodate m:.

-(6) Repeat this process until no further manifestations remain.

[The actual algorithm is specified formally in detail along with a proof of its
correctness in [14].]

~ Step 1 in this procedure represents the "test" phase in the Miypothesize-and-

test" process, and corresponds to question generation in an expert system. We
will ighore for the moment how one selects or discovers the next manifestation,
and return to this issue in the next  section. For now, we presume that
‘manifestations are discovered one at a time in Step 1, and in Step 2 their
corresponding causes are retrieved from the knowledge base.

As each manifestation mj that 1is present is discovered, MANIFS is updated
‘simply by adding m; to it  (Step 3). SCOPE is augmented to include any possible
- causes dy of m; glch are not already contained in it [derlved by taking the
union of causes(mJ) and SCOPE in Step 4] FInally, in Step 5 FOCUS is adjusted
_ Lo accomodate my based on intersecting causes(m;) with the sets of disorders in
the existing generators. These latter operations are done such that any
explanation which can no longer account for ‘the aubmented MANIFS (whlch now
ineludes I ;) are eliminated. .
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The key step in this process is obviously Step 5, the adjustment of the FOCUS
or working hypothesis, Perhaps the best way to understand this step is to
follow a simple example (see [13] and [14] for formal definition of operations
on generators]. Recall the abstract knowledge base illustrated in Table 2, and
consider the same diagnostic problem M' = {m1, My » m5} that was used earlier,
.The order in which manifestations are discovered to be present during problem
s solving is not ceritical: the same solution will ultimately be derived for the
seme manifestations M* regardless of the order in which these manifestations
are found. We thus suppese in our example that the sequence of events
oceurring during problem solving were arbitrarily ordered as listed in Table
3. OCccurrences during problem solving would be as follows.

Events in order

of their discovery MANIFS SCOPE FOCUs
Initially /] @ 4]
mq; present ' {mq} {d7 dp ¢3 dy} {dy dp dg dy}
ﬁg absent | " " "
my absent " " n
" my present ‘ Amq my}  {dy dp d3 dy dg dg} {dq d5}
mg present _ : {mg my mg} {dy dp dg dy  {dy dp} x {d7.d8 dgl
) ’ : d5 d? d8 dg} and

{dg} E_Ta3 dy}

m6 absth " n mo.

-'Table 3: Sequential problem solving within the framework of the GSC model,

Initially, MANIFS, SCOPE and FOCUS are all empty. When my is discovered to be
present, mq is added to MANIFS, and the new SCOPE is the union of the old SCOPE
with causes(mq). Since previously there were no generators in the FOCUS, the
intersection of causes{m;) with them is trivially empty. In such situations a
new generator is created, in this case consisting of causes(m1). In the terms
defined earlier, this generator represents a solution for MY = {mT}' It
tentatively postulates that there are four possible explanations for MT, any
-one which consists of a single disorder. The FOCUS thus plausibly asserts that
“"dq or dp or dj or dy is present."

The absence of my and ms do not change this initial hypothesis. However, when
my is ‘discovered to be present, MANIFS and SCOPE are augmented appropriately.
‘A new FOCUS is developed, representing the intersection of causes(my} with the .
single set in the only pre-existing generator in FOCUS. The new generator-{dq,
d2} in the FOCUS that results from this intersection operation represents
precisely all explarations for the augmented MANIFS, This new FOCUS also
illustrates another important point. As’ information about each possible
manifestation” becomes available, the FOCUS changes inerementally with a
monotonie decrease in the number of explanations it represents (with the
exception of situations where the FOCUS becomes empty). ‘

When m is noted to be present, MANIFS and SCOPE are again adjusted
. appropriately, However, in this case the intersection of causes(mS) with the
single generator 'in the FOCUS is empty. (none of ‘the previous explanations
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represented by the old FOCUS can now cover all kaown manifestations). The
occurrence of an empty FOCUS like this again triggers a restructing of the
FOCUS: a procedure is called that produces a new set of generators from the
now augmented MANIFS and SCOPE. These new generators are based on the fact
that the cardinality of any new explanation now contained in the FOCUS must be
exactly one greater than the cardinality of its old explanations [for proof,
see [13], [14]]. Thus, when mg is found to be present, the new generators
represent explanations consisting of two disorders,

Since mg is absent, the final solution to the problem is given by these same
two generators (last line in Table 3). Note that these %wo generators
implicitly represent the eight explanations for M* that were listed earlier.
It is also Iinteresting to note that d3 and dy, eliminated from the FOCUS
initially when my was found to be present, are once again viable possibilities.

APPLICATION AND ISSUES

In the interest of elarity, we have so far ignored several aspects of
diagnostic problem solving in presenting the GSC medel. We now briefly catalog
some of these issues, giving an overview of our applications of the model and
of a number of more advanced concepts.

Applications

The GSC model has heen used to.develop a number of real-world medical expert
systems [8]. In addition, it has been applied to a variety of “toy" problems
involving non-medical diagnosis (chemical spills, plumbing walfunctions,
nuclear reactor monitoring), and even to a number of non-diagnostic tasks
(selection of machining operations during process planning, selection of an
appropriate statistical test to use for data analysis, designing a model of the
growth of biological tree-like structures [21]1), The goals of this work have

been to provide "proof=-of-concept," i.e., to demonstrate that the G3C model’

works at least reasonably well in the real world, and to uncover its
limitations 1in practice. The paradigm we are using is that theory guides
experiment, which in turn guides the subsequent iImprovement in theory [16].

Knowledge bases for expert systems based on the GSC model consist of a listing
of all possible manifestations in M and of &ll disorders in D [8,9]. Alse
included with each disorder d; ¢ D is =2 textbook-like "description™ of dj,
analogous to that in Figure 1, Such descriptions specify, among other things,
all manifestations which d; 1is capable of causing, or man{d;). Thus the
structure of knowledge bases is patterned after that of Table 2, with C and
causes{m;) for each ms being derived from this information. The ability of the
GSC Modé& to support’ a descriptive knowledge representation, -as opposed to
requiring a set of rules that specify decision criteria about when a disorder
is to be considered present, is one of the model's strengths from the viewpoint

of knowledge acquisition.

In addition to wsing the GSC model as a basis for expert systems, we have

applied it as an analytic tool te characterize the behavior of abductive
diaghostic expert systems built by others, At times this has produced
interesting and unanticipated results. For example, in analyzing the heuristie
“used to group together competing disorders in INTERNIST-I [7], it was possible
to identify situations where this heuristic could lead to & failure to find all
of the solution te a diagnostic problem [14]. While the practical implications
of this finding remain to be established, it is clearly important to recognize
such potential limitations when bulding expert systems for others to use.




Abductive Expert Systems 469

Augmenting the Basic Model

Several additicnal questions arise in applying the GSC model as described above
in real-worid situations [81]. For example, how & diaghostic expert system
should select the next item of information to inquire about in searching for
additional manifestations (Step 1 in the informal algorithm described earlier)
is not generally obvious, Neither 1is the issue of when problem solving is
complete and can be terminated. There is a tradeoff between maintaining a
highly-focused coversation with an expert system user (guided by the current
working hypothesis, FQCUS) on the one hand and insuring completeness on the
other. In general, we have evolved heuristic approaches to such issues in
implemented expert systems [83,

Another question centers on how to rank the alternative explanations in the
solution to a diagnostic problem. Since, as we indicated earlier, exact
probabilities are not available for most real-world diagnostic associations,
expert systems that have been implemented based orn the GSC model have adepted a
simple symbolie approach to representing probabilities [8]. Among other
things, this approach attaches an approximate non-numeric "symbolic
probability" to each association <d;, m;> ¢ €, These symbolic probabilities
provide a coarse, subjective estimaté of frequency of causation, prior
probability, ete. The five possible symbolic probabilities we have used so far
are A = always, B = high likelihood, M = medium likelihcod, L = low likelihood,
and N = never. This 4s obviously an arbitrary selection of likelihood
estimates but it has been sufficiently robust to produce interesting behavior
in our functioning expert systems [8].

Problem Decomposition

Sincé solving problems in the context of the G3C model is NP hard [14], the
task of constructing the solution to a diagnestic prablem is potentially
computationally expensive as the size of an explanation increases. This
difficulty is only academic for some classes of diagnostic problems. For
example, it is not uncommon for a patient seen by a physician to have more than
one disease simultanecusly, bdbut it would be exceedingly rare for somecone to
have more than 50 diseases slmultaneously, However, since the potential for
combinatorial explesion exists, it is still important to address the question
-of when a diagnostic problem can be reduced or decompesed into smaller,
independent subproblems.

Cne example of when this can be done can be explained by introducing the
concept of "connected" manifestations. Two manifestaztions my and m, are said
to " be connected 1if either causes(mg) and causes{m,) have a non-empty
intersection, or there exists a finite set of manifestations {m-f, m2,...,mn}
suéh that Rq=M,, Mmy=my, and each m; is connected to My, 1. All of the
manifestations appearing in Table 2, for example, are connected to one
another. It can be shown that if MY can be partitioned into N subsets of
connected manifestations, each subset of -which contains no manifestation
connected  to another manifestation in a different subset, then the original
diagnostiec problem can be partitioned into N independent subprobdlems, The
generators for the solution to the original problem are then easily constructed
by appending in an appropriate fashion the generators for the solutions to the
subproblems [13]. ‘

Furthermore, seguentially constructing and maintaining independent subproblems

- In this way, each with its own SCOPE, FOCUS and MANIFS, is relatively easy
-y [13]. When a new manifestation m; is found to be present, the set causes(mi)
: is intersected with the SCOPE of each pre—existing subproblem. When this
intersection is non-empty, ny is said. to be related to the corresponding
_Subproblem, There are three possible results of identifying the subproblems to
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which my is related. First, m; may not be related te any pre-existing
subproblems. In this case, a new subproblem is created, with MANIFS = {mi}'
SCOPE = causes(my), and FOCUS = a single generator consisting of the single set
of competing disorders found in causes(w;). This is what always oceurs when
the first manifestation becomes known, as was illustrated in Table 3, Second,
my may be related to exactly one subproblem, in which case ti; is assimilated
into that subproblem as described earlier and iilustrated with my and ng in
Table 3, Finally, m; may be related to multiple existing subproblems. In this
situation, these subproblems must be "joined" together to form a new .

subproblem, and m; is then assimilated into this new subproblem.
Answer Justification

"Answer Jjustification" refers to the ability of an expert system to explain how
or why it arrived at certain conclusions. In addition to its theoretical
importance in AI, potential users of expert systems view answer justificaticn
as being of great importance for having confidence iIn an expert system's
performance [17]. '

In developing the G3C model, no significant thought was initially given to how
it might support answer justification. This omission was recently corrected by
‘developing a theoretical rationale for justifying the solution to a diagnostic
problem, and by implementing a prototype answer justification program [18].
Our method is based on using the sets of disorders in the generators for the
solution to & diagnostic problem te partition M*., This partition then guides
the program in explaining why individual disorders are plausible diagnoses for
the prcoblem at hard, '

The fact that a reasonable approach to answer justification "falls out™ of the
~G3C Model iz encouraging. 1In addition to providing a useful support teol in
. abductive expert systems, this result avoided what could have been a major
setback for the GSC model: failure to find a plausible approach %to answer
Jjustification in the context of the GSC model would have cast doubt on its
validity as a theoretical model of abductive reasoning.

Conclusion and Future Directions

This chapter has proposed the construction and maintenance of parsimonious set
covers ("explanations") as a general model of dizgnostic reasoning and
deseribed its use as an .inference method for diagnostice expert systems. The
G3C model 1is attractive in that 1if direetly handles multiple simultaneous
disorders, 1t c¢an be formalized, it 1is intuitively plausible, and it is
justifiable in terms of past empirical studies of diagnostic reascning. It
~also supports answer justification in expert systems.

However, the G3C model is still evelving, both theoretiecally and in terms of
its application in practice. The essential ingredient of the GSC model is the
two part constraint on an explanation: coverage and parsimony. In presenting
the GSC model in - this chapter, we have equated parsimony or simpliecity with
minimal - cardinality. It 1is clear, however, that there are some situations
where a minimal cover would not be the most plausible explanation for a set of
manifestations. For example, two very common diseasas that can account for all
of a patient's symptoms might in socme cases be considered a more plausible
diagnosis by a physician than one very rare discorder which accounts for all of
.the symptoms. A minimal cover 1is therefore to be censidered only a first
approximation to a plausible explanaticn, and we are studying alternative
formulations of parsimony at the current time, as well as the relationships
between rule-based deduction and description-based abduction [19]. ° .
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Another direction our theoretical research 1s taking us 1s the generalization
of the G3C Model so that it can be applied £o a wider variety of real-world
problems [20]. Thus, we are looking at ways to extend the model so that it ean
capture such things as causal chaining ("4 causes B, and B causes C, so A
indirectly causes (") and hierarchically-structured diagnostic knowledge., We
are continuing to apply the wmodel to 2z wide range of applications to gain a
better understanding of its strengths and weaknesses. The successes we have
had so far with this approach to wmodelling diagnostic inference are clearly
sufficient to warrant its further study.

NOTES

1 Preparation of this paper and the research it describes was supported in part
by a grant to the University of Maryland from Software Architecture &
Engineering, Inc. and a NSF Presidential Young Investigator Award to Dana
Nau, :

2 Also with the Department of WNeurolegy, University of Maryland, Baltimore, MD
21201, U3a,

3 With Software Architecture & Engineering, Inc., Arlington, VA, USA,

4 We include PROLOG-implemented expert systems in the category of rule-based
. systems of this sort, for although they use resclution as an inference
i . method, theorems are restricted to Horn clauses,

5 This "default assumption™ and subseguent adjustments when it fturns out %o be
-an incorrect assumption illustrate the inherently non-monotonic nature of the
- abductive inferences made in .the GSC model.
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