DE-Vol. 83, 1995 Design Engineering Technical Conferences
Volume 2
ASME 1995

INTERACTIVE FEATURE RECOGNITION USING MULTI-PROCESSOR METHODS

William C. Regli*

National Institute of Standards and Technology
Manufacturing Engineering Laboratory
Manufacturing Systems Integration Division
Gaithersburg, Maryland

Satyandra K. Gupta
Rapid Manufacturing Laboratory
The Robotics Institute
Carnegie Mellon University
Pittsburgh, Pennsylvania

Dana S. Nau
Department of Computer Science,
Institute for Advanced Computer Studies and
Institute for Systems Research
University of Maryland
College Park, Maryland

ABSTRACT

The availability of low-cost computational power is en-
abling development of increasingly sophisticated CAD soft-
ware. Automation of design and manufacturing activities
poses many difficult computational problems. Design is an
interactive process and speed is a critical factor in systems
that enable designers to explore and experiment with alter-
native ideas. As more downstream manufacturing activities
are considered during the design phase, computational costs
become problematic. Achieving interactivity requires a so-
phisticated allocation of computational resources in order
to perform realistic design analyses and generate feedback
in real time.

This paper presents our initial efforts to use distributed
algorithms to recognize machining features from solid mod-
els of parts with large numbers of features and many geo-
metric and topological entities. Our goal is to outline how
significant improvements in computation time can be ob-
tained using existing hardware and software tools. An im-
plementation of our approach is discussed.

1. INTRODUCTION

The availability of low-cost computational power is en-
abling the development of increasingly sophisticated CAD
software. Software tools designed to reduce time-consuming
build-test-redesign iterations are becoming essential for in-
Creasing engineering quality and productivity. Examples in-
clude tools for finite element analysis, mechanism analysis,
simulation, and rapid prototyping. Such tools have become
crucial components in research on concurrent engineering
and engineering design.

Automation of the design process and construction of
such tools pose many difficult computational problems. In
order to realize the advantages of concurrent engincering,

* Also with: Computer Science Department and Institute for
Systems Research, University of Maryland, College Park.

more downstream engineering activities are considered dur-
ing the design phase. As design is an interactive process,
speed is a critical factor in systems that enable designers
to explore and experiment with alternative ideas during the
design stage. Achieving interactivity requires an increas-
ingly sophisticated allocation of computational resources in
order to perform design analyses and generate feedback in
real time.

It is becoming increasingly evident that one necessary
component of an automated design analysis tool is a sub-
system for recognizing manufacturing features directly from
a CAD or solid model. This problem has been the focus of
extensive research over the last decade. Feature recognition
is used for a variety of applications, including the genera-
tion of process plans [29], translation between design and
manufacturing features, and production of redesign sugges-
tions [5]. What has also become evident is that feature
recognition, for realistic classes of parts with multiple and
interacting feature interpretations, is computationally ex-
pensive. Hence, generating the features from a part may
become a computational bottleneck within a design system.
Further, existing feature recognition research has dealt ex-
clusively with serial computer architectures.

In this paper we present our initial efforts toward de-
veloping a methodology for recognizing a class of machin-
ing features using a distributed, multi-processor algorithms.
Feature recognition has been approached using a variety of
techniques, some of which are easier to parallelize than oth-
ers. In previous work [23], we described trace-based, serial
algorithms for finding feature instances from solid model
data. This current work indicates that trace-based feature
recognition methodologies are particularly well suited for
parallelization. The basic steps in this approach are:

1. Task initialization. Initialization is performed at
four levels: (1) the features to be recognized; (2) the
types of trace information used to construct the feature
instances; (3) the geometry and topology of the traces;

and (4) simplification of the part geometry to reduce
the costs to solid modeling operations.

2. Task distribution. Divide the problem using the task
decomposition, isolating independent portions of the
recognition problem and identifying a suitable compu-
tational resource for solving it.

3. Synthesis of results. Combine the results obtained
by each separate processor into a global solution. This
solution set can then be passed on to the application at
hand—in the context of our previous work, this appli-
cation is a subsystem for performing manufacturability
analysis for machined parts [11, 12].

The benefits of applying this approach include:

e It increases the complexity of parts that are now
computationally feasible. In the feature recognition
area, serial approaches have experienced great diffi-
culty when scaled to address complex, real-world parts,
which have thousands of geometric and topological en-
tities and several hundred interacting feature instances.
This approach is best suited for parts in which there
might be thousands of feature instances, but the in-
dividual features themselves are simple in structure.
A distributed approach can put a greater number of
such components within reach of existing computa-
tional tools.

o It makes use of existing commercial solid modeling
tools directly. In this way, one does not require paral-
lelized versions of commeon algorithms or the implemen-
tation of multi-threaded, multi-processor solid model-
ing systems.

o It enables interactive analysis and feedback. Recogni-
tion of the many alternative features can be done for
complex parts in real time. This facilitates faster and
more comprehensive analyses of manufacturability for
the part at hand.

e It exploits the growing ubiquity and power of net-
worked computing facilities to provide a flexible means
of utilizing networked computational resources. Effec-
tive utilization of large collections of inexpensive pro-
cessors enables applications to perform computation-
ally intensive CAD/CAM activities efficiently and in-
teractively.

2. RELATED WORK

The bibliography of work on multi-processor algorithms
for solid modeling applications is limited but growing. Cur-
rently, most works have focused on parallel operations on
CSG trees and other CSG representations of polygonal or
polyhedral entities. Ellis et al. [7] have developed the Ray-
Casting Engine: a hardware-implemented facility for sam-
pling solids represented in CSG for a variety of purposes,
including rendering and mass-property calculations. They
outline how this special-case hardware makes possible brute-
force solutions to difficult computational problems, such as
spatial sweeping and offsetting.

928

Narayanaswami and Franklin [20] present a parallg] miult

processor method for calculating the mass Properties of
2 ‘Thies ¢

polygonal CSG objects and outlined some extensions for ay,
plying the techniques to 3-1 polyhedra. Banerjee of al [L,
have developed parallelized algorithms for evaluatiug (_}."i.{:‘
trees that operate with a fixed number of processors WiL.l.r
shared memory.

. In the domain of boundary representation modeling
Karinthi et al. [17] have produced a parallel algorithm |-m'_
performing boolean set operations on polygons and poly-
gons with holes. In Almasi et al. [1], these techniqnes ape
extended to more general loops of edges. .
‘ Strip and Karasick [27] present techniques for perform.
ing solid modeling operations on a massively parallel SIMD
(single instruction multiple data) computer. They provide
a data structure for representation of solid models and a va_
riety of par;llei algorithms for implementing solid modeling
operations. In addition, they present performance compar-
isons with serial implementations.

Existing work on recognition of features has dealt with ex-
clusively serial computer architectures. These feature tech-
nologies are based heavily on the geometric and topological
manipulation capabilities of solid modeling systems and deal
predominantly with form or machining features. Much has
been written on this topic in the literature and we will not
attempt to mention all of this work here. We present below
several of the more recent and relevant works.

The work of Henderson has continually brought new com-
putational techniques to address the feature recognition
problem. The work described in [14] was the first to ap-
ply expert systems to the feature recognition problem. Ga-
vankar and Henderson [10] present techmiques to identify
protrusions and depressions in the boundary model of a part.
More recently, Prabhakar and Henderson [22] described the
use of neural networks to recognize and classify features. A
strength of this approach is that it exploits the trainability
of a neural net to incorporate new feature types. Further,
neural nets have been demonstrated to be effective in classi-
fying patterns in domains where there is “noise.” This noise
is in the form of incomplete or missing feature data lost due
to feature intersections.

Graph-based algorithms have proven useful for extract-
ing some classes of features. These methods fall into twO
categories: those based on graph search [6, 4] and i.Imﬁ.P-
based on pattern matching [16, 21, 25]. A common diffi-
culty for both categories of graph-based approaches is that
the graph-based representations for solid models of part®
are difficult to extend to the complex geometry and topok
ogy found in real industrial parts. Secondly, methods base
on pattern matching and finding subgraph isomorphisms g
problem known to be NP-hard) are prone to combinaton®
difficulties.

Chuang and Henderson [3] explore gra.ph-bﬂﬁcd p : o
) sed O

aftern

matching techniques to classify feature palterns ba

; S . Gaku-
geometric and topological information from the part. "“‘t‘ R
. o . T - - A
rai [26] provides for limited user-defined feature types A e
Tarneplt

graph-based feature recognition system. Efforts al C

Mellon University [21, 25] have employed graph grammars

for finding features in models of injection molded parts. Re-

cently, Corney and Clark [4] have employed graph-based al-

gorithms to find general feature classes from 2%—dimensiona,l
arts.

Gadh and Prinz [9] were the first to describe techniques
for combating the combinatorial costs of handling complex
and realistic industrial parts (i.e. those with thousands of
topological entities). They point out that, in such cases,
traditional knowledge-based, decomposition, and pattern-
matching techniques are computationally impractical be-
cause the fundamental algorithms (i.e. forward chaining in
a frame-based reasoning system or subgraph pattern match-
ing) are inherently exponential. Gadh and Prinz’s method
is to abstract an approximation of the geometric and topo-
logical information in a solid model and find shape features
in the approximation. Their approach employs a differen-
tial depth filter to reduce the number of topological entities.
A second pass maps the topological entities onto structures
called “loops.” In their work, features are defined using the
higher-level loops as opposed to being defined as patterns in
the boundary representation’s geometry and topology. This
approach significantly reduces the number of entities that
need to be searched to build feature instances. While this
kind of approach holds much promise for addressing combi-
natorial problems, it does do not address how to extend the
techniques to better handle interacting features and more
non-linear (non-faceted) solid models.

Fields and Anderson [8] present an approach to fea-
ture recognition that overcomes some of the representation
and efficiency problems common in previous work. Unlike
pattern-based or decomposition-based recognition method-
ologies, they categorize sets of faces on the surface of the
part into classes of general machining features: protrusions,
depressions, and passages. The shapes within each class,
while sharing many operational similarities, may vary in ge-
ometry and topology. For each of their feature classes, they
present a linear-time algorithm.

Many aspects of the feature recognition problem are still
open and active areas of research. Among these are: rec-
ognizing and representing interacting features [29], incre-
mental recognition of features [18, 13], modeling alternative
feature interpretations and completeness [19, 23], and rea-
soning about the manufacturability of features [11].

3. APPROACH TO FEATURE RECOGNITION

In this section we outline a basic feature recognition
technique on which we will build our multiprocessor algo-
tithms in Section 4. We have chosen to adopt a trace-based
methodology for this purpose; the reasons for this choice
shall become evident. Fundamentally, a trace-based ap-
Proach to feature recognition attempts to reconstruct fea-
ture instances from the information that they contribute to
the final CAD model of the product.

The work of Marefat and Kashyap [19] presented an early
trace-based technique. They expanded on the work of Joshi
and Chang [16], augmenting it with hypothesis testing tech-

929

- s

"‘-\-.__,_.—? T
-
)
[r

(a): hole h, a drilling feature

edge profile E = [L! e2elede5e6eTe8edellell})
(b): pocket m, an end-milling feature

Figure 1: Examples of machining features

niques. In Marefat and Kashyap’s method, information
from the solid model is used to generate hypotheses about
the existence of features. These hypotheses are tested to see
if they give rise to valid feature instances.

Vandenbrande and Requicha [29] were the first to formal-
ize trace-based (or hint-based) techniques for constructing
features from information in a solid model. In the work of
Vandenbrande, the traces are used to fill “feature frames”
in a frame-based reasoning system. After filling frames with
the trace information present in the part, the system classi-
fies the partial frames and attempts to complete the frame
information for those that appear promising using a variety
of geometric reasoning and computational geometry tech-
niques.

Regli et al. [24, 23] present an approach for guaranteeing
completeness of a recognition algorithm; i.e., it describes
how one can define a class of features and verify that a par-
ticular approach is capable of producing all features in that
class. They present feature recognition as an algorithmic
problem in which traces are found by traversing the geom-
etry and topology of the part and then used to construct
feature instances. They formally describe the behavior of
their algorithm and calculate a general measure of its com-
plexity. This approach has been employed for automated
design analysis [11] and automated redesign [5].

Trace-based approaches have several advantageous prop-
erties that are just beginning to be exploited by researchers,
including:

e Feature traces can be derived from a variety of design
information such as tolerances, surface finish require-
ments, and functional information associated with sur-
faces. Traditional feature recognition methodologies
often consider only the part’s geometry and topology.

o TFeature classes can be customized by users. Recogni-
tion routines for new features can be built by introduc-

——

J—
;%)

(a): part (after machining)

(b): part (underside view, after machining)

Figure 2: An example part.

ing traces for the new features and methods for building
instances of the new features from these traces.

o Trace-based techniques can be adapted to recognize
features from a variety of manufacturing domains. Ex-
isting feature recognition literature focuses primarily
on machined parts, due in part to the fact that the
functionality of solid modeling systems is well suited for
manipulating volumes that describe material to be ma-
chined and decomposing these volumes into features.

Trace-based techniques also lend themselves well to par-
allelization, providing several levels at which to partition
the problem. What might be less evident is that, in paral-
lelizing the problem, one can make additional geometric and
topological simplifications to independent problem subtasks
to reduce their computational difficulty.

The remainder of this section will specify a common ex-
ample domain of machined parts and some basic trace-based
recognition techniques. Using this domain we present a
multi-processor recognition methodology in Section 4.

3.1 Machining Features

A machining feature, M, is a parameterized volumetric
template that represents the solid volume removed from a
workpiece by a machining operation. An instance of a ma-
chining feature, f, is created by a specific machining opera-
tion with a single cutting tool in one tool setup. To perform
a machining operation, one sweeps the tool along some tra-
jectory. Only a portion of this swept volume corresponds to
the volume of material that is to be removed by the machin-
ing feature. This volume is called removal volume of feature

f.

Machining features are referred to in terms of the oper-
ations used to create them. For example, we say that the
hole % in Figure 1(a) is an instance of a drilling feature. The
pocket p in Figure 1(b) is an an instance of an end-milling
feature and is characterized by the edge profile bounding the
area swept by the milling tool.

930

3.2 Machining Feature Recognition

The initial workpiece, S, is represented as a solid model
of raw stock material to be acted upon by a set of machining
operations. The machined part is a solid object, represented
by a solid model of the part P, to be produced as a result
of a finite set of machining operations. The delta volume is
the regularized difference [15] of the initial workpiece and
the part; A=S5-*P.

In general, there may be several alternative interpreta-
tions of the part as collections of machining features, each
interpretation corresponding to a different way of manufac-
turing it. A feature-based model is a collection of features
that models a single, unique interpretation of the part. The
feature recognition problem can be defined as follows: given
a collection of machining features, M = {M1, My, ... M;},
a part P, and a piece of stock S, find the set F of feature
instances from M recognized with P and S. The feature
set JF is a finite set of features composed of the union of
those features in the alternative feature-based models for
the part [23].

3.3 Trace-based Recognition of Features

A trace represents the partial information in the solid
model of the part produced by an instance of a feature.
Intuitively, a trace tps corresponds to the information con-
tributed to the part by an instance of a feature of type M.
The trace provides sufficient information for calculating the
parameters of a feature instance f of type M. For example,
one trace for the drilling feature in Figure 1(a) is the con-
ical ending surface of the hole k. Similarly, a trace for the
end-milling feature m in Figure 1(b) is its bottom surface.

The basic structure of a trace-based feature recognition
system includes:

1. Each feature type M in M has associated with it set
of traces tar1, tamz, ... tark.

2. There is a procedure P() such that P(¢pi) constructs,
from the information in the solid model of the part and
stock material, instances of features of type M capable
of producing the trace tus:.

An outline for a generic algorithm for trace-based recog-
nition of features can be presented as follows:

1. Input a collection of feature types, M, a solid model
for the part P, and a solid model for the initial stock
‘material S.

2. From P and S, identify the set of all potential traces
present, 7.

3. For each potential trace ¢ in 7 do:

If t matches a tas:, call the procedure P(tas:) and con-
struct (if possible) feature instances, fi, fa,... fn of
type M. Add these to the set of all feature instances,
F.

Example traces. As anillustration, the task of recognizing
drilling and end-milling features can be accomplished using
the following traces:

1. drilling features:

(a) Trace 1: a convex conical surface in the delta
volume as a conical ending surface describing the
cutting tip of a drilling tool. This trace is used to
build an instance of a drilling feature when only
a portion of its ending tip surface remains on the
boundary of the delta volume.

(b) Trace 2: a convex cylindrical surface in the delta
volume as a side surface created by a drilling op-
eration. This trace is used to build instances of
drilling features when a portion of their side sur-
face remains on the boundary of the delta volume.

2. end-milling features

(a) Trace 1: a planar surface in the delta volume as a
surface created by the cutting tip of an end-mill.
This trace is used to build instances of end-milling
features when only a portion of their bottom sur-
faces are present on the boundary of the delta
volume.

The next two traces are used to build instances
of end-milling features when only a portion of
their side surfaces are present on the boundary
of the delta volume. In these cases, the end-
milling features may extend completely through
the stock material. Examples of such features in-
clude through pockets.

(b) Trace 2: a cylindrical surface in the delta volume
as a surface created by the side cutting surface of
an end-mill.

(c) Trace 3: a pair of non-parallel planar surfaces
in the delta volume, as faces created by the side
cutting surface of an end-mill.

A presentation of the details of the various procedures
'P(tM.') for constructing feature instances from these traces
is not central to the focus of this paper. Such algorithms

931

I_f—@l-——— "'H—J' _;_]11_

a.

s e

n 4
Figure 3: Internetworked computational resources.

have been developed in previous work, notably: Vanden-
brande [29] for drilling feature traces 1 and 2 and end-milling
feature trace 1; and Regli et al. [24, 23] for all of the above
traces.

4. APPROACH TO PARALLELIZATION

In the distributed computing paradigm, collections of au-
tonomous computational resources are interconnected on a
network, as illustrated in Figure 3 {28]. While these re-
sources do not share main memory, they may share access
to common devices such as peripherals, file systems, out-
put devices, etc. Software systems can use the network and
shared peripherals to exchange information among the au-
tonomous resources.

In this section, we will apply distributed algorithms to
the example problem domain from Section 3.

4.1 Motivations

The feature types and their traces each introduce natural
partition lines along which the problem can be divided into
independent subproblems to be solved by different proces-
SOTS.

As presented in Section 3.2, the final feature set F con-
tains all those feature instances from M that are members
of feature-based models of the part. F contains all instances
of the feature types in M present in the given part. Note
that for the features in M, the act of recognizing a feature
of type Mi is independent of the recognition of a feature
of type M,—hence the feature instances of type M; can be
calculated separately from those of type M2. For instance,
in the example domain presented in Section 3, the fact that
a particular drilling feature f is a member of some feature-
based model does not alter the existence of any end-milling
features.

Secondly, the set of traces T (from the generic algorithm
in Section 3.3) introduces an additional level for partitioning
the problem. Recall that for each feature type M in M,
there is a collection of traces tpr1,tm2,...tamk for building
instances of features of type M. One can decompose the
problem of finding all features of type M using the traces,
handling each trace ¢as; on a different processor.

One observation is that this may introduce some redun-
dancy; i.e., it may be possible to find the same feature in-
stance f in different ways using different traces. There are
two possible approaches to handling this redundancy. One

method is to delete duplicate features while building the fi-
nal feature set F. A second approach, and the one that
we will employ, is to handle the traces capable of producing
equivalent feature instances together on the same processor
and remove duplicates as they are found. This introduces
another level of parallelization by dividing the set of traces
found into independent subsets. In this way redundancies
are addressed at the level at which they occur, thus simpli-
fying the task of building the final feature set F.

Parallelizing feature recognition produces other, less ob-
vious benefits. In particular, a large portion of the costs
in a feature recognition system are due to the complexity
of geometric computations and geometric reasoning. When
isolating independent problem subtasks, one can make ge-
ometric and topological simplifications that identify the in-
formation in the original part needed to build and verify
the feature instances. In this way, many of the subproblems
may require only a fraction of the information present in the
solid models of the original part and stock.

n
D
ok |

Distributed
Resources

Source
Machine

Figure 4: Source machine distributing tasks to clients.

4.2 Distributed Methodology

For the example domain in Section 3, our approach is
to have a central computing resource act as a server to set
up the problem and transmit subtasks to client machines
distributed on the network, as illustrated in Figure 4. Each
of the individual client processors is given an independent
portion of the particular global feature recognition problem.

A distributed algorithm. Recalling the serial trace-based
algorithm of Section 3.3, we present an outline for a multi-
processor trace-based feature recognition system. There are
two main components to this system: a server algorithm
and a client algorithm. The server algorithm is presented as
follows:

Server algorithm.

1. Input a collection of feature types, M, a solid model
for the part P, and a solid model for the initial stock
material S. Initialize F = §.

2. For each feature type M in M do

(a) Fork a new process on a free resource
(b) For each trace type tas for feature type M do

932

i. Find the set Ti,,; of instances of traces of

type ta:.
ii. Decompose the set Ti,,, into independent
subtasks, m1,m2,... 7.

iii. For each i do
A. Decompose the part P using the r;. Re-
sult P’.
B. Fork a new process on a free resource to
call the client recognition algorithm on
P,
iv. Let Fy,,, be the set of features returned by
the client. \

3. F= fUV‘M:’ Fippie
4. Remove duplicate features from F.
5. Return F.

The client algorithm, to be invoked by the server on mul-
tiple computational resources, is presented below:

Client algorithm.

1. Input a feature type, M, a trace type, tari, a set of
instances of T of trace tpsi, and solid models for the
part P’, and the stock material S.

2. Simplify the solid model of the part P’. Result P".
3. Call P(ta) to build feature set Fi,,;.
4. return Fi,,,.

To implement this client-server algorithm, three technical
areas must be addressed:

Task Initialization. There are four levels at which the
recognition problem is initialized:

o Types of features to be recognized: different feature
types (in this example drilling and end-milling) are con-
sidered by separate computing resources, as discussed
in Section 4.1.

o Types of feature traces: different traces for each of the
feature types are considered by separate computing re-
sources, as discussed in Section 4.1.

e Trace decomposition: given a specific feature type and a
trace for recognizing it, decompose the set of instances
of this trace to independent subsets to subdivide the
recognition task. This is discussed in Section 4.3.1.

o Part simplification: given a specific feature type and 2
trace for recognizing it, alter the geometric and topo-
logical information in the solid model of the part to T¢
duce its complexity. This is discussed in Section 4.3.2.

Specific details are given in Section 4.3.

Task Distribution. Once tasks are initialized, the next
phase is to distribute the individual tasks to the available
computing resources. This is done by invoking a client fea-
ture recognition procedure for each separate task; each task
to be performed on its own processor.

In the example domain in Section 3, distributing tasks is
straightforward. This becomes more complex when bounds
are placed on the number of available computing resources.

Synthesis of Results. Fach separate client procedure,
upon termination of its portion of the recognition task,
transmits its results back to the server machine. The fea-
tures returned are then integrated into an overall solution.
In this domain, recombining results requires building the fi-
nal feature set as the union of those feature sets returned
by each client machine.

However, the fact that this example domain lends itself
well to building an overall solution from the separate sub-
tasks may not generalize to other manufacturing domains.
For example, this phase might include additional compu-
tations such as modeling feature interactions, eliminating
redundant features, or identifying compound features or fea-
ture groups.

4.3 An Example of Task Initialization

The task initialization stage groups feature information
and isolates traces to be handled by separate computing
resources. There are four levels of task decomposition.

For illustration purposes, we shall assume there is no limit
on our computational resources. When there is a bound on
the number of processors available, the task decomposition
or the distribution of the task may vary to more efficiently
partition the problem. In our implementation (discussed in
Section 5), we distribute the tasks evenly over the available
Processors.

The decomposition by feature type and decomposition
by trace, as noted before, are straightforward. In devel-
oping techniques for part decomposition and simplification,
one is faced with a trade off between the sophistication of
techniques and their computational costs. Using very so-
phisticated techniques to maximize the ability of each in-
dividual processor to produce useful feature instances in a
minimal amount of time might increase the computational
overhead to a degree that mitigates the benefits of paral-
lelization. In choosing the following conditions, we have
picked decompositions and simplifications that are compu-
tationally cheap. While it is certainly possible to present
more complex decomposition criteria, an important consid-
eration is that the conditions themselves cannot be more
complex than the original recognition problem. If the de-
composition conditions are themselves costly, the overhead
considerations might eliminate any of the speedup benefits
we hope to achieve using a multi-processor approach.

The remainder of this section discusses the decomposi-
tion of part geometry and topology and techniques for part
simplification.

4.3.1 Trace Decomposition

A given feature instance might be created from anry one
of several traces it leaves in the part. The objective of this
phase is to collect all of the trace information capable of
producing equivalent or identical feature instances. While

e

933

w——ﬁ*—

we will only consider geometric and topological information
in this paper, this decomposition can be extended to include
other data (i.e., tolerances, surface properties, etc.).

We present a four-step decomposition for the geometric
and topological information in the part. The conditions are
based on properties of the traces for comstructing feature
instances. There may be other conditions that provide an
equivalent means of arriving at a task decomposition with
the desired properties. Decomposition of the geometry and
topology based on feature types and traces proceeds as fol-
lows:

1. Drilling traces 1 and 2:
Group together convex cylindrical and conical faces
with equivalent axes.

2. End-milling trace 1:
Group together all coplanar faces. In the example illus-
trated in Figure 5(b), six disjoint planar part faces are
grouped to be handled together on the same proces-
sor. This grouping collects all faces sharing the same
underlying surface.

3. End-milling trace 2:
Group convex cylindrical surfaces with equivalent axis
directions.

4. End-milling trace 3:
Group planar surfaces with normals perpendicular to a
common vector; i.e., for each grouping there is a vector
v such that, for all surfaces s; and s; in the grouping,
normal(s;) - v = normal(s;) - v = 0. Note that some
surfaces may be present in more than one group.

The above decomposition group those traces from the
part which might produce equivalent feature instances. In
this way, redundancies can be eliminated at the subprocess
level and later recombination of results.

4.3.2 Part Simplification

The objective of this step is to reduce the amount of data
that must be considered by each processor to a minimum
amount sufficient to construct feature instances from the
traces it has been given. In this way, one can reduce each
processor’s operation costs during feature recognition. For
example, one can reduce the number of geometric and topo-
logical entities while still retaining the information required
to construct feature instances from the particular trace—
thus eliminating complex part geometry not effecting the
feature trace being considered.

We simplify the solid models of the part and stock based
on the trace information and feature types. In each case,
the geometry and topology of the model for the part P is
simplified to P’ as follows:

1. Drilling trace 1:
Given a cylindrical surface ¢ in the delta volume of ra-
dius 7, P' contains all the portions of P that lie within
r of the axis of c.

2. Drilling trace 2:
Given a conical surface ¢ in the delta volume with a
maximum radius r and located at point d, P’ contains

Figure 5: Four end-milling recognition subtasks and their simplified part information for the example part in Figure 2

all the portions of P that lie within r of the axis of ¢
and in the half-space above d.

3. End-milling trace 1:
Given a planar surface p in the delta volume with a
root point d and normal vector v, P’ contains all the

portions of P that lie in the half-space defined by d and
v

4. End-milling traces 2 and 3:
No simplifications are made for these traces. Finding
these types of end-milling feature instances might re-
quire consideration of information from the entire part,

and sophisticated simplifications in this case would be
costly.

Figure 5 shows four illustrations of part simplification for
end-milling trace 1. In the figure, the planar faces are being
considered as traces indicating potential bottom surfaces of
several end-milled features; vector v denotes the orientation
of the potential feature. In each case, the trace informa-
tion is used to eliminate the portion of the part lying below
the trace—information that does not get considered when
building a feature instance in direction v. Note that in mak-
ing this rudimentary simplification the number of geometric
and topological entities to be considered is greatly reduced.

4.4 Potential for Computational Improvement

We can expect the speedup to be no more than a factor
of K, where K is the number of processors available. In
reality, the task decomposition to set up parallelization in-
curs some added cost, as does the recombination of results
at the end. These additions are negligible, however, when
compared with the costs incurred to perform the recognition
process on the subproblems.

Within a trace-based methodology, as outlined in Section
3.3, the overall complexity of recognition depends on two
factors: the difficulty in generating the set 7 of potential
traces, and the complexity of the methods for generating
feature instances from traces.

A rough upper bound on the size of 7 can be computed
from the model of the part and the types of traces by count-
ing the number of geometric and topological entities. The
complexity of the feature construction routines is more dif-
ﬁ'cult to assess and is where the majority of the computa-
tlonif.l costs occur. Much of this cost is due to geometric
queries and reasoning operations used to find the param-
eters of feature instances. While there is no authoritative

934

(d)

r.eference on the general complexity of solid modeling opera-
tions such as booleans, sweeps, and the like, the consensus is
that these operations account for the majority of the compu-
tational cost during feature recognition [29]. The complex-
ity of boolean operations appears to lie between O(nz) and
Q(n*) or O(n®) time, depending on the particular configura-
tion of geometric entities and many implementation-specific
details.

The fact that these basic solid modeling routines are at
least quadratic in the size of the model implies that small
.1'eductions in the number of entities in the model translate
into large reductions in computational effort.

In the next section, we provide rough estimates of both
the speedup factor and the reduction in the number of geo-
metric and topological entities achieved by this approach.

5. IMPLEMENTATION AND EXAMPLES

A proof-of-concept implementation of this distributed fea-
'ture recognition methodology, dubbed F-Rez, has been done
in C++ using version 3.0.1 of the AT&T C++ compiler from
S.UN Microsystems running on networked SUN SPARCSta-
tions. F-Rex employs version 1.5.1 of Spatial Technolo-
gies’ ACIS® solid modeling system and version 3.14 of the
NIH C++ Class Library developed at the National Insti-
tutes of Health. Additional tools include Ithaca Software’s
HOOPS® Graphics System and the Tcl/Tk embeddable
command language and user interface toolkit from the Uni-
versity of California at Berkeley.

F.‘-Rex is the feature recognition subsystem for IMACS,
an interactive manufacturability analysis tool under devel-
opment at the University of Maryland’s Institute for Sys-
‘tems Research. One of the fundamental goals of IMACS
is to provide interactive feedback and redesign suggestions
to the user. We hope to use multi-processor algorithms to
provide IMACS with a means of avoiding computational
bottlenecks.

F-Rex runs on a cluster of SUN workstations; pro-
cesses communicate over the Internet using UNIX-based
and TCP/IP protocol-based network software utilities and
shared disk storage. The geometric computations required
for task initialization are implemented with direct C++ calls
to the ACIS kernel; distributed processes are invoked using
.UNIX remote shell commands; and the resulting feature set

is generated by examining the features produced by each
processor and eliminating redundancies.

The data for the examples below has been collected using
six processors, one SPARCStation model 10, one model 2,
and 4 IPX models. In this version of the implementation,
when the number of tasks is greater than 6, the tasks are
distributed evenly over the available processors.

These timing results represent the elapsed clock and CPU
times and are not absolute measures of the intrinsic difficulty
of the feature recognition problem—this example domain is
not directly comparable to those of other feature recognition
research efforts. Further, there are hidden costs in the imple-
mentation not directly related to the recognition of feature
templates (such as feature accessibility analysis) and these
algorithms and their implementation can certainly be im-
proved and optimized. The results are intended to provide
a rough indication of the time-lag experienced by the user
of the system. More significant than any precise calculation
of elapsed time is the speedup factor between the serial and
parallelized algorithms. Measurements of elapsed CPU time
are summarized in the table in Figure 7.

(a): example from [29] (b): example from [23]

Figure 6: Two example parts addressed in previous lit-
erature.

Example Serial Distributed
Set Up Recognition
1 53.59s 0.96s 9.79s
2 126.90s 1.23s 6.39s
3 > 1920.0s 19.41s 701.47s

Figure 7: Table of elapsed CPU times for each example.

Example 1. The example part in Figure 6(a), taken
from [29], contains 21 part faces. Vandenbrande and Re-
quicha [29] report identifying 7 features (3 slots, 3 open
pockets, and a step) in two and a half minutes on a SUN
4/360. The OOFF system [29] handles a wide variety of
machining features and process planning constraints; hence
it is not directly comparable to the approach outlined in
this paper. It does, however, provide a general indication

of the computational costs required to recognize features in
relatively straightlorward parts,

Running in serial on the SPARC 10, - Rex finds 1 drilling
and 8 end-milling leatures in approximately 1 minute. Lui
parallel on 6 processors, it takes approximately 3 seconds to
set up the decomposition and 12 seconds Lo recognize the
features. Using the simplification techniques, the number of
geometric and topological entilies that had to be considered
was reduced by 22%.

Example 2. The example part in Figure 6(b) is a socket
taken from [23]. This part, when machined from a cylin-
drical piece of stock malterial, has 37 faces in the delta vol-
ume. There are 12 drilling and 20 end-milling features in its
feature-based models that can be produced with the traces
given above. In serial running on the SPARC 10, F-Rex sys-
tem identifies these 32 feature instances in approximately
65-70 seconds, When run distributedly, using 6 processors,
F-Rex lakes 10 seconds to set up the decomposition and
approximately 12-16 seconds to identify the features. In
this case, simplification resulted in a 35% reduction in the
number of geometric and topological entities that had to be
considered.

Example 3. The example part in Figure 2 is a shubtle in-
tended to move along a guideway, with many of the feature
instances added to reduce weight. The solid model of this
part contains 281 faces. In serial, it takes over one hour
to find the more than 100 feature instances. When ron-
ning distributedly, F-Rex fakes 2 minutes Lo set up the task
decomposition and approximately 32 minutes to find the
features. In this case, simplification resulted in a 43% re-
duction in the number of geometric and topological enfities
that had to be considered.

6. CONCLUSIONS

Cloncurrent engineering and product design are push-
ing more downstream manufacturing issues into the design
phase. The need to build effective and interactive design
and analysis tools to address these needs is making efficient
and sophisticated allocation of computational resources in-
creasingly important.

Use of a multi-processor architegture can provide a large

increase in computational power by exploiting the available
computing resonrces. The benefits of miigrating to a mulfi-
processor architecture include an increase in the complexity
of feasible mechanical designs and the ability to produce
real-time feature data for complex parts.
Discussion of Results. Our preliminary results confirm
that performance gains can certainly be made through ef-
fective parallelization of algorithms. However, it is difficult
to assess what a typical speedup factor will be. We suspect
that the considerable variation in our experiments between
parallel and serial speedup can be traced to the complexity
of the parts themselves. The example part in Figure 6(a)
has only one curved surface, while that in Figure 2 containg
many dozens. A more general analysis of speedup [lactors
would require testing the software against a sel of bench-
mark parts of varying degrees of complexity.

935

B

We believe that parallelized trace-based feature recogni-
tion is highly suitable for parts in which the feature instances
themselves are relatively simple, but numerous. It is not as
well suited to problems where the feature instances them-
selves have very complex geometric configurations.

Contributions. In this paper we have presented our
initial work toward an approach for performing trace-based
feature recognition using a distributed multi-processor ar-
chitecture. We present a commonly addressed collection of
features and illustrate how to identify a task decomposi-
tion of the recognition problem. The task decomposition
is used then to divide the work among several distributed
computing resources whose individual results are integrated
into a unified solution for the part at hand. This kind of
approach shows promise for domains of complex parts con-
taining, possibly, thousands of features instances, but for
which the structures of the feature instances themselves are
relatively simple.

Future Work. Application of distributed algorithms to
-solid modeling and problems in engineering design and anal-
ysis holds immediate promise for enhancing existing CAD
tools. We hope that this work motivates more research into
how to effectively migrate current solid modeling applica-
tions toward a distributed computing framework. In the
future, as distributed computing technologies become more
accessible, algorithms that coordinate efforts between au-
tonomous and geographically diverse computing resources
will be commonplace in the modern manufacturing enter-
prise.

Making this transition will require changes to the un-
derlying architecture of solid modeling systems, their data
structures, and algorithms to exploit multi-processor com-
puting. In addition, as engineering software applications
built on top of modelers continue to grow in complexity, ob-
taining performance improvements increasingly will involve
distributed algorithms.

We anticipate that this new distributed feature recogni-
tion technology will increase the complexity of mechanical
parts within the reach of traditional feature recognition sys-
tems and will reduce the computational bottlenecks they
pose. This will enable more sophisticated design analyses
and, in turn, aid in building an environment that will allow
designers to create high-quality products that can be man-
ufactured more economically—thus reducing the need for
redesign, lowering product cost, and shortening lead times.

Acknowledgements

This work was supported in part by the National Institute
of Standards and Technology and National Science Founda-
tion Grants DDM-9201779, TRI-9306580, and NSFD EEC
94-02384 to the University of Maryland. Additional support
from the General Electric Corporation Forgivable Loan pro-
gram was awarded to William Regli. Any opinions, findings,
and conclusions or recommendations expressed in this ma-
terial are those of the authors and do not necessarily reflect
the views of the supporting government and commercial or-
ganizations.

936

Certain commercial equipment, instruments, or materiag
are identified in this document. Such identification does not
imply recomnmendation or endorsement by the University of
Maryland, College Park, or the supporting government ang
commercial entities; nor does it imply that the products
identified are necessarily the best available for the purpoge,

The authors would like to extend their thanks to NIST
readers Ted Hopp and Tom Kramer for their helpful com-
ments.

Solid models for the example parts in this paper
can be obtained through the World Wide Web at URJ,
http://wew.cs.und.edu/~regli/distrib/paper.html,

[1] George Almasi, Raghu Karinthi,- and Kankanahallj
Srinivas. A parallel algorithm for computing set op-
erations on loops. Technical Report TR 93-10, Depart-
ment of Statistics and Computer Science, West Virginia
University, August 1993.

[2] Raja P. K. Banerjee, Vineet Goel, and Amar Mukher-
Jee. Efficient parallel evaluation of csg tree using fixed
number of processors. In Jaroslaw Rossignac, Joshua
Turner, and George Allen, editors, Second Symposium
on Solid Modeling Foundations and CAD/CAM Appli-
cations, pages 313-322, New York, NY 10036, USA,
May 1993. ACM SIGGRAPH, ACM Press. Montreal,

Canada.

[3] S. H. Chuang and M. R. Henderson. Three-dimensional
shape pattern recognition using vertex classification
and the vertex-edge graph. Computer Aided Design,
22(6):377-387, June 1990.

[4] J. Corney and D. E. R. Clark. Method for finding
holes and pockets that connect multiple faces in Z%d
objects. Computer Aided Design, 23(10):658-668, De-
cember 1991.

[5] Diginta Das, Satyandra K. Gupta, and Dana S. Nau.
Reducing setup cost by automated generation of re-
design suggestions. In Kosuke Ishii, editor, ASME
Computers in Engineering Conference, pages 159-170.
ASME, September 1994.

[6] Leila De Floriani. Feature extraction from boundary
models of three-dimensional objects. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence
11(8), August 1989.

[7] J. L. Ellis, G. Kedem, T. C. Lyerly, D. G. Thiel-
man, R. J. Marisa, P. J. Menon, and H. B. Voelcker.
The RayCasting Engine and ray representations. In
Jaroslaw Rossignac and Joshua Turner, editors, Sy™
posium on Solid Modeling Foundations and CAD/CAM
Applications, pages 255-267, New York, NY 10036,
USA, Austin, TX, June 1991. ACM SIGGRAPH, ACM
Press.

[8] M. C. Fields and D. C. Anderson. Fast feature €*
traction for machining applications. Computer Aide
Design, 26(11), November 1994.

[9] R. Gadh and F. B. Prinz. Recognition of geomet-
ric forms using the differential depth filter. Computer
Aided Design, 24(11):583-598, November 1992.

[10] P. Gavankar and M. R. Henderson. Graph-based ex-

" traction of protrusions and depressions from boundary

representations. Computer Aided Design, 22(7):442—
450, September 1990.

[11] S. K. Gupta and D. S. Nau. A systematic approach
for analyzing the manufacturability of machined parts.
Computer Aided Design, 1995. To appear.

[12] Satyandra K. Gupta, Thomas R. Kramer, Dana S. Nau,
William C. Regli, and Guangming Zhang. Building
MRSEV models for CAM applications. Advances in
Engineering Software, 20(2/3):121-139, 1994.

[13] JungHyun Han and Aristides A. G. Requicha. Incre-
mental recognition of machining features. In Kosuke
Ishii, editor, ASME Computers in Engineering Confer-
ence, pages 143-150. ASME, September 1994.

[14] Mark R. Henderson. Esxtraction of Feature Informa-
tion from Three-Dimensional CAD Data. PhD thesis,
Purdue University, West Lafayette, IN, USA, 1984,

[15] Christoph M. Hoffman. Geometric and Solid Model-
ing: An Introduction. Morgan Kaufmann Publishers
Incorporated, CA, 1989.

[16] S. Joshi and T. C. Chang. Graph-based heuristics for
recognition of machined features from a 3D solid model.
Computer-Aided Design, 20(2):58-66, March 1988.

[17] Raghu Karinthi, Kankanahalli Srinivas, and George Al-
masi. A parallel algorithm for computing polygon set
operations. Technical Report TR 93-4, Department of
Statistics and Computer Science, West Virginia Uni-
versity, April 1993.

[18] Timo Laakko and Martti Mantyli. Feature modelling
by incremental feature recognition. Computer Aided
Design, 25(8):479-492, August 1993.

[19] M. Marefat and R. L. Kashyap. Geometric reason-
ing for recognition of three-dimensional object features.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 12(10):949-965, October 1990.

[20] Chandrasekhar Narayanaswami and William R.
Franklin. Determination of mass properties of polygo-
nal csg objects in parallel. In Jaroslaw Rossignac and
Joshua Turner, editors, Symposium on Solid Modeling
Foundations and CAD/CAM Applications, pages 255~
267, New York, NY 10036, USA, Austin, TX, June
1991. ACM SIGGRAPH, ACM Press.

[21] J. Miguel Pinilla, Susan Finger, and Friedrich B. Prinz.
Shape feature description using an augmented topol-
ogy graph grammar. In Proceedings NSF Engineering
Design Research Conference, pages 285-300. National
Science Foundation, June 1989.

[22] S. Prabhakar and M. R. Henderson. Automatic form-
feature recognition using neural-network-based tech-

niques on boundary representations of solid models.
Computer Aided Design, 24(7):381-393, July 1992.

[23] William C. Regli, Satyandra K. Gupta, and Dana S.
Nau. Extracting alternative machining features: An
algorithmic approach. Research in Engineering Design,
1995. To appear.

[24] William C. Regli and Dana S. Nau. Building a gen-
eral approach to feature recognition of material re-
moval shape element volumes (MRSEVs). In Jaroslaw
Rossignac and Joshua Turner, editors, Second Sympo-
sium on Solid Modeling Foundations and CAD/CAM
Applications, New York, NY 10036, USA, May 19-
21, Montreal, Canada 1993. ACM SIGGRAPH, ACM
Press.

[25] Scott A. Safier and Susan Finger. Parsing features in
solid geometric models. In Furopean Conference on
Artificial Intelligence, 1990.

[26] Hiroshi Sakurai and David C. Gossard. Recognizing
shape features in solid models. IEEE Computer Graph-
ics & Applications, September 1990.

[27] D. Strip and M. Karasick. Solid modeling on a mas-
sively parallel processor. International Journal of
Supercomputing Applications, 6(2):175-192, Summer
1992.

[28] Amjad Umar. Distributed Computing: A Practical

Synthesis. Prentice-Hall, Englewood Cliffs, NJ 07632,
1993.

[29] J. H. Vandenbrande and A. A. G. Requicha. Spatial
reasoning for the automatic recognition of machinable
features in solid models. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15(12):1269,
December 1993.

