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Towards multiprocessor feature

recognition

William C Regli, Satyandra K Gupta® and Dana S Naut

The availability of low-cost computational power is enabling
the development of increasingly sophisticated cap software.
Automation of design and manufacturing activities poses many
difficult computational problems—significant among them is
how to develop interactive systems that enable designers to
explore and experiment with alternative ideas. As more
downstream manufacturing activities are considered during
the design phase, computational costs become problematic.
Creating working software-based solutions requires a sophis-
ticated allocation of computational resources in order to
perform realistic design analyses and generate feedbaclk.

‘“This paper presents our initial cfforts to employ multi-
processor algorithms to recognize machining features from
solid models of parts with large numbers of features and many
geometric and topological entities. Our goal is to outline how
improvements in computation time can be obtained by
migrating existing software tools to multiprocessor architec-
tures. An implementation of our approach is discussed.
Published by Elsevier Science Ltd

Keywords: distributed computing, feature-based modelling,
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The availability of low-cost computational power is
enabling the development of increasingly sophisticated
caD software. Software tools designed to reduce time-
consuming build-test—redesign iterations are becoming
essential for increasing engineering quality and produc-
tivity. Examples include tools for finite element analysis,
mechanism analysis, simulation, and rapid prototyping.
Such tools have become crucial components for research
in collaborative engineering and engineering design.
Automation of the design process and construction of
such tools, however, pose many difficult computational
problems. To realize the advantages of collaborative
engineering, more downstream engineering activities are
considered during the design phase. As design is an
interactive process, developing techniques to manage
computational costs better is critical in systems that
enable designers to explore and experiment with
alternative ideas during the design stage. Achieving
reasonable levels of interactivity between design and
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downstream activities (such as analysis, process plan-
ning, and simulation) requires an increasingly sophisti-
cated allocation of computational resources in order to
perform design analyses and generate feedback.

It is becoming increasingly evident that one necessary
component of an automated design analysis tool is a
subsystem for recognizing manufacturing features
directly from a cap or solid model. This problem has
been the focus of extensive research over the last decade.
Feature recognition is used for a variety of applications,
including the generation of process plans1413, transla- -
tion between design and manufacturmg features and
generation of redemgn suggestions™, What has also
become evident is that feature recogmtlon, for realistic
classes of parts with multiple and interacting feature
interpretations, requires extensive geometric reasoning
and is computatlonally expensive. Hence, generating the
features from a part is a computational bottleneck within
an integrated design system. )

In this paper we present our initial efforts toward
developing a methodology for recognizing a class of
machining features using multiprocessor algorithms on a

distributed  system. Feature recognition has been - -

approached using .a variety of techniques, some of
Wthh are easier to parallelize than others. In previous
work?’, we described serial frace-based algorithms for
finding feature instances from solid model data. A trace
represents the information in the solid model of the part
produced by an instance of a feature.

The techniques presented in this paper demonstrate
the feasibility of migrating existing serial feature
recognition systems to take advantage of multiprocessor
computing technologics. We report results indicating
that trace-based feature recognition methodologies are
particularly well suited for parallelization. The basic
steps in our approach are:

(1) Task initialization. Initialization is performed at four
jevels: (1)} the types of features to be recognized;
(2) the types of trace information used to construct
the feature instances; (3) the decomposition of the
geometry and topology of the traces; and (4) the
simplification of the part geometry to reduce the costs
to solid modelling operations.

(2) Task distribution. The problem is divided using the
task decomposition—isolating independent portions
of the recognition problem and identifying a suitable
computational resource for solving it.

(3) Synthesis of results. The results obtained by each
separate processor are combined into a global
solution. This solution set can then be passed on to
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the application at hand—in the context of our
previous work, this application is a system for
automated manufacturablhty analysis and redesign
for machined parts™'>".

The contributions of this research include:

o [Increasing the complexity of parts that are now com-

putationally feasible. In the feature recognition area,
serial approaches have had great success in two types
of domains: (1) where the number of feature instances
are relatively few: and (2) where the number of inter-
actions among the features are relatively few. In
general, most techniques have proven difficult to scale
in order to address complex, real-world, parts having
thousands of geometric and topological entities and
several hundred interacting feature instances.
One focus of this work was to develop techniques that
can handle parts with large numbers of feature
instances with moderate numbers of interactions.
The results reported in this paper reveal an approach
suited for parts in which there might be thousands of
interacting feature instances but the individual
features themselves are simple in structure. This
multiprocessor distributed approach can put a greater
number of such components within reach,

s Enabling of more interactive analysis and feedback.

" Recognition of the many alternative features can be
done for complex parts in manageable amounts of
time. This facilitates faster and more comprehensive
analyses of manufacturability for the part at hand.

o Techniques for reusing existing software and migrating
it to a multiprocessor architecture. We present a top-
down approach for modifying existing feature
recognition techniques to take advantage of the
possibilities presented by new developments in
hardware. It makes use of existing commercial solid
modelling tools directly, and does not require
parallelized versions of common algorithms or the
implementation of multithreaded, multiprocessor
solid modelling systems.

o Demonstration of how to exploit the growing ubiquity
and power of networked computing facilities to provide
a flexible means of utilizing networked computational
resources. Effective utilization of large collections of
inexpensive processors enables applications to per-
form computationaily intensive (and enterprise-wide)
caD/caM activities efficiently and interactively.

The remainder of the paper is organized as follows.
The second section gives an overview of related work on
multiprocessor ‘solid modelling and recognition of
features. A basic approach to feature recognition, on
which we will build our distributed algorithms, is outlined
in the next section. The fourth section presenis our
method for dividing the recognition problem to be
soived, distributed on multiple machines. The fifth
section briefly discusses the implementation and pre-
sents an example of the performance improvements,
Lastly, concluding remarks and discussion are presented.

RELATED WORK

The bibliography of work on multiprocessor algorithms
for solid modelling applications is limited but growing.
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Currently, most work has focused on parallel operations
on CSG trees and other CSG representatlons of
polygonal or polyhedral entities, Ellis er «/® have
developed the RayCasting Engine: a hardware-
implemented facility for sampling solids represented in
CSG for a variety of purposes, including rendering
and mass-property calculations. They outline how this
special-case hardware makes possible brute-force solu-
tions to difficult computational problems, such as spatial
sweeping and offsetting.

Narayanaswami and Franklin® present a parallel
multiprocessor method for calculating the mass proper-
ties of polygonal CSG objects and outline some
extensions for applying the techmiques to 3D poly-
hedra. Banerjee et «l? have developed parallelized
algorithms for evaluating CSG trees that operate with
a fixed number of processors with shared memory.

In the domam of boundary representation modelling,
Karinthi et al.”’ have produced a parallel algorithm for
performing Boolean set operatlons on polygons and
polygons with holes. In Almasi ez al.'’, these techniques
are extended to more general loops of edges.

Strip and Karasick present techniques for perform-

. ing solid modelling operations on a massively parallel

SIMD (single instruction multiple data) computer. They
provide a data structure for representation of solid
models and a variety of parallel algorithms for
implementing solid modelling operations. In addition,
they present performance comparisons with serial
implementations.

Existing work on recognition of features has dealt with
exclusively serial computer architectures. These feature
technologies are based heavily on the geometric and
topological manipulation capabilities of solid modelling
systems and deal predominantly with form or machining
features. Much has been written on this topic in the
literature and we will not attempt to cover all of this
work here. We present below some of the more recent
and relevant work..:-

The work of Henderson has continually brought new
computational techniques to address the feature recogni-
tion problem. His dissertation work'® was the first to
apply expert systems to the feature recognition problem.
Gavankar and Henderson!! presented techniques to
identify protrusions and depressions in the boundary
model of 2 part. More recently, Prabhakar and
Henderson® described the use of neural networks to
recognize and classify features. A strength of this
approach is that it exploits the trainability of a neural
net to incorporate new feature types. Further, neural nets
have been demonstrated to be effective in classifying
patterns in domains where there is ‘noise’. In the context
of feature recognition, this noise is in the form of
incomplete or missing feature data lost duc to feature
intersections.

Graph-based algorithms have proven useful for
extracting some classes of features. These methods fall
into two categories: those based on graph search’™* and
those based on pattern matching!82328, A common
difficulty for both categories of graph-based approach

- is that the graph-based representations for solid models

of parts are difficult to extend to the complex geometry
and topology of interest to us. Secondly, methods based
on pattern matching and finding subgraph isomorphisms
(a problem known to be NP-hard) are prone to
combinatorial difficulties.
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Chuang and Henderson® explore graph-based pattern
matching techniques to classify feature patterns based on
geometric and topological information from the part.
Efforts at Carnegie Mellon University”>*® have employed
graph grammars for finding features in models of injection
moukded parts. Recently, Corney and Clark? have
employed graph-based algorithms to find general
feature classes from 2J-dimensional parts.

Gadh and Prinz’ were the first to describe techniques
for combating the combinatorial costs of handling
complex industrial parts (i.e. those with thousands of
topological entities). They point out that, in such cases,
traditional knowledge-based, decomposition, and pattern-
matching techniques are computationally impractical
because the fundamental algorithms (i.e. frame-based
reasoning or subgraph pattern matching) are inherently
exponential. Gadh and Prinz’s method is to abstract an
approximation of the geometric and topological infor-
mation in a solid model and find shape features in the
approximation. Their approach employs a differential
depth filter to reduce the number of topological entities.
A second pass maps the topological entities onto
structures called ‘loops’. In their work, features are
defined using the higher-level loops as opposed to being
defined as patlerns in the boundary representation’s
geometry and topology. This approach significantly
reduces the number of entities that need to be searched
to build feature instances. While this kind of approach
holds much promise for addressing combinatorial
problems, it does not address how to extend the
techniques to better handle interacting features and
non-linear (non-faceted} solid models.

Fields and Anderson® present an approach to feature
recognition that overcomes some of the representation
and efficiency problems common in previous work.
Unlike pattern-based or decomposition-based recogni-
tion methodologies, they categorize sets of faces on the
surface of the part into classes of general machining
features: protrusions, depressions, and passages. The
shapes within each class, while sharing many operational
similarities, may vary in geometry and topology. For
each of their feature classes, they present a linear-time
algorithm for identifying features.

Trace-hased feature recognition

Most relevant to the work in this paper are the recent

trace-based feature recognition methodologies. Funda-
mentally, a trace-based approach to feature recognition
attempts to reconstruct feature instances from the
information that they coniribute to the final geometric
model of the product.

The work of Marefat and Kashyap® presented an early
trace-based technique. They expanded on the work of
Joshi and Chang'®, augmenting it with hypothesis testing
techniques. In Marefat and Kashyap’s method, informa-
tion from the solid model is used to generate hypotheses
about the existence of features. These hypotheses are
tested to see if they give rise to valid feature instances.

Vandenbrande and Requicha® were the first to
formalize trace-based (or hint-based) techniques for
constructing features from information in a solid
model. In the work of Vandenbrande, the traces are
used to fill ‘feature frames” in a frame-based reasoning
system. After filling frames with the trace information
present in the part, the system classifies the partial frames
and attempts to complete information for producing
promising frames using a variety of geometric reasoning
and computational geometry techniques. This work has
recently been enhanced and extended by Han and
Regquicha'*'*.

Regli et al.”’ present an approach for guaranteeing
completeness of a recognition algorithm, i.c. it describes
how one can define a class of features and verify that a
particular approach was capable of producing all
features in that class. They present feature recognition
as an algorithmic problem in which traces are found by
traversing the geometry and topology of the part and
then used to construct feature instances. They formally
describe the behaviour of their algorithm and calculate a
general measure of its complexity. This approach has
been employed for automated design analysis’” and
automated redesign®®.

Many aspects of the feature recognition problem are
still open and active areas of research. Among these are:
recognizing and sepresenting interacting features™,
incremental recognition of features during feature-
based design2®1415 modelling alternative feature inter-
pretations and completeness?l??, and reasoning. about
the manufacturability of features!?. -

APPROACH TO FEATURE RECOGNITION

In this section we outline a basic trace-based feature

Figure 1 An example of traces left by drilling features: {a) trace I: cylindrical surface; (b) trace 2: conical surfaces
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recognition technique on which we will build our multi-
processor algorithms in the next section.

A trace t,; corresponds to the information contributed
to the part by an instance of a feature f of type M and
provides sufficient information for calculating the
parameters of f. For example, a drilling operation on a
three-axis machining centre can be used to create
cylindrical surfaces on the part, hence these surfaces
can be thought of as traces left by a particular feature
instance as shown in Figure fa. Traces are similar to the
Jfeature presence notion of Reference 33.

A trace comprises geometry and topology, design
features, tolerances, and other design attributes asso-
ciated with the cap model. While the traces addressed in
this paper cover only geometry and topology, this
approach can be expanded upon with traces based on
other forms of design information or enhanced with
more domain-specific machining knowledge.

Trace-based approaches have several properties that
are just beginning to be exploited by researchers,
including the following:

o Feature traces can be derived from a variety of design
information such as tolerances, surface finish
requirements, and functional information associated
with surfaces. Traditional feature recognition meth-
odologies often consider only the part’s gecometry and
topology.

e Feature classes can be customized by users. Recogni-
tion routines for new features can be built by
introducing traces for the new features and methods
for building instances of the new features from these
traces.

¢ Trace-based techniques can be adapted to recognize
features from a variety of manufacturing domains
and processes. Fxisting feature recognition literature
focuses primarily on machined parts, due in part to
the fact that the functionality of solid modelling
systems is well suited for manipulating volumes that
describe the material to be machined and decompose
these volumes into features.

Trace-based techniques also lend themselves well to
parallelization, providing several levels at which the
problem can be divided. Less evident, however, 1s that
in parallelizing the problem, one can further simplify the
independent problem subtasks and thereby reduce
overall computational difficulty.

The remainder of this section will specify a simple

(b)

el

(a) e2 [

d T

ell

example domain features for machined parts and trace-
based recognition techmiques. Using this domain we
present a multiprocessor recognition methodology in the
next section.

Machining features

In this paper, a machining feature type M is a
parametrized volumetric template that represents the
solid volume removed from a workpiece by a machining
operation. An instance f of a machining feature is
created by a specific machining operation with a single
cutting tool in one tool set-up. In this work, M represents
the generalized feature describing a machining operation
and [ is a particular example of an operation occurring
with respect to some part.

To perform a machining operation, one sweeps the
tool along some trajectory. Only a portion of this swept
volume corresponds to the volume of material that is to
be removed by the machining feature. This volume is
called removal volume of feature f (rem( /).

Machiming features are referred to in terms of the
operations used to create them. For example, we say that
the hole 4 in Figure 2a is an instance of a drilling feature.
The pocket m in Figure 2b is an instance of an end-milling
Jfeature and is characterized by the edge profile bounding
the area swept by the milling tool cutting at a specific
depth. .

Note that many types of machining operations cannot
be represented with simple volumes {e.g. finishing
operations, deburring, etc.). While this paper only
discusses volumetric machining features, in practice
these other types of features would have their own
traces and recognition methods.

Machining feature recognition

The 1nitial workpiece S is represented as a solid model
of raw stock material to be acted upon by a set of
machining operations. The machined part is a solid
object, represented by a solid model of the part P, to be
produced as a result of a finite set of machining
operations. The delta volume is the regularized differ-
encet? of the initial workpiece and the part: A =5 —* P.

In general, there may be several alternative interpreta-
tions of the part as a collection of machining features,
gach interpretation corresponding to a different way

edge profile E = {el e2e3ede5e6e7eBefellell}

Figure 2 Examples of machining features: (a) hole %, a drilling feature; (b) pocket m, an end-milling feature
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of manufacturing it. A feature-based model 1s a set of
feature instances that models a single, unique interpreta-
tion of the part. The feature recognition problem can be
defined as follows: given a collection of machining
features A4 = {M,, M,,..., M,}, a part P, and a piece of
stock S, find the set & of instances of feature types from
# recognized from P and S. The feature set % is a finite
set of features the set being composed of the union of the
alternative feature-based models for the part®.

Trace-based recognition of features

A trace represents the information in the solid model
of the part produced by an instance of a feature. The
basic components of a trace-based feature recognizer
are the following:

(1) A finite set .# of feature types. In the context of this
paper, .# is made up of the simple feature domain
defined earlier.

(2) Bach feature type M in .# has associated with it a
finite set of trace types fy;, far,, - .., fag,. TTACE types
are developed below in this subsection.

(3) For each trace type f,, there is a procedure 2, ()
such that 2, () constructs, from instances of the
traces and the solid model of the part and stock
material, instances of features of type M capable of
producing the trace f,,.

Note that a feature type M might have several different
types of traces associated with it; also a feature instance
might leave several different traces on the model of the
part. Conversely, 4 trace type might produce one or more
feature instances (e.g. the cylindrical surface of a through
hole can be considered as two different driiling features,
one in each direction along the axis of the cylinder). In
this work we are focusing on feature traces that can be
identified on the boundary of the part (i.e. traces left
in {f) N &(P) where b(P) is the boundary of P).

An outline for a generic algorithm for trace-based
recognition of features can be presented as follows:

(1) Input a coliection of feature types .4, a solid medel
for the part P, and a solid model for the initial stock
material S.

(2) From P and S, identify the set J
traces present.

of all potential

There are several ways in which the traces can be
identified (for example, previous research has included
hypothesis  testing?! and frame-based reasoning
approaches %). The traces in this paper can be identified
by examining the topology in the boundary representa-
tion of A.

(3) For cach potential trace ¢ in % do: If ¢ matches a #,,
call the procedure 2(t,,,) and construct (if possible)
feature instances, f1,/2, - - - ./ Of type M. Add these
to the set % of all feature instances.

Detailed presentation of trace-to-feature algorithms is
bevond the scope of this paper. Interested readers are
referred to related work which contains detailed
examples of such algorithms'>'"**# for all of the
above traces.

Example trace types

For illustrative purposes, the task of recognizing basic
drilling and end-milling features can be accomplished
using the following traces types:

L. Drilling features.

Trace 1. Any convex cylindrical surface s, in the delta

volume created by the side surface of a drill during a
drilling operation.
Rationale: This trace type is used to build instances of
drilling features when a portion of their side surface
remains on the boundary of the delta volume. An
example of this trace is illustrated in Figure Ia.

Trace 2. A convex conical surface s; in the delta volume

created by the side surface of conical tip of a drilling
tool.
Rationale: This trace type is used to build an instance
of a drilling feature when only a portion of its ending
tip surface remains on the boundary of the delta
volume. An example of this trace is illustrated in
Figure 1b.

2. End-milling features.

Trace 1. A planar surface s, in the delta volume created
by the cutting tip of an end-mill. This trace is used to
build instances of end-milling features when only a
portion of their bottom surfaces are present on the
boundary of the delta volume.

Rationale: This trace type is used to determine the
profile of end-milling feafures. (Given an edge
e) = {v|,v,) of the planar surface s,, orientations
and locations for potential milling features can be
obtained from other edges* e, = {v;,v,) in the delta
volume for which the vertices vy, v, 13, 14 are coplanar,
An example of end-milling trace 1 is given in Figure 3a.

The following two traces are used to build instances of
end-milling features when only a portion of their side
surfaces are present on the boundary of the delta volume.
In these cases, the-end-milling features may extend
completely through the stock material. Examples of such
features include through pockets and profiles.

Trace 2. A cylindrical surface in the delta volume as a

surface created by the side cutting surface of an end-
mill. An example of end-milling trace 2 is given in
Figure 3b.
Rationale: The profile of a milling feature mlght
comprise curved edges, for example, the corner radii
created when a round tool machines a convex corner.
This trace type uses these curved surfaces to determine
the orientation of potential through features.

Trace 3. A planar surface in the delta volume, considered
as a face created by the side cutting surface of an end-
mill during the same machining operation. Figure 3¢
shows an example of milling trace 2.

Rationale: For some instances of through milling
features, all that may remain are walls. This trace type
begins with a single planar wail and, by considering
other planar surfaces in the delta volume, obtains
orientations for potential through milling features
from the normal vectors; i.e. two non-parallel planar
surfaces can be used to determine the orientation of

*Note that in the solid model of the delta volume, the edges ¢, and ¢,
might be non-linear curves, e.g. they could be elliptical.
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Fipure 3 Parts illustrating end-milling traces 1, 2 and 3

the through features that might have made them (if
any) as the dot product of their normals.

Note that with these trace types there may be multiple
ways in which to identify each feature instance. These
redundancies are resolved when the final feature set is
created, as outlined in the second subsection of
‘Approach to parallelization’.

A presentation of the details of the various procedures

P (ty,) for constructing feature instances from instances

of these trace types is not central to the focus of this
paper. Such algorithms have been developed in previous
work, notably: Vandenbrande and Requicha® for
drilling feature traces 1 and 2 and end-milling feature
trace 1; and Regli et al.”” for all of the above traces.

APPROACH TO PARALLELIZATION

In the distributed computing paradigm, collections of
autonomous computational resources are interconnected
on a network, as illustrated in Figure 4 from Reference
32. They may share access to common devices such as
peripherals, file systems, and output devices. Software
systems can use the network and shared peripherals to
exchange information among the autonomous resources.

In this section, we will apply distributed algorithms
to the example problem domain from the previous
section.

a

Figure 4 Internetworked computational resources -
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Motivations

The feature types and their traces each introduce natural
partition lines along which the problem can be divided
into independent subproblems to be solved by different
Processors.

As presented in the subsection ‘Machining feature
recognition’, the final feature set & contains all those
feature instances from .# that are members of feature-
based models of the part. # contains all instances of the
feature types in .4 present in the given part. Note that
for the features in .#, the act of recognizing a feature of
type M, is independent of the recognition of a feature
of type M,—hence the feature instances of type M, can
be calculated separately from those of type M,. For
instance, in the gxample domain presented in the
previous section, the fact that a particular drilling
feature f is a member of some feature-based model
does not alter the existence of any end-milling features.

Secondly, the set of traces 4 (from the generic
algorithm in subsection ‘Traced-based recognition of
features”) introduces an additional level for partitioning
the problem. Recall that for each feature type M in .#,
there is a collection of traces s, £y, . . . , £, for building
instances of features of type M. One can decompose the
problem of finding all features of type M using the traces
by handling each trace #,, on a different processor.

One observation is that this may introduce some
redundancy; i.e. it may be possible to find the same

4
DG

plis}

Distributed
Resources

Figure 5 Source machine distributing the tasks to clients

Source
Machine
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Figure 6 Divide-and-conquer parallelization based on feature types and trace types

feature instance f in different ways using different traces.
There are two possible approaches to handling this
redundancy. One method is to delete duplicate features
while building the final feature set %. A second
approach, and the one that we wiil employ, is to identify
the traces capable of producing equivalent feature
instances and handle them together on the same
processor, removing duplicates as they are found. This
introduces another level of parallelization by dividing the
set of traces found into independent subsets. In this way
redundancies are addressed at the level at which they
occur, thus simplifying the task of building the final
feature set

Parallelizing feature recognition produces other, less
obvious benefits. In particular, a large portion of the
costs in a feature recognition system are due to the
complexity of geometric computations and geometric
reasoning. When isolating independent problem sub-
tasks, one can make geometric and topological simpli-
fications that identify the information in the original part
needed to build and verify the feature instances. In this
way, many of the subproblems may require only a
fraction of the information present in the solid models of
the original part and stock.

Distributed methodology

For the example domain of the previous section, our
approach is to have a central computing resource actas a
server to set up the problem and transmit subtasks to
client machines distributed on the network, as illustrated
in Figure 5. Each of the individual client processors is
given an independent portion of the particular global
feature recognition problem.

A distributed algorithm

Recalling the serial trace-based algorithm of subsection
‘Traced-based recognition of features’, we present an
outline for & multiprocessor trace-based feature recogni-
tion algorithm. There are two main components to this
system: a parent algorithm and a child algorithm. Note
that these algorithms partition the problem at several
levels, as shown in Figure 6. The parent algorithm is as

follows:

Parent algorithm
(1) Input a collection of feature types .#, a solid model
for the part P, and a solid model for the initial stock
material S. Initialize the set % of recognized features,
F =
(2) For each feature type M in .#, fork a new process*
on a free resource (i.e. 8 CPU or machine) and do
(a} For each trace type 1), for feature type M do
(1) Find the set 1, of traces of type ¢y, present
in the cap model of the part P.
(i) Use the set T, to divide the problem into
independent subtasks Ty Ty e e e s Ty :
(iii) for each 7; do :
{A) Decompose the part P uwsing the 7,—
resuft’ P'. Trace decomposition is dis-
cussed in more detail later.
(B) Fork a new process on a free resource to
call the child recognition algorithm on
P,
(iv) Let F, be the set of features returned by the
child.
Q) F =F Uy, F,
(4) Return &

The child algorithm construcis, when possible, feature
instances from the traces, It is executed over the available
processors as follows:

Child algorithm

(1) Input a feature type M, a trace type #;r, a set of
instances of T, . of trace #;;,, and solid models for the
part P', and the stock material S.

2 Szmplzfy the solid model of the part P'—result P”.
Model simplification is discussed later.

(3) Call Z(is,) to build feature set Fu,,.

*To fork a process is to start a separate task running within a
multitasking operating system. In current practice on multiprocessor
sysiems this can also be aceomplished by starting a thread®*!, A thread
can be thought of as an independent subprocess that can be executed on
its own separate CPU, if one is available.
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(4) Remove duplicate features from F,, .
(5) Return F,_ . '

To implement this client-server algorithm, three
technical areas must be addressed.

Task initialization
There are four levels at which initialization occurs, in
sequential order:

o Types of features to be recognized. Different feature
types (in this example drilling and end-milling) are
considered by separate computing resources, as
discussed earlier.

o Types of feature traces. Different traces for each of
the feature types are considered by separate comput-
ing resources, as discussed earlier.

o Trace decomposition. Given a specific feature type
and a trace for recognizing it, decompose the set of
these traces {occurring in the part P) into inde-
pendent subsets to subdivide the recognition task.
This is discussed below.

e Part simplification. Given a specific feature type and a
trace for recognizing it, alter the geometric and
topological information in the solid model of the part
to reduce its complexity. This is discussed later.

In this current work, all of the initialization occurs on the
parent. Specific details are given in the next subsection.

Task distributien
Once tasks are initialized, the next phase is to distribute

the individual tasks to the available computing resources,

This is done by invoking a child feature recognition
procedure for each separate task, with each task to be
performed on its own processor,

In the example domain in the third section, distribut-
ing tasks is straightforward. This becomes more complex
when bounds are placed on the number of available
computing resources.

Synthesis of results

Each separate child procedure, upon termination of its
portion of the recognition task, transmits its results back
1o the parent machine. The features returned are then
integrated into an overall solution. In this domain,
recombining results requires building the final feature set
as the union of those features returned by each child
machine.

However, the fact that this example domain lends itself
well to building an overall solution from the separate
subtasks may not generalize to other manufacturing
domains. For example, one might wish to include
additional computations in this phase, such as modelling
how geometric interactions among manufacturing
features affect operation planning or identifying com-
pound features, feature relationships, and feature
groups.

An example of task initialization
The task initialization stage groups feature information

and isolates traces to be handled by separate computing
resources. There are four levels of task decomposition.
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For illustration purposes, we shall assume there is no
limit on our computational resources. When there is a
bound on the number of processors available, the task
decomposition or the distribution of the task may vary to
partition the problem more efficiently. In particular, in
our current implementation (discussed in the next
section), we distribute the tasks evenly over the available
Processors.

The decomposition by feature type and decomposition
by trace, as noted before, are straightforward. In
developing techniques for part decomposition and
simplication, one is faced with a trade-off between the
sophistication of techniques and their computational
costs. In choosing the following conditions, we have
picked decompositions and simplifications that are
computationally inexpensive,

While it is.certainly possible to present more complex
decomposition criteria, an important consideration is
that the conditions themselves cannot be more complex
than the original recognition problem. Very sophisti-
cated techniques to maximize the ability of each
individual processor might require computational over-
heads that eliminate any of the speedup benefits we hope
to achieve using a multiprocessor approach.

The remainder of this section discusses trace decom-
position and techniques for part simplification.

Trace decomposition

A given feature instance might be created from any one
of several traces it leaves in the part. The objective of
trace decomposition is to collect all of the trace
information capable of producing equivalent or identi-
cal feature instances. While we will only consider
geometric and topological information in this paper,
this decomposition can be extended to include other data
that might serve as potential feature traces (i.e.
tolerances, surface properties, etc.).

We present a four step decomposition for the
geometric and topological information in the part—
this corresponds to Step A in the Parent Algorithm
presented earlier. The conditions are based on properties
of the traces for constructing feature instances. Note that
there may be other conditions that provide an equivalent
means of arriving at a task decomposition with the
desired properties. Decomposition of the geometry and
topology based on feature types and traces proceeds as
follows:

(1) Decomposition for drilling traces 1 and 2. Group
together cylindrical and conical faces with equivalent
axes that are convex with respect to the delta volume
Al
Rationale: This collects all possible drilling traces
that might be machined in the same orientation.
Drilling features with multiple traces (e.g. several
separate cylindrical faces) can .be isclated and
identified. For the part in Figwre 7a, this resuits in
the grouping of traces shown in Figures 7b and c.

(2) Decomposition for end-milling trace 1. Group
together all coplanar faces. In the example illu-
strated in Figure 8b, six disjoint planar part faces are
grouped to be handled together on the same
processor. This grouping collects all faces sharing
the same underlying surface.

Rationale: Thiscollects all possible end-milling traces
" that might be machined in the same orientation,
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possibly by the same operation. End-milling features
with multiple traces (e.g. a bottom surface divided
into multiple subfaces) can be isolated and identified.
For the part in Figure 7a, this results in the grouping
of traces shown in Figure 7d.

(3) Decomposition for end-milling trace 2. Group cylind-

rical surfaces with equivalent axes.
Rationale: This groups all potential corner radii
and curved walls for end-milling features with the
same machining orientation. For the part in
Figure 7a, this results in the grouping of traces
shown in Figure 7e.

(4) Decomposition for end-milling trace 3. Group planar

surfaces with normals perpendicular to a common
vector; i.e. for each grouping there is a vector v such
that, for all surfaces s; and s; in the grouping, normal
(8;) - v = normal{s;) + v = 0.
Rationale: This groups traces for end-milled features
based on machining orientation; hence through
features that can be machined in the same orienta-
tion are placed in the same group. For the part in
Figure 7a, this results in the grouping of traces shown
in Figure 71.

The above decomposition groups those traces from the
part which might produce equivalent feature instances.
in this way, redundancies can be eliminated at the
subprocess level and later recombination of results can
be facilitated.

Part simplification

The objective of part simplification is to reduce the
amount of data that must be considered by each
processor 10 a minimum amount sufficient to construct
feature instances from the traces it has been given. The
goal is to reduce the cost of operations during feature
recognition. For example, one can reduce the number of
geometric and topological entities while still retaining the
information required to construct feature instances from
the particular trace. In this way, geometry which does
not affect the feature trace under consideration can be
eliminated.

This section describes Step 2 of the Child Algorithm, in
which the solid models of the part and stock are
simplified based on the trace information and feature
types. In each case, the geometry and topology of the
mode] for the part P is modified to P’ as follows:

(1) Simplification based on drilling trace I. Given a

cylindrical surface ¢ in the delta volume of radius r,
P’ contains all the portions of P that lie within » of
the axis of ¢.
Rationale: This simplification retains enough infor-
mation to check for interference between the cutting
tool and the final part. To check for interference
between the workpiece and the machine tool, this
radius may be enlarged depending on the size of the
tool assemblics available in the particular set of
manufacturing resources. . :

(@

(b) (©

(d)

Figare 7 An example part and its trace decomposition. The arrows in each figure denote the orientation vector v, for the features that might hav

created these traces: {a) an example part; (b) drilling trace 1; (¢) drilling trace 2; (d) milling trace 1; (¢) milling trace 2; (f) milling trace 3

LT o ®
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Figare 8 An example part: (a) part (after machining); (b} part {(underside view, after machining)

(2) Simplification based on drilling trace 2. Given a

conical surface ¢ in the delta volume with a maxi-
mum radius » and located at point d, P’ contains all
the portions of P that lie within r of the axis of ¢ and
in the half-space above d.

Rationale; This simplification is identical in intent to
that for drilling trace 1.

(3) Simplification based on end-milling trace 1. Given
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a planar surface p in the delta volume with a root
point d and normal vector v, P’ contains all the

portions of P that lie in the half-space defined by d
and v.

Rationale: This simplification retains all geometric
and topological information that lies above the
bottom surface of the milling feature and discards
all information below it.

(4) Simplification based on end-milling traces 2 and 3. No

simplifications are made for these traces.
Rationale: Finding these types of end-milling feature
instances might require consideration of information

(b)

@

Figure ¢ Four end-milling recognition subtasks and their simplified part information for the example in Figure §

|



Towards multiprocessor feature recognition; W C Regli et a/.

from the entire part, and the processing required in
this case might be costly.

Figure 9 shows an example part and four illustrations
of part simplification for end-milling trace 1. In the
figure, the planar faces are being considered as traces
indicating potential bottom surfaces of several end-
milled features: vector v denotes the orientation of the
potential feature. In each case, the trace information is
used to eliminate the portion of the part lying below the
trace (in the direction —v)—information that does not
get considered when building a feature instance in
direction v. Note that in making this rudimentary
simplification the number of geometric and topological
entities to be considered is greatly reduced.

Potential for computational improvement

We can expect the speedup to be no more than a factor of
K, where K is the number of processors available, In
reality, the task decompositon to set up parallelization
incurs some added cost, as does the recombination of
results at the end. These additions are negligible,
however, when compared with the costs incurred to
perform the recognition process on the subproblems.

Within a trace-based methodology, the overall com-
plexity of recognition depends on two factors: the
difficulty in generating the set & of potential traces,
and the complexity of the methods for generating feature
instances from traces.

A rough upper bound on the size of 4 can be
computed from the model of the part and the types of
traces by counting the number of geometric and
topological entities. The compiexity of the feature
construction routines is more difficult to assess and is
where the majority of the computational costs occur,
Much of this cost is due to geometric queries and
reasoning used to find the parameters of feature
instances. While there is no authoritative reference on
the general complexity of solid modelling operations
such as Booleans, sweeps, and the like, indications are
that these operations account for the majority of the
computational cost during feature recognition®. The
complexity of Boolean operations appears to lic between
O(n2) and O(r*) or O(n”) time, depending on the
particular configuration of geometric entities and many
implementation-specific details.

The fact that these basic solid modelling routines are at
least quadratic in the size of the model implies that small
reductions in the number of entities in the model
translate into large reductions in computational cost.

In the next section, we provide rough estimates of both
the speedup factor and the reduction in the number of
geometric and topological entities achieved by our
approach.

IMPLEMENTATION AND RESULTS

A proof-of-concept implementation of this distributed
feature recognition methodology, dubbed F-Rex, has
been done in ¢4+ using version 3.0.1 of the AT&T c++
compiler from SUN Microsysiems running on net-
worked SUN SPARC Stations. F-Rex employs version
1.5.1 of Spatial Technologies’ ACIS® solid modelling

system and version 3.14 of the NIH c++ Class Library
developed at the National Institutes of Iealth. Addi-
tional tools include Ithaca Software’s HOOPS® Gra-
phics System and the Tcl/Tk embeddable command
language and user interface toolkit from the University
of California at Berkeley.

F-Rex is the feature recognition subsystem for
IMACS, an interactive manufacturability analysis tool
under development at the University of Maryland’s
Institute for Systems Research. One of the fundamental
goals of IMACS is to provide interactive feedback and
redesign suggestions to the user. Multiprocessor algo-
rithms have provided IMACS with a means of handling
computational bottlenecks.

F-Rex runs on a cluster of SUN workstations;
processes communicate over the Internet using UNIX-
based and TCP/IP-protocol-based network software
utilities and shared disk storage. The geometric compu-
tations required for task initialization are implemented
with direct ¢+ calls to the ACIS kernel; distributed
processes are invoked using UNIX remote shell
commands; and the resulting feature set is generated by
examining the features produced by each processor and
eliminating redundancies.

The data for the examples below have been collected
using six processors, one SPARC Station model 10, one
model 2, and 4 IPX models. In this version of the
implementation, when the number of tasks is greater
than 6, the tasks are distributed evenly over the available
pProcessors.

These timing results represent the elapsed clock and
CPU times and are not absolute measures of the intrinsic
difficulty of the feature recognition problem—this
example domain is not directly comparable to those of
other feature recognition efforts. Further, there are
hidden costs in the implementation not directly related
to the recognition of feature templates (such as feature
accessibility analysis) and these algorithms and their
implementation cag-certainly be improved. The results
are intended to provide a rough indication of the time-lag
experienced by the user of the system. More significant
than any precise calculation of elapsed time is the
speedup factor between the serial and parallelized
algorithms. Measurements of elapsed CPU time are
summarized in Table 1.

Example 1

The example part in Figure 10q, taken from Reference
33, contains 21 part faces, Vandenbrande and Requicha®
report identifying 7 features (3 slots, 3 open pockets, and
a step) in 2.5min on a SUN 4/360. The OOFF system™
handles a wide variety of machining features and process
planning constraints; hence it is not directly comparable

Table 1 Estimated elapsed CPU times for each example

Example Serial (s) Distributed set-up (s) Recognition {s)
1 54 0.96 2.8

2 116 35 431

3 127 1.2 6.4

4 >1800 75 700

5 >1800 19.5 701.5
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(a)

Figure 10 Two example parts addressed in previous literature: (a} example from Reference 1; (b) example from Reference 6

to the approach outlined in this paper. It does, however,
provide a general indication of the computational costs
required to recognize features in relatively straightforward
parts.

Running in serial on the SPARC 10, our system finds 1
drilling and 8 end-milling features in approximately
1min. In parallel on 6 processors, it takes approximately
3 s to set up the decomposition and 12 s to recognize the
features—a speedup of approximately 5x (500%).

Using the simplification techniques, the number of .

geometric and topological entitics that had to be
considered was reduced by 22%. Note that this example
has only a few feature instances with relatively
straightforward interactions.

Example 2

The example part in Figure 7a has 19 faces. This part,
when machined from a rectangular block of stock
material, has 37 faces in its delta volume. In serial, F-
Rex identifies 10 drilling and 10 milling features in
approximately 2min. In parallel on 6 processors it takes
45 to set up the decomposition and about 455 to find
the features—a speedup of 2x (200%). In this case,
simplification resulted in a 10% reduction in the number

Figure 11 A fixture from ICEM’s PART System
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of geometric and topological entities that had to be
considered. Note that this example has more curved
surfaces and several interacting milling features, requir-
ing more geometric computation to identify,

Example 3

The example part in Figure 10b is a socket taken from
Referenice 27. This part, when machined from a
cylindrical piece of stock material, has 37 faces in the
delta volume. There are 12 drilling and 20 end-milling
features in its feature-based models that can be produced
with the traces given above. In serial running on the
SPARC 10, F-Rex identifies these 32 feature instances in
approximately 65-70s. When run distributedly, using 6
processors, F-Rex takes 105 to set up the decomposition
and approximately 12—16s to identify the features—a
speedup of 3x (300%). In this case, simplication resulted
in a 35% reduction in the number of geometric and
topological entities that had to be considered. Note that
this part has several curved surfaces and most of the
feature instances interact.

Example 4

The example part in Figure 11 is a fixture used in Control
Data Corporation’s* ICEM PART Process Planning
System. The solid model for this part contains 245 faces.
When running in serial, F-Rex takes over 1 h to find the
feature instances. In parallel, F-Rex takes 1.3 min to set
up the problem and approximately 12 min to recognize
the features—a speedup of approximately 4x (400%). In
this case, simplification resulted in a 23% reduction in
the mumber of geometric and topological entities that
had to be considered. Note that this example contains

* This part is named “WINKLE’ and is a fixture for use with CD{C’s and
ICEM’s PART generative process planning system. This part was used
with the permission of CDC and it is available for anonymous ftp from
the NIST Process Planning Testbed at fip.cme.nist.gov or http://
www.parts.nist.gov/parts/. o -
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many cylindrical curved surfaces and that few of the
feature instances interact; also note that the decomposi-
tion techniques handle all of the drilling features on the
Same Processor.

Example 5

The example part in Figure 9 is a shuttle intended to
move along a guideway, with many of the feature
instances added to reduce weight. The solid model of this
part contains 281 faces. In serial, F-Rex takes over 1 h to
find more than 100 feature instances. When running
distributedly, F-Rex took 2min to set up the task
decomposition and approximately 32min to find the
features—a speedup of approximately 2x (200%). In
this case, simplification resulted in a 43% reduction in
the number of geomeiric and topological entities that
had to be considered. Note that in this example nearly
every feature interacts with every other feature and that
calculation of accessibility volumes for feature instances
is rather complex.

Discussion of results

These preliminary results confirm that performance
gains can be made through effective parallelization of
algorithms. One issue is how to systematically identify
a priori how to produce effective decompositions (i.e.
some classes of features might prove more amenable to
this approach). In general, however, it is difficult to assess
what a typical decomposition and its speedup factor will
be.

We believe that the considerable varation in our
experiments between parallel and serial speedup is due to
three primary factors. First, the complexity and
particular shape of the parts themselves. The example
part in Figure 10a has only one curved surface, while that
in Figure 9 contains many dozens. A more general
analysis of speedup factors would require testing the
software against a set of benchmark parts of varying
degrees of complexity, e.g. parts with many features,
parts with difficult surfaces, parts with both.

(a)

The second factor in these variations is the environment
for the experiments, which were conducted on a busy net-
work of heterogeneous multiuser machines. The data were
collected under everyday operating conditions and is
intended as part of our demonstration of the feasibility of
the technique. Because it was not feasible to create con-
trolled experimental conditions, the data are only presented
as a general indication of the technique’s potential.

The third factor contributing to the variability among
examples (and among feature recognition systems in
general) is the treatment of feature accessibility for
machining. In the system used as a basis for the approach
in this paper”, each machining feature has associated
with it an accessibility volume which approximates the
non-cutting portion of the cutting tool and tool assembly
(an example from Reference 26 is shown in Figure 12).
Testing each feature to ensure that the accessibility
volume does not interfere with the final part requires
a considerable amount of geometric computation—
computation which varies greatly depending on the
shape of the individual part. :

We believe that parallelized trace-based feature recog-
nition is highly suitable for parts in which the feature
instances themselves are relatively simple, but numerous.
1t is not as well suvited to probleins where the feature
instances themselves have very complex geometric
configurations. o

CONCLUSIONS
The focus of this research- was to demonstrate the
feasibility of using multiprocessor architectures to enable
large increases in computational power for geometrically
intensive cap problems. As collaborative engineering
pushes more downstream manufacturing issues into the
design phase, the need to build effective and interactive
cAD software systems requires an increasingly sophisti-
cated allocation of.:computational resources. ‘
The contributions described in this paper include our
initial work toward an approach for performing trace-
based feature recognition wusing a multiprocessor
architecture. We present a commonly addressed collec-
tion of features and illustrate how to identify a task

Figure 12 An illustration of a tool assembly and accessibility volume for driliing features. Testing accessibility conditions adds significantly to the cost
of recognizing features for certain types of parts: (a) a drilling tool assembly, from Reference 29; (b) drilling feature 4 and accessibility volume acc(h)
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decomposition of the recognition problem. The task decom-
position is used then to divide the work among several
distributed computing resources whose individual results
are integrated into a unified solution for the part at hand.

We have demonstrated that this parallelized approach
holds promise for domains of complex parts containing,
possibly, thousands of features instances, but for which the
structures of the feature instances themselves are relatively
simple and their interactions well defined. This implies that
multiprocessor algorithms can increase in the complexity
of feasible mechanical designs and the ability to produce
real-time feature data for complex parts. In addition, the
techniques for simplification and complexity reduction
presented are directly applicable to existing approaches
to the feature recognition problem.

More generally we show that the application of
multiprocessor algorithms to problems in solid model-
ling and engineering analysis holds immediate promise
for enhancing existing caD tools. As distributed and
multiprocessor computing technologies become more
accessible, algorithms that coordinate efforts between
autonomous and geographically diverse computing
resources will be commonplace in the modern manufac-
turing enterprise. Making this transition will require
changes to the underlying architecture of solid modelling
and caD systerms, their data structures, and algorithms to
exploit multiprocessor computing. It is clear that further
research will be needed on how to effectively migrate
current solid modelling applications toward a multi-
processor computing framework. In addition, as engi-
neering software applications built on top of solid
modelling systems continue to grow in complexity,
obtaining performance improvements will increasingly
involve distributed and multiprocessor algorithms.

We anticipate that this novel multiprocessor feature
recognition technology will increase the complexity of
mechanical parts within the reach of traditional feature
recognition systems and will reduce the computational
bottlenecks they pose. This will enable more sophisti-
cated design analyses and, in turn, aid in building an
environment that will- allow designers to create high-
quality products that can be manufactured more
economically—thus reducing the need for redesign,
lowering product cost, and shortening lead times.
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