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Abstract. Inspired by much empirical evidence of human decision-
making under risk that does not coincide with expected value maximiza-
tion, much effort has been invested into the development of descriptive
theories of human decision-making involving risk (e.g. Prospect Theory,
Regret Theory, SP/A Theory). An open question is how behavior corre-
sponding to these descriptive models could have been learned or arisen
evolutionarily, as the described behavior differs from expected value max-
imization. We believe that the answer to this question lies, at least in
part, in the interplay between risk-taking and sequentiality of choice in
evolutionary environments. We provide simulation results for evolution-
ary game environments where sequential decisions are made between
risky and safe choices. Our results show there are evolutionary games in
which agents that are sometimes risk-prone and sometimes risk-averse
can outperform agents that make decisions solely based on the maxi-
mization of the local expected values of the outcomes.

1 Introduction

In most of the existing literature on models of decision making under risk, the
construction of such models is approached primarily through the analysis of
single or one-shot decisions among a set of choices, which generally are choices
among lotteries with different types of payoff distributions and thus potentially
different risks. Under the most traditional model of decision making, expected
utility theory, a rational agent seeks to maximize the expected utility of choice
outcomes and abides to the axioms of utility, which define preference relations
on states or lotteries under a von Neumann-Morgenstern utility function [1].

Empirical evidence of human decision making under risk shows that humans
are sometimes risk averse, sometimes risk seeking, and even behave in ways
that systematically violate the axioms of expected utility [2]. Expected utility
theory can account for different attitudes towards risk, such as risk-aversion or
risk-seeking, through certain von Neumann-Morgenstern utility functions (e.g.
[3]). Such risk propensities can differ greatly from simple expected value con-
siderations on prospective outcomes. Researchers have invested much effort into



constructing utility functions that appropriately model human decision making
under risk under the expected-utility model (e.g. [3–5]). Researchers have also
constructed alternative descriptive theories of decision making that claim to cor-
respond more closely to how humans make decisions involving risk. Among the
most popular of these alternative models are prospect theory [2, 6], regret theory
[7], and SP/A (Security-Potential/Aspiration) theory [8–10]. One advantage of
these models is that they more explicitly or perhaps more naturally model some
of the mechanics involved in human decision making processes. For example,
state-dependent attitudes toward risk are modeled in prospect theory by using
a reference point with respect to which prospective outcomes can be interpreted
as potential gains or losses, and are modeled in SP/A theory by including an
aspiration level as an additional decision criterion in decisions involving risk.

A question that has received much less attention is how behaviors correspond-
ing to the above decision-making models, or any other empirically documented
risk-related behavior that differs from expected value maximization, could have
arisen in human evolution or are learned in societies.

We believe that one part of the answer to this question is the interplay
between risk-taking and sequentiality of choices; and in this paper we present
simulation results to support this belief. In the spirit of numerous previous stud-
ies which have used evolutionary game simulations to explore and derive ex-
planations for how the phenomenon of cooperation can arise in populations of
individuals (e.g. [11–16]), we use an evolutionary game simulation approach to
explore risk-related behavior.

In particular, we simulate a simple evolutionary game in which agents make
sequential choices among lotteries that have equal expected value but differ-
ent risks. Our experimental results demonstrate that depending on the game’s
reproduction mechanism, an agent that acts solely according to the local ex-
pected values of outcomes can be outperformed by an agent that varies its risk
preference in ways suggested by descriptive models of human decision making.

2 Evolutionary Lottery Game

Our evolutionary game is based on a finite, homogeneous population model in
which agents acquire payoffs dispensed by lotteries. In each generation, each
agent must make a sequence of n choices, where each choice is between two
lotteries with equal expected value but different risks. One lottery has a certain
outcome of payoff 4 (with probability 1), we call this the safe lottery. The other
lottery gives a payoff of 0 with probability 0.5 and a payoff of 8 with probability
0.5, we call this the risky lottery. Both lotteries have an expected value of 4, the
only difference is the payoff distribution. Note an expected-utility player with a
utility function that is the identity function on the values of the lottery would
be indifferent between the two choices presented, as it would seek to maximize
the expected value of its choice. We include all possible pure strategies in the
environment in equal frequencies, as described in the following section. Through
this setup, we don’t model risk propensities of agents explicitly, but each of the



agent types’ strategies can be interpreted as different attitudes towards risk:
some risk-averse, some risk-seeking, and some varying depending on previous
choice outcomes.

2.1 Sequentiality and Strategies

We consider the case where agents make a single, one-shot choice among the two
lotteries (i.e., n = 1), and the case where agents make two sequential choices
(i.e., n = 2). If we only consider pure strategies, then for the case where n = 1
there are two possible strategies:

– Strategy S : always choose the safe lottery;
– Strategy R: always choose the risky lottery.

For the case where n = 2, there are six possible pure strategies:

Strategy 1st lottery 2nd lottery
SS choose safe choose safe
RR choose risky choose risky
SR choose safe choose risky
RS choose risky choose safe
R-WS choose risky choose safe if 1st lottery was won, risky otherwise
R-WR choose risky choose risky if 1st lottery was won, safe otherwise

2.2 Reproduction

Our evolutionary model uses non-overlapping populations: once all lottery
choices have been made and payoffs have been dispensed, all agents reproduce
into the next generation (a new population). Note that reproduction in evolu-
tionary game theory does not necessarily need to be biological reproduction, but
can be interpreted as a mechanism describing the process of learning [17] or the
spread and adoption of cultural memes or behavioral traits [18], e.g. [19].

Replicator dynamics. In the literature on evolutionary game theory and social
simulation, replicator dynamics are the most widely used reproduction mecha-
nism. Under the replicator dynamic, the payoffs received by agents are considered
to be a measure of the agent’s fitness, and agent types reproduce proportional
to these payoffs [20, 21]:

pnew = pcurr pay(agenti)
pay

(1)

where pcurr is the proportion of agents of type i in the current population, pnew is
the corresponding proportion in the next generation, pay(agenti) is the summed
payoff an agent of type i received from all games played, and pay is the average
payoff received by all agents in the population. An agent’s type is simply the
strategy it employs to make choices among lotteries.



While the replicator dynamics enjoy much theoretical support (e.g., [20–22]),
some of its characteristics, such as a potentially unlimited amount of reproduc-
tion (barring a population size limit) and guaranteed reproduction with some
positive payoff, seem unrealistic in most real world environments. For example,
organisms in real environments may die if they do not acquire a certain amount
of resources, and there is certainly also a limit on the amount of offspring or-
ganisms can reproduce.

Tournament selection. Because of the above considerations, we felt that in-
stead of focusing solely on replicator dynamics, it would be important to compare
it with at least one other reproduction mechanism. For this purpose, we chose
tournament selection, which is probably the second most widely used reproduc-
tion mechanism in the evolutionary game theory literature (e.g., [14, 23, 24]).

Under tournament selection, each agent in the population is matched up
with a randomly drawn other agent in the population and the agent with the
higher acquired payoff is reproduced into the next generation. If the payoffs
of the matched agents is equal, one of the two agents is chosen at random to
reproduce.

3 Preliminary Analysis

We now consider four different versions of our evolutionary lottery game, using all
four combinations of the following parameters: the number of sequential choices
(n = 1 or n = 2), and the reproduction mechanism (tournament selection or
replicator dynamics).

We are interested in the dynamics of agent type (i.e. strategy) frequencies
as our population of agents evolves over time. To anticipate the performance of
different agents in our simulations, it is important to take a closer look at the
nature of the reproduction mechanisms. Under replicator dynamics, agents’ rate
of change of population frequency is directly proportional to the payoff received
relative to the average population payoff. Tournament selection on the other
hand acts like a probabilistic, population dependent, threshold step-function,
where the particular threshold an agent needs to achieve in order to produce one
offspring is the payoff of the randomly drawn opponent from the population.

Recall that for n = 1 (i.e., the single choice game) there are only two pure
strategies, S and R. S will always receive a payoff of 4, while R will have a
50% chance to receive a payoff of 8 and a 50% chance to receive 0. Hence in
each case, the expected value is 4. Thus under replicator dynamics, by equation
(1) we expect neither type of agent to have an advantage. Under tournament
selection, an R agent will have a 50% chance to beat an S agent and a 50% to
lose, thus we expect neither agent to have an advantage here either.

For n = 2 (i.e., a sequence of two lottery choices), there are six pure strategies.
As before, they all have an expected value of 4 at each lottery choice, thus a
total expected value of 8 for the sequence of two choices. For each of these
strategies except R-WS and R-WR, the probability of being above the expected



value equals the probability of being below the expected value; but for R-WS
and R-WR, the two probabilities differ. R-WS has a 50% chance of receiving a
payoff of 12, since it always chooses the safe option after the first lottery was one.
It has a 25% chance of receiving the exact expected value 8, which occurs when
only the second risky choice is won. Hence it has only a 25% chance of acquiring
a payoff below the expected value. (Similarly, R-WR has only a 25% chance of
acquiring a payoff above the expected value.) This lead us to hypothesize that
there are circumstances in which R-WS will do better than the other strategies.
The purpose of our simulation, described in the next section, is to test this
hypothesis.

4 Simulation Results

We have run simulations of our evolutionary lottery game using all four com-
binations of the following parameters: the number of sequential choices (n = 1
or n = 2), and the reproduction mechanism (tournament selection or replicator
dynamics). The types of agents were the ones described in Section 2.1. All simu-
lations started with an initial population of 1000 agents for each agent type and
were run for 100 generations, which was sufficient for us to observe the essential
population dynamics.

Figures 1(a,b) show the frequency for each type of agent when n = 1. As
we had expected, both S and R performed equally well (modulo some stochastic
noise) regardless of which reproduction mechanism we used.

For n = 2 (Figures 1(c,d)), the results are more interesting and differ depend-
ing on the reproduction mechanism used. Under replicator dynamics, all of the
strategies performed equally well and remained at their frequency in the origi-
nal population. But under tournament selection, the conditional strategy R-WS
outperformed the other strategies. R-WS rose in frequency relatively quickly to
comprise the majority (> 2/3) of the population and remained at this high fre-
quency throughout subsequent generations. One surprise, which we discuss in the
next section, was that the two unconditional strategies SR and RS fell slightly
in population but then remained, comprising the proportion of the population
not taken over by R-WS.

Table 1. Performance of agent types for the single (n = 1) and sequential (n = 2)
lottery game simulations under tournament selection and replicator dynamics.

Tournament Replicator

Single S, R same S, R same

Sequential R-WS best all same



(a) n = 1, tournament selection (b) n = 1, replicator dynamics

(c) n = 2, tournament selection (d) n = 2, replicator dynamics

Fig. 1. Agent type frequencies for all four simulations over 100 generations.

5 Discussion

Table 1 summarizes the experimental results as they relate to the hypothesis we
stated at the end of Section 3. The results confirm our hypothesis that there are
circumstance under which the R-WS agent performs better than other agent
types. In particular, it performed much better than all other agents in the se-
quential lottery using tournament selection simulation.

The following subsections discuss the impact of the reproduction mechanisms
used, the population dynamics observed, and how the results relate to theoretical
work concerning models of decision making under risk.

5.1 The Role of Reproduction Mechanisms

The reproduction mechanism played a central role in the results of our simula-
tions. We now analyze the impact of the reproduction mechanisms by examining
the expected payoff distributions of the agent types.



Table 2 lists these distributions of payoffs that agents are expected to receive
from their choices in one generation of the sequential lottery game.

Table 2. Expected payoff distributions for all agent types in the sequential lottery
game.

agent R-WS R-WR SR RS SS RR

payoff 12 8 0 16 8 4 12 4 12 4 8 16 8 0

probability .5 .25 .25 .25 .25 .5 .5 .5 .5 .5 1 .25 .5 .25

We can see that the R-WS agent had a 50% chance of acquiring a payoff of
12, a 25% chance of acquiring a payoff of 8, and a 25% chance of acquiring 0. Un-
der tournament selection, R-WS had an advantage over the other agents because
it had an increased probability of achieving a payoff at or above a certain repro-
duction threshold. This threshold is the payoff of a randomly drawn opponent,
which has an expected value of 8 equal to the expected value of the lotteries. R-
WS pays for this enlarged chance of being above the threshold through a small
chance of doing much worse (payoff 0) than the summed expected utilities, which
occurs when the first and the second risky choice is lost.

Since tournament selection only considers whether or not the agent’s payoff
is better than another agent’s in order to decide whether the agent reproduces,
the extent to which the agent is better is not significant. In contrast, the repli-
cator dynamics define reproduction to be directly proportional to the amount
by which the agent’s payoff deviates from the population average. In this case
the small chance of R-WS of being significantly below the expected value bal-
ances against the agent’s larger chance of being slightly above it. Thus, under
replicator dynamics, the R-WS agents had no advantage.

5.2 Further Population Dynamics

As noted in Section 4, the SR and RS agents did not go extinct in the sequential-
lottery tournament-selection simulation. The reason SR and RS remained can
be explained by considering all the agents’ payoff distributions expected in a
generation (Table 1). If we compare the payoff distribution of SR and RS with
that of R-WS, we see that if these agents are matched up with each other in
tournament selection there is an equal chance that either of the strategies re-
produces. Thus once all other strategies are extinct, the population frequencies
remain approximately unchanged. The reason R-WS rises in frequency so much
faster early on is because R-WS has a significantly higher chance of beating an
agent from the rest of the population. Against SS for example, R-WS has a
62.5% chance of winning: 50% of the time the payoff of 12 beats the sure payoff
of 8 by SS and 1/2 of the time the two players are matched with equal payoff
of 8 (25% chance), R-WS is favored. SR and RS on the other hand only have a
50% chance of winning against SS. Similar relations hold for RR and R-WR.



This shows an interesting dynamic of population-dependent success of agents:

– In an environment that contains SR, RR, and R-WS and no other strategies,
all three will do equally well.

– In an environment that contains SR, RS, SS and RR and no other strategies,
all four will do equally well.

– In an environment that contains SR, RS, SS, RR, and R-WS, R-WS will
increase and the other strategies will decrease until SS and RR become
extinct, at which point SR and RS will stop decreasing.

5.3 Relations to Alternative Decision Making Models

The manner in which the R-WS strategy deviates from expected value max-
imization in our lottery game can be characterized as risk-averse (preferring
the safe choice) when doing well in terms of payoff and risk-prone (preferring
the risky choice) otherwise. Similar risk behavior is suggested by models such
as prospect theory [2, 6] and SP/A theory. In prospect theory, people are risk-
seeking in the domain of losses and risk-averse in the domain of gains relative to
a reference point. In SP/A theory [10], a theory from mathematical-psychology,
aspiration levels are included as an additional criterion in the decision process
to explain empirically documented deviations in decision-making from expected
value maximization.

One explanation for the existence of decision-making behavior as described
by such models is that the described behavioral mechanisms are hardwired in
decision makers due to past environments in which the behaviors provided an
evolutionary advantage [25]. Another interpretation, not necessarily unrelated,
is that the utility maximized by decision makers is not the payoffs at hand, but
a different perhaps not obvious utility function. Along these lines, [26] proposes
a model of decision making that includes probabilities of success and failure
relative to an aspiration level into an expected utility representation with a
discontinuous (at the aspiration level) utility function. Empirical evidence and
analysis provided in [27] provide clear support for the use of probability of success
in a model of human decision making. All these descriptive theories provide for
agents to be sometimes risk-prone and sometimes risk-averse, depending on their
current state or past outcomes, such as the R-WS in our simulations.

The sequentiality of choices in our game simulations allow for such state-
dependent risk behavior to be explicitly modeled. One could theoretically model
the sequential lottery game in normal form, i.e. reduce the choices to a single
choice between the payoff distributions listed in Table 2. Doing so would provide
essentially equivalent results except that the asymmetry in the payoff distribu-
tion of lotteries would be the determining factor of agent successes. In such a
representation however, the analysis of risky and safe choices, and agents’ prefer-
ences among them becomes blurred. In fact, we believe that a tendency towards
modeling games in normal form often leads people to overlook the impact of
sequentiality on risk-related behavior.

We believe our results show that tournament selection models an important
mechanism that can lead to the emergence of risk-taking behavior with similar



characteristics to that captured in alternative, empirical evidence-based models
of decision making like the ones discussed above. Whenever reproductive suc-
cess is not directly proportional to payoff (i.e., a reproduction mechanism other
than the pure replicator dynamics),4 risk propensities that differ from expected
value maximization have the opportunity to be more successful than agents that
solely consider expected value in their local choices. This suggests that there
are many other reproduction mechanisms for which expected-value agents can
be outperformed by agents that vary their propensities toward risk-taking and
risk-averseness.

6 Conclusion

Our simulation results in several evolutionary lottery games demonstrate how
sequentiality and reproduction can affect decision making under risk. Our sim-
ulations show that a strategy other than expected-value maximization can do
well in an evolutionary environment having the following characteristics:

– At each generation, the agents must make a sequence of choices among al-
ternatives that have differing amounts of risk.

– An agent’s reproductive success is not directly proportional to the payoffs
produced by those choices. We specifically considered tournament selection;
but as pointed out in Section 5.3, we could have gotten similar results with
many other reproduction mechanisms.

The most successful strategy in our simulations, namely the R-WS strategy,
exhibited behavior that was sometimes risk-prone and sometimes risk-averse de-
pending on its success or failure in the previous lottery. This kind of behavioral
characteristic is provided for in descriptive theories of human decision making
based on empirical evidence. It is not far-fetched to suppose that when human
subjects have exhibited non-expected-value preferences in empirical studies, they
may have been acting as if their decisions were part of a greater game of sequen-
tial decisions in which the success of strategies is not directly proportional to
the payoff earned. Apart from a purely biological interpretation, in which cer-
tain behavioral traits are hardwired in decision-makers due to past environments,
perhaps such empirical studies capture the effects of the subjects’ learned habit
of making decisions as part of a sequence of events in their daily lives.

Our results also demonstrate (see Section 5.2) that the population makeup
can have unexpected effects on the spread and hindrance of certain risk propen-
sities. This may be an important point to consider, for example, when examining
decision-making across different cultures or societies.

4 We say “pure” here because replicator dynamics can be modified to make repro-
ductive success not directly proportional to payoff. For example, if a death rate
(e.g. [12]) is implemented as a payoff-dependent threshold function, we might expect
risk propensities to differ depending on whether an agent is above or below that
threshold, similar to an aspiration level in SP/A theory.



In conclusion, our simple lottery game simulations are a first step in ex-
ploring evolutionary mechanisms which can induce behavioral traits resembling
those described in popular descriptive models of decision making. A specific re-
lated topic to explore is how the prospect-theoretic notion of setting a reference
point may relate to evolutionary simulations with sequential lottery decisions.
In general, there is much more opportunity for future work to use simulation for
the purpose of exploring or discovering the mechanisms which induce, possibly
in a much more elaborate and precise manner, the risk-related behavior char-
acteristics described by prospect theory or other popular descriptive decision
making models based on aspiration levels.
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