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Researchers have invested much effort in constructing models of the state-dependent (sometimes
risk-averse and sometimes risk-prone) nature of human decision making. An important open
question is how state-dependent risk behavior can arise and remain prominent in populations. We
believe that one part of the answer is the interplay between risk-taking and sequentiality of choices
in populations subject to evolutionary population dynamics. To support this hypothesis, we provide
simulation and analytical results for evolutionary lottery games, including results on evolutionary
stability. We consider a parameterized class of imitation dynamics in which the parameter 0 ≤ α ≤ 1
yields the replicator dynamic with α = 1 and the imitate-the-better dynamic with α = 0. Our results
demonstrate that for every population dynamic in this class except for the replicator dynamic, the
interplay between risk-taking and sequentiality of choices allows state-dependent risk behavior to
have an evolutionary advantage over expected-value maximization.
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1. INTRODUCTION

Empirical evidence shows that human decision making, rather than con-
forming to the decision-theoretic notion of expected-value maximization, is
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state-dependent: the decisions are sometimes risk-averse and sometimes risk-
seeking, depending on the decision maker’s circumstances. Much effort has
been invested in describing and modeling such behavior, but these efforts have
largely lacked an explicit investigation of what evolutionary pressures might
have influenced the behavior’s spread. Thus an important open question is why
state-dependent risk behavior is so prevalent.

In this article, we use tools from evolutionary game theory to investigate
how agents’ risk behavior relates to different population dynamics (i.e., rules
governing changes in the number of agents of each kind). In particular, we are
interested in imitation dynamics, which model cultural evolution as a product
of social learning by imitation. The best-known imitation dynamics are the
replicator dynamic and the imitate-the-better dynamic, but there are many
others.

We consider a parameterized class of imitation dynamics in which the pa-
rameter 0 ≤ α ≤ 1 yields the replicator dynamic with α = 1 and the imitate-
the-better dynamic with α = 0. Our study includes (1) a detailed analysis of
how different imitation dynamics can affect risk behavior when agents make
sequential choices, and (2) simulations, using several different imitation dy-
namics, of simple evolutionary lottery games in which agents make sequential
choices among lotteries that have equal expected value but different risks. Our
results demonstrate that for every population dynamic in this class except for
the replicator dynamic, the interplay between risk-taking and sequentiality of
choices allows state-dependent risk behavior to have an evolutionary advan-
tage over expected-value maximization.

Our study provides a starting point for further investigation of how popula-
tion dynamics influence risk behavior in evolutionary game environments. We
anticipate that state-dependent risk behavior will outperform expected-value-
maximizing strategies in a wide variety of evolutionary game environments
involving sequential choices of different risks.

The remainder of this article is organized as follows. Section 2 provides
a brief background on human decision making under risk and evolutionary
game theory. Section 3 introduces our evolutionary game model, including the
lottery game we use to study risk behavior and the imitation dynamics we are
interested in. Section 4 provides theoretical analysis and predictions of how we
expect different risk behavior to perform in different environments. Section 5
presents our experimental simulations and results. Finally, Section 6 provides
concluding remarks.

2. BACKGROUND

2.1 Human Decision Making Under Risk

Human decision making under risk is the subject of much research effort in the
social sciences. In most of the existing literature on models of human decision
making under risk, the construction of such models is approached primarily
through the analysis of a decision maker’s choices among lotteries that have
different payoff distributions, and thus potentially different risks. Under the
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most traditional model of decision making, expected utility theory, a rational
agent’s preferences can be modeled by assigning to each possible outcome a
number called the outcome’s utility; and a rational choice is one that maxi-
mizes the expected utility of the outcomes [von Neumann and Morgenstern
1944]. Empirical evidence of human decision making under risk shows that
humans are sometimes risk-averse, sometimes risk-seeking, and even behave
in ways that systematically violate the axioms of expected utility [Kahneman
and Tversky 1979]. Expected utility theory can account for different attitudes
towards risk through certain von Neumann-Morgenstern utility functions (e.g.,
Friedman and Savage [1948]). Such risk propensities can differ greatly from
simple expected-value considerations on prospective outcomes.

Researchers have invested much effort in constructing utility functions that
appropriately model human decision making using risk using the expected-
utility model (e.g., Friedman and Savage [1948]; Arrow [1971]; Rabin [2000]).
Related efforts in economics have aimed to describe the preferences of humans
over inter-temporal lotteries, recognizing the effects of temporally successive
lotteries on risk preferences [Epstein and Zin 1989, 1991]. Other studies de-
fine utility functions that take into account inter-personal or population com-
parisons [Abel 1990]. Yet other researchers have constructed alternative de-
scriptive theories of decision making that claim to correspond more closely to
how humans make decisions involving risk. Among the most popular of these
models are prospect theory [Kahneman and Tversky 1979; Tversky and Kah-
neman 1992], regret theory [Loomes and Sugden 1982], and SP/A (Security-
Potential/Aspiration) theory [Lopes 1987, 1990; Lopes and Oden 1999]. One ad-
vantage of these models is that they more explicitly or perhaps more naturally
model some of the mechanics involved in human decision-making processes.
For example, state-dependent attitudes toward risk are modeled in prospect
theory by using a reference point with respect to which prospective outcomes
can be interpreted as potential gains or losses, and are modeled in SP/A theory
by including an aspiration level as an additional decision criterion in decisions
involving risk. A common theme of both Prospect theory and SP/A theory is
that agents are risk-averse when they have done well relative to some reference
point and risk-seeking when they have not done well relative to the reference
point.

2.2 Evolutionary Game Theory and Risk Behavior

Evolutionary game theory has been used to study and explain a great vari-
ety of social and cultural phenomena. Examples of such phenomena studied
through evolutionary games include altruism [Axelrod and Hamilton 1981; Ri-
olo et al. 2001; Bowles and Gintis 2004], trust [Fang et al. 2002; Kimbrough
2005], fairness [Binmore 1998], empathy [Page and Nowak 2002], and social
learning [Schotter and Sopher 2003]. The social science literature is filled with
examples of empirical studies showing that humans violate the strong ratio-
nality assumptions of classical game theory. Evolutionary game theory is thus
an attractive framework under which to model human behavior in such do-
mains because the assumption of perfectly rational agents is not required.
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Furthermore, most game-theoretic work in economics, the focus of our
evolutionary-game-theoretic approach is not to define internal preferences and
whether or not agents satisfy these. Rather, the focus is to evaluate the prefer-
ences according to their evolutionary fitness (which is external).

Evolutionary game theory studies a population of agents making choices
according to an assigned strategy in a game that models a situation of interest.
After agents have played the game, they reproduce into the next generation
according to a reproduction function or population dynamic that, generally
speaking, increases the frequency of the types of agents that were successful in
the current generation. To study risk behavior in this framework, we can model
the situation of interest as a game in which agents are faced with choices among
lotteries of different risks. As described in Alexander [2009], these lotteries
dispense resources that are considered to be an objective quantity of which
(1) agents always want more than less and (2) interpersonal comparisons are
meaningful. The reproduction function defining the dynamics of strategies in
the population then acts directly on these resources.

2.3 Imitation Dynamics

Imitation dynamics are a class of population dynamics commonly used to model
the evolution of behaviors in societies [Hofbauer and Sigmund 1998; Nowak
and May 1992; Huberman and Glance 1993; Nowak et al. 1994; Eguluz et al.
2005]. The general framework for imitation dynamics is stated by Hofbauer
and Sigmund [1998] as follows.

We shall suppose that occasionally a player is picked out of the
population and afforded the opportunity to change his strategy. He
samples another player at random, and adopts his strategy with a
certain probability.

In what follows, we will call these players the “observer” and the “observed
agent,” respectively.

Important theoretical studies have been done of two specific imitation dy-
namics. One of these is the replicator dynamic [Taylor and Jonker 1978; Schlag
1998, 1999; Hofbauer and Sigmund 1998; Gintis 2000], in which the probability
that the observer adopts the strategy of the observed agent is proportional to
how much more successful the observer was than the observed. The other is
the imitate-the-better dynamic [Blume 1993; Vega-Redondo 1997; Szabó and T
′′oke 1998; Riolo et al. 2001; Hauert and Szabo 2005; Dawid 2007; Traulsen and
Hauert 2009; Traulsen et al. 2007],1 in which the observer always adopts the
observed agent’s strategy if it was more successful than the observer’s strategy.2

Several experimental studies investigating social learning through imitation
between humans have found experimental support for Vega-Redondo’s model
[Huck et al. 1997, 2000; Offerman et al. 2002]. Experiments on human imitation
reported by Apesteguia et al. [2007] indicate that the difference in observed

1The imitate-the-better dynamic is sometimes called tournament selection [Riolo et al. 2001].
2Vega-Redondo [1997] generalizes the imitate-the-better dynamic by allowing the observer to
observe a collection of agents and adopt the strategy of the most successful agent in C.
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payoff to an agent’s own payoff does affect imitation (the higher the difference,
the more likely imitation occurs). This is more in line with Schlag’s model.
Due to this evidence for both imitation models, in this article we explore a
parameterized range of imitation dynamics based on a definition in Hofbauer
and Sigmund [1998] that includes the replicator dynamic, the imitate-the-
better dynamic, and a spectrum of other dynamics in between these two.

3. EVOLUTIONARY GAME MODEL

In previous work we have proposed the sequential lottery game, a class of
games that we use to investigate risk behavior under evolutionary pressures
[Roos and Nau 2009, 2010b]. In this section we describe this sequential lottery
game and the particular range of imitation dynamics under which we explore
the evolution of risk behavior.

3.1 Sequential Lottery Game

We consider a game in which agents acquire payoffs dispensed by lotteries. In
each generation, each agent must make a sequence of n choices where each
choice is between two lotteries: a safe lottery, whose payoff is always 4, and a
risky lottery, which one can win (a payoff of 8) with probability p, or lose (a
payoff of 0) with probability 1 − p.3 Note that if p = 0.5, both lotteries have
expected value 4.

Our population consists of agents that follow strategies chosen from the set
S = {s1, . . . , sk} of all possible pure strategies for the sequence of lottery choices.
In any generation, a vector x = (x1, . . . , xk) gives the state of the population,
where each xi is the proportion of agents in the population using strategy si.
We let π (i) denote the payoff accumulated in a generation from the n lottery
choices by agents of type i (i.e., agents following strategy si).

3.2 Imitation Dynamics in Our Evolutionary Games

As we discussed in Section 2.3, we want to explore a range of population dy-
namics that includes the replicator dynamic, imitate-the-better dynamic, and
other dynamics intermediate between these two extremes. Hofbauer and Sig-
mund [1998] give the following parameterized formula for these population
dynamics:

_xi = xi

∑
j

x j |π (i) − π ( j)|α sign(π (i) − π ( j)), (1)

where xi is the current proportion in the population of agents of type i, _xi is the
change in xi over time,4 and α ≥ 0 is a parameter that determines the particular

3The choice of payoffs here is arbitrary. The results in this article (see Sections 4 and 5) would be
qualitatively similar if we had used any fixed value v for the safe lottery’s payoff and v + δ and v − δ

(for fixed δ) for the risky lottery’s payoffs.
4As is common in the evolutionary game-theory literature, Hofbauer and Sigmund [1998] approx-
imate the current population as a real-valued function xi(t), where t is the current time, so that
_xi = dxi/dt.
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imitation dynamic. Our formulation is based on theirs, but incorporates the
following changes.

—We are interested in population dynamics based on payoff comparisons
among individuals as in Blume [1993]; Szabó and T ′′oke [1998], Riolo, Co-
hen, and Axelrod [2001]; Hauert and Szabo [2005]; Traulsen and Hauert
[2009]; Traulsen et al. [2007]; Dawid [2007]. To model payoff comparisons
among individuals, we must take into account the stochastic variability in
the payoffs to individual agents. We do this by treating π (i) and π ( j) as
discrete random variables representing the distributions of payoffs that an
agent of type i and an agent of type j receive from their lottery choices.

—The imitate-the-better dynamic and the replicator dynamic correspond to
α = 0 and α = 1, respectively. Since the imitation dynamics that interest us
are these two and and the ones that are intermediate between them, we only
consider 0 ≤ α ≤ 1.

If we let r and s be any possible payoff values acquired by agents of type i and
j, and let p(r, s) be the probability of obtaining this pair of values, then our
modified version of Eq. (1) is

_xi = xi

∑
j

x j∇α(i, j), (2)

where ∇α(i, j) = ∑
r
∑

s |(r − s)|α sign(r − s) · p(r, s) is the switching rate between
two agent types i and j. This switching rate determines the effect that a pairing
for imitation between agents of type i and j has, on average, on type i’s growth
rate in the population. For example, if ∇α(i, j) is positive, a pairing for imitation
between agents of type i and j (which happens with nonzero probability if
agents of type i and j exist in the population) on average has a positive effect
on i agents’ growth rate. If this is the case, we say i has an evolutionary
advantage over j.

4. THEORETICAL PREDICTIONS

In the two-choice sequential lottery game, there are six possible pure strategies.
These are listed in Table I.5

Table II gives each strategy, its possible numeric payoffs, and the probabil-
ities of these payoffs for the case where p, the probability of wining the risky
lottery, is 0.5. Note that in this case, all six strategies have the same expected
payoff value of 8, but they have differing probabilities of being above or below
8. For example, P[π (RWS) > 8] = 0.5 and P[π (RWS) < 8] = 0.25.

In this section, we examine how these strategies will perform against one
another for different population dynamics (Sections 4.1, 4.2, and 4.3) and for

5For simplicity, we have restricted our study to pure strategies. For lottery games like the ones
we are considering, the reproductive fitness of a mixed strategy should be intermediate among
the pure strategies in the mixed strategy’s support, hence the inclusion of mixed strategies should
not have a substantial affect on our results. If the agents were interacting in a nonzero-sum game
rather than making simple choices among lotteries, then the inclusion of mixed strategies could
make a significant difference in the results but such games are beyond the scope of this article.
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Table I. All of the Possible Pure Strategies in Our Lottery Game When n = 2

Strategy 1st Lottery 2nd Lottery
SS choose safe choose safe
RR choose risky choose risky
SR choose safe choose risky
RS choose risky choose safe
RwS choose risky choose safe if 1st lottery was won, risky otherwise
RwR choose risky choose risky if 1st lottery was won, safe otherwise

Table II. Payoff Distributions of the Six Pure Strategies in the Sequential Lottery Game with
n = 2 and p = 0.5.

All six strategies have the same expected payoff, 8, but differing distributions. In this table and
others in this section, we use boldface numbers to denote payoff values, and nonboldface to

denote probabilities

RWS RWR SR RS SS RR
Payoff V 12 8 0 16 8 4 12 4 12 4 8 16 8 0
Prob. P(V) .5 .25 .25 .25 .25 .5 .5 .5 .5 .5 1 .25 .5 .25

different expected values of the lotteries (Section 4.4), culminating in an evolu-
tionary stability result for the RWS strategy (Section 4.5). Finally, Section 4.6
briefly discusses cases where n �= 2.

4.1 The Replicator Dynamic

We now show that under the replicator dynamic (α = 1), the switching rate
between any two agent types is equal to the difference in their expected payoffs.

PROPOSITION 4.1. Under the population dynamics given by Eq. (2) when
α = 1, ∇α(i, j) (the switching rate between any two agent types i and j) is
the difference between the expected payoffs of agents of type i and j (given by the
discrete random variables π (i) and π ( j)).

PROOF. Let r and s be possible payoff values acquired by agents of type i
and j, and let p(r, s) be the probability of obtaining this pair of values. With
α = 1,

∇α(i, j) =
∑

r

∑
s

|(r − s)|α sign(r − s) · p(r, s)

=
∑

r

∑
s

(r − s) · p(r, s) = EV(π (i) − π ( j)).

Assuming independence between payoffs, ∇α(i, j) = EV(π (i)−π ( j)) = EV(π (i))
− EV(π ( j)), and the proposition follows.

Since all strategies have the same expected payoff in this environment,
Proposition 4.1 tells us that the switching rate between any two strategies will
be 0. Consequently, all six of the preceding strategies will perform equally well
evolutionarily.

ACM Transactions on Intelligent Systems and Technology, Vol. 1, No. 1, Article 6, Publication date: October 2010.



6:8 • P. Roos et al.

Table III. Payoff Distribution for RWS vs. RR in the
Sequential Lottery Game with n = 2 and p = 0.5.

Entries in the table show give the probabilities that
each pair of payoffs occurs

RWS
12 8 0

RR
16 0.125 0.0625 0.0625
8 0.25 0.125 0.125
0 0.125 0.0625 0.0625

4.2 The Imitate-the-Better Dynamic

If we use the imitate-the-better dynamic (α = 0), then in Eq. (2), only the sign
of the payoff difference between two paired agents plays a role in determining
the switching rate; the magnitude of the difference is irrelevant. We can com-
pute the switching rate between two strategies by using the probabilities in
Table II to calculate the probability of each pair of payoffs occurrig. Table III
shows these values for the RWS vs. RR pairing. We can then use these prob-
abilities as the values of p(r, s) in Eq. (2) to calculate the switching rate, as
follows.

∇α(RWS, RR) = sign(0 − 0) · 0.0625 + sign(8 − 0) · 0.0625 + sign(12 − 0) · 0.125

+ sign(0 − 8) · 0.125 + sign(8 − 8) · 0.125

+ sign(12 − 8) · 0.25 + sign(0 − 16) · 0.0625

+ sign(8 − 16) · 0.0625 + sign(12 − 16) · 0.125

= 0.0625 + 0.125 − 0.125 + 0.25 − 0.0625 − 0.0625 − 0.125

= 0.0625.

Using similar calculations, we see that ∇0(RWS, SS) = 0.25, ∇0(RWS, RWR) =
0.0625, and ∇0(RWS, RS) = ∇0(RWS, SR) = 0. This suggests that RWS will be
able to consistently win an evolutionary competition against RR, RWR, or SS
and remain stable with SR and RS in this environment. The experimental
results in Section 5 verify this prediction.

4.3 Arbitrary α

For 0 ≤ α ≤ 1, we can calculate the switching rate in a method similar to the
previous section, combining the probabilities from Table II to get the values
of p(r, s) for Eq. (2). However, since both the sign and magnitude of the payoff
differences are now important, the calculation is slightly more complex. For
instance, the switching rate for the RWS vs. RR pairing is now as follows.

∇α(RWS, RR) = |0 − 0|α sign(0 − 0) · 0.0625 + |8 − 0|α sign(8 − 0) · 0.0625

+ |12 − 0|α sign(12 − 0) · 0.125 + |0 − 8|α sign(0 − 8) · 0.125

+ |8 − 8|α sign(8 − 8) · 0.125 + |12 − 8|α sign(12 − 8) · 0.25

+ |0 − 16|α sign(0 − 16) · 0.0625+|8 − 16|α sign(8 − 16) · 0.0625

+ y|12 − 16|α sign(12 − 16) · 0.125

= 4α(0.125) + 8α(−0.125) + 12α(0.125) + 16α(−0.0625).
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Fig. 1. Switching rate between RWS and each of the other five pure strategies for 0 ≤ α ≤ 1. A
positive switching rate indicates an evolutionary advantage of RWS against the other strategy (in
a population made up of solely the two strategies). We see that RWS has such an advantage over
all other strategies when 0 < α < 1, and all but SR and RS when α = 0.

Table IV. Payoff Distributions of the Six Pure Strategies in the
Sequential Lottery Game with n = 2 and 0 ≤ p ≤ 1

RWS RWR
Payoff V 12 8 0 16 8 4
Prob. P(V) p (1 − p)p (1 − p)2 p2 (1 − p)p (1 − p)

RS, SR SS RR
Payoff V 12 4 8 16 8 0
Prob. P(V) p (1 − p) 1 p2 2(1 − p)p (1 − p)2

Figure 1 shows how the switching rate between RWS and the other strategies
varies with α. We see that RWS has an advantage over all other strategies
for 0 < α < 1, suggesting that RWS should be able to win any evolutionary
competition in these environments. Again, this prediction is supported by the
simulation results in Section 5.

4.4 Arbitrary p

We now consider the case where p, the probability of winning the risky lottery,
is any number between 0 and 1 (while the risky lottery’s expected value is
between 0 and 8). Table IV gives the probability distributions for each pure
strategy.

We can also construct a new probability matrix for each pairing such as the
one for RWS vs. RR shown in Table V. We can then compute the switching rate
for our pairing as before. For example, the switching rate for RWS vs. RR is now
the following.

∇α(RWS, RR) = |0 − 0|α sign(0 − 0) · (1 − p)4

+ |8 − 0|α sign(8 − 0) · (1 − p)3 p

+ |12 − 0|α sign(12 − 0) · (1 − p)2 p
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Table V.
Payoff Distribution for RWS vs. RR in the Sequential

Lottery Game with n = 2 and Arbitrary p. Entries in the
Table Show Give the Probabilities That Each Pair of

Payoffs Occurs

RWS
12 8 0

RR
16 p3 (1 − p)p3 (1 − p)2 p2

8 2(1 − p)p2 2(1 − p)2 p2 2(1 − p)3 p
0 (1 − p)2 p (1 − p)3 p (1 − p)4

+ |0 − 8|α sign(0 − 8) · 2(1 − p)3 p

+ |8 − 8|α sign(8 − 8) · 2(1 − p)2 p2

+ |12 − 8|α sign(12 − 8) · 2(1 − p)p2

+ |0 − 16|α sign(0 − 16) · (1 − p)2 p2

+ |8 − 16|α sign(8 − 16) · (1 − p)p3

+ |12 − 16|α sign(12 − 16) · p3

= 4α(2(1 − p)p2 − p3) + 8α((1 − p)3 p − 2(1 − p)3 p − (1 − p)p3)

+ 12α(1 − p)2 p + 16α(1 − p)2 p2.

Notice that when p > 0.5, the risky lottery has a higher expected value
than the safe lottery, and the opposite is true when p < 0.5. Thus, RR has the
highest expected value when p > 0.5, and SS has the highest expected value
when p < 0.5.

Surprisingly, even though RWS has a suboptimal expected value when
p �= 0.5, by examining the switching rates, we can see that it still has an evo-
lutionary advantage over both SS and RR for many values of p and α. Figure 2
shows the values of p and α for which ∇α(RWS, RR) > 0 and ∇α(RWS, SS) > 0,
meaning that for these values of p and α, RWS has an evolutionary advantage
over expected-value maximizing strategies. Under the imitate-the-better dy-
namic (α = 0), the range is surprisingly large. For example, RWS outperforms
SS even when p = 0.4, and SS has a significantly higher expected value than
RWS. As α increases, the range shrinks at a roughly linear rate, disappearing
at α = 1 (i.e., the replicator dynamic).

4.5 Evolutionary Stability of State-Dependent Risk Behavior

In this section, we discuss whether RWS is an evolutionarily stable strategy
(ESS) in the 2-lottery game, when p = 0.5 and 0 < α < 1. We first give the
classical definition of an ESS, explain why it cannot be directly applied to n-
lottery games when α �= 1, and propose an intuitive modification to make it
applicable. We then show that RWS fits our modified definition of an ESS.

4.5.1 Evolutionary Stability under Imitation Dynamics. In an evolution-
ary game, a population of agents using an evolutionarily stable strategy (ESS)
is resilient against a small invading population using any other strategy [Smith
1982]. According to Maynard Smith, strategy S is an ESS if for every strategy
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Fig. 2. The shaded area indicates values of p and α for which the switching rate between RWS
and the expected-value maximizing strategy (i.e., RR if p ≥ 0.5, SS otherwise) is greater than 0.
RWS is at a disadvantage in terms of expected utility when p �= 0.5, but it still manages to retain
its evolutionary advantage for a wide range of values.

T �= S, one of the following conditions holds:

— E(S, S) > E(T, S),
— E(S, S) = E(T, S) and E(S, T) > E(T, T),

where E(X, Y) is the expected payoff an agent receives by playing strategy X
against strategy Y [Smith 1982].

This definition does not apply directly to the n-lottery game because it as-
sumes we are using the replicator dynamic for which the expected payoff of
a strategy pairing is all that is necessary to determine whether one strategy
will perform better than the other. As shown in Section 4.4, with population
dynamics other than the replicator dynamic, the expected value of a pairing is
not sufficient to determine which strategy will perform better in the n-lottery
game. Thus, we will use the switching rate ∇α(X, Y) rather than E(X, Y) when
defining evolutionary stability for the n-lottery game under imitation dynam-
ics. We believe this is appropriate because if there are many agents using X
and few using Y, then

—∇α(X, X) > ∇α(Y, X) implies that X will grow faster playing against itself
than Y will grow playing against X, so Y will not be able to gain population
and will eventually die off;

—∇α(X, X) = ∇α(Y, X) and ∇α(X, Y) > ∇α(Y, Y) implies that X and Y grow at the
same rate when playing against X, but X grows faster than Y when playing
against Y, so Y will still not be able to gain population and will eventually
die off.

These scenarios correspond to the two conditions for X to be an ESS in the
classical definition.

Replacing expected value with switching rates in the preceding definition
gives us the following two conditions for S to be an ESS:

—∇α(S, S) > ∇α(T, S) or
—∇α(S, S) = ∇α(T, S) and ∇α(S, T) > ∇α(T, T)
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Fig. 3. Representation of the 2-lottery game as a game tree consisting of decision nodes in which
the agent chooses between a risky (R) and safe (S) lottery, lottery nodes, and terminal nodes, which
assign the agent its total payoff. Any strategy in this game can be represented as Sa,b,c,d, where
a, b, c, and d give the probabilities of choosing the risky lottery at each of the four corresponding
decision nodes.

for all T �= S. Since ∇α(S, S) = 0 and ∇α(S, T) = −∇α(T, S) for all S and T, we
can combine these conditions and define ESS in the n-lottery game as follows.

Definition 1. A strategy S is an evolutionarily stable strategy (ESS) in the
n-lottery game if, for any strategy T �= S, ∇α(S, T) > 0.

4.5.2 RWS is Evolutionarily Stable. In this section, we show that RWS is
an ESS by Definition 1 for the 2-lottery game with p = 0.5 and 0 < α < 1. To
do this, we must show that it has a positive switching rate with an arbitrary
strategy. Therefore, our first step must be to devise a method for representing
an arbitrary strategy for the 2-lottery game. We have found that, if the decisions
an agent makes and the possible lottery outcomes are arranged into a game
tree as shown in Figure 3, then any strategy can be expressed as Sa,b,c,d, where
a, b, c, and d give the agent’s probability of choosing the risky lottery at each of
the four decision nodes indicated in the figure. For instance, the pure strategies
we have been dealing with thus far can be represented as follows (here, a “−"
in place of one of the four probabilities indicates that any value is acceptable
since the decision corresponding to that probability is never reached).

—SS is S0,−,−,0

—RR is S1,1,1,−
—RS is S1,0,0,−
—SR is S0,−,−,1

—RWS is S1,0,1,−
—RWR is S1,1,0,−
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We can now calculate the switching rate between RWS and an arbitrary
strategy Sa,b,c,d in terms of a, b, c, d, and α in the same way we calculated
∇α(RWR, RR) and ∇α(RWR, SS) in Section 4.3. This comes out to:6

∇α(RWR, Sa,b,c,d) =
[

1
8

(2 ∗ 8α − 12α − 4α)
]

(a(1 − c) + (1 − a)d) (3)

+
[

1
4

(2 ∗ 4α − 8α)
]

(1 − a)(1 − d)

+
[

1
16

(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)
]

ab.

The three bracketed terms are all strictly greater than 0 for 0 < α < 1; in fact,
they are identical to the curves in Figure 1 for SR/RS, SS, and RR, respectively.
Intuitively, this says that the switching rate for the arbitrary strategy is just
the probability that the strategy follows the pure strategies SS, SR, RS, and RR,
times the switching rate between RWS and each of those strategies. Given that
the bracketed terms are strictly positive, it is easy to see that ∇α(RWR, Sa,b,c,d) >

0 unless a = 1, b = 0, and c = 1. Since S1,0,1,− is equivalent to RWS, this means
that ∇α(RWR, Sa,b,c,d) > 0 for all Sa,b,c,d �= RWS. Thus, RWS is an evolutionarily
stable strategy by Definition 1.

4.6 Other Values of n

With the exception of Section 4.5.1, our theoretical development has been
largely restricted to the case n = 2. We now discuss briefly what happens
for other values of n.

The case n = 1 is relatively trivial: there are only two pure strategies, both
are unconditional, and both perform equally well (for more details, see Roos
and Nau [2010a]).

The case n > 2 is very hard to analyze because the number of pure strategies
is super-exponential in n. However, intuition suggests that the behavior pattern
exhibited by RWS for n = 2, namely, to play it safe when having done well and
risky otherwise, should also have an advantage when n > 2. We discuss some
pilot experiments that support this in Section 5.3.

5. SIMULATIONS

To further investigate the population dynamics in a population consisting of all
pure strategies, we ran computer simulations of agent-based models playing
our two-choice evolutionary lottery game. These simulations and results are
described in the next section.

5.1 Setup and Implementation

Our simulations for the two-choice lottery game environment explore popula-
tion evolution under a variety of parameter combinations of α (the imitation
parameter) and p (the probability of winning the risky lottery). The types of

6We give a full derivation in the appendix.
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Fig. 4. Pseudocode for the pairwise comparison imitation process used to reproduce agents into
the next generation in our evolutionary simulations. Takes parameter 0 ≤ α ≤ 1.

agents included were the six pure strategies for the two-choice game described
earlier. All simulations started with an initial population of 1000 agents for
each agent type.

To model the imitation dynamics given by Eq. (2) in our finite population
agent-based model, we used a pairwise comparison process [Traulsen and
Hauert 2009] to model the transmission of strategies among agents. In each
generation, after all agents have received payoffs from chosen lotteries, each
agent i compares its (individual) payoff ρ(i) to that of a randomly drawn agent
from the population j (with payoff ρ( j)) and adopts the strategy of this agent
with a probability q if ρ( j) > ρ(i). In order to achieve the parameterized dy-
namics given by Eq. (1) in our agent-based model, we use

q = [|ρ( j) − ρ(i)|/�ρ]α, 0 ≤ α ≤ 1,

where �ρ is the highest possible difference in payoff. Figure 4 provides pseu-
docode on how this pairwise comparison imitation process was implemented.

5.2 Results

Figure 5(a,b,c) shows the results for simulations with p = 0.5 for each α = 1
(the replicator dynamic), α = 0 (the imitate-the-better dynamic), and α = 0.5.
Each plot is an average over 20 simulation runs (the amount of variation from
one run to another was quite small). These experiments confirm our analysis
from Section 4.3, which shows that RWS has an evolutionarily advantageous
risk behavior under any 0 ≤ α < 0.

As predicted by our analysis, RWS outperformed the other strategies evolu-
tionarily except when α = 1.

—For α = 1, all of the strategies performed equally well and remained at their
initial population counts.

—For α = 0, the state-dependent strategy RWS outperformed the other strate-
gies. RWS rose in population proportion relatively quickly to comprise the
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a) α )b1= α = 0

c) α = 0�5

Fig. 5. Results of simulations l α values for the population dynamic and p = 0.5. Each plot shows
the number of agents of each type over the course of evolution for 500 generations. Simulation runs
for α = 0.2, 0.4, 0.6, and 0.8 produced qualitatively identical results to the case of α = 0.5.

majority (> 2/3) of the population and remained there throughout subse-
quent generations. Furthermore, the two unconditional strategies SR and
RS remained, comprising the proportion of the population not taken over by
RWS.

—For α = 0.5, the RWS agent population grew similarly as for α = 0, but here
RWS also had an advantage against SR and RS (as indicated by Figure 1)
and thus continued to grow to comprise 100% of the population.

We also ran simulations with α = 0.2, 0.4, 0.6, and 0.8. The results for these
α values are all essentially equal to the case of α = 0.5. The only difference
is that the rate at which RWS grows to take over the population is inversely
related to α (i.e., for larger α values, it takes longer for RWS to take over the
population).

In order to explore lottery games in which the risky lottery has a different
expected value than the safe lottery, we also ran experiments with p = 0.3,
0.4, 0.55, and 0.7. These values were chosen because for α = 0, two of them
lie within (p = 0.4, 0.55), the shaded area of Figure 2, and the other two
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a) p = 0� )b3 p = 0�4

c) p = 0� )d55 p = 0�7

Fig. 6. Results of simulations with four different p values for the risky lottery and α = 0. Each
plot shows the number of agents of each type over the course of evolution for 500 generations.

(p = 0.3, 0.7) lie outside this area. Recall that the shaded area is the region for
which our analysis predicts that RWS has an evolutionary advantage over the
expected-value-maximizing strategy, and the unshaded areas are regions for
which our analysis predicts the reverse.

As shown in Figure 6(a,b,c,d), the simulation results confirm the theoretical
predictions. More specifically:

—for p = 0.2 (Figure 6(a)), SS is the expected-value maximizing strategy and
it takes over the population;

—for p = 0.7 (Figure 6(d)), RR is the expected-value maximizing strategy and
it takes over the population;

—even though SS is the expected-value-maximizing strategy for p = 0.4
(Figure 6(b)) and RR is for p = 0.55 (Figure 6(c)), in both cases RWS has
an evolutionary advantage and takes over the population.

In Figures 6(b,c,d), some fluctuations occur before stabilization. These occur be-
cause of the differing amounts of evolutionary advantage that different strate-
gies have over others. For example, a strategy a may grow in number temporar-
ily because it has an advantage over another strategy b. But once b becomes
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Table VI. Pure Strategies Included in Our Lottery Game Simulations for
n = 4

Strategy Behavior
SSSS always choose safe
RRRR always choose risky
SSRR choose safe in lotteries 1 & 2, then choose risky in 3 & 4
RRSS choose risky in lotteries 1 & 2, then choose safe in 3 & 4
RRWSS choose risky in lotteries 1 & 2,

then choose safe in 3 & 4 only if 1 & 2 were won, else choose risky
RRWRR choose risky in lotteries 1 & 2,

then choose risky in 3 & 4 only if 1 & 2 were lost, else choose safe

extinct (or sufficiently small in number), a will diminish because some other
strategy c has an advantage over a.

5.3 Simulations for n > 2

In Section 4.6, we hypothesized that RWS’s behavior pattern, namely, to be risk-
averse when it has done well and risk-seeking when it has done badly, may be
advantageous in lottery games with n > 2. To test this hypothesis, we ran a
pilot experiment for the case n = 4, using the six strategies shown in Table VI.

For our simulations, we used an initial population of 1000 agents of each
type, and the parameters p = 0.5 for the risky lottery and α = 0 for the
population dynamic. The results were qualitatively the same as the ones in
Figure 5(c): the RRWSS strategy dominated the other strategies and grew to
comprise 100% of the population. This would seem to confirm our hypothesis,
but since there are hundreds of pure strategies when n = 4 and we only looked
at six of the simpler ones, the result should be regarded as purely preliminary.

6. CONCLUSIONS

Our results show that for imitation dynamics other than the pure replicator
dynamic, there are evolutionary game environments in which the RWS strat-
egy has an evolutionary advantage over expected-value maximization. Since
RWS’s risk-taking behavior is similar to the risk preferences captured in several
prominent models of human decision making, this suggests that population dy-
namics other than the replicator dynamic may model an important mechanism
for the emergence of those risk preferences.

There are several ways in which our work could be extended.

—Our study was restricted to simple lottery games in order to avoid confound-
ing factors that may be present in more complex social games (e.g., trust,
reputation, kinship, etc.). It would be interesting to explore the relationships
among reproduction dynamics, risk preferences, and social interactions such
as cooperation. We have already begun some work along this line: Roos and
Nau [2010a] shows that risk behavior similar to RWS can promote the evo-
lution of cooperation in a situation where the cooperation requires a risky
decision (namely, choosing to cooperate).

—It will be important to examine other population dynamics in which a strat-
egy’s reproductive success is not always proportional to its expected payoff.
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For example, if a death rate (e.g., Nowak and Sigmund [1993]) is implemented
as a payoff-dependent threshold function, we might expect risk propensities
to differ depending on whether an agent is above or below that threshold
in a manner similar to behavior above or below an aspiration level in SP/A
theory.

—Our study focused on the case n = 2, that is, in each generation the agents
made two decisions. We believe that state-dependent risk preferences like
those of RWS should also have an advantage when n > 2, and Section 5.3
discussed some pilot experiments that support this intuition. Conducting
more extensive studies will be a topic for future work.

—We assumed a well-mixed population in which every agent was able and
equally likely to imitate any other. It would be interesting to explore the
possible effects of social or physical structures (that may guide or constrain
imitation) on the evolution of risk behavior.

—Finally, it may be useful to conduct empirical studies of which type of im-
itation dynamics best models human imitation propensities. The insights
of this article combined with such knowledge have potential application in
domains where human decision making under risk is of interest, including
economics, medicine, military and public policy.

APPENDIX

In this section, we present the derivation of ∇α(RWS, Sa,b,c,d) used in Section 4.5.
Using Table IV and Figure 3, we can determine the probability of each pair of
payoffs occurring and use them for the values of p(r, s) as follows.

∇α(RWS, Sa,b,c,d) = |12 − 8|α(p)(apb(1 − p) + apc(1 − p) + (1 − a)(1 − d))

+ |12 − 4|α(p)(a(1 − p)(1 − c) + (1 − a)d(1 − p))

+ |12 − 0|α(p)(a(1 − p)c(1 − p))

+ |8 − 4|α(p(1 − p))(a(1 − p)(1 − c) + (1 − a)d(1 − p))

+ |8 − 0|α(p(1 − p))(a(1 − p)c(1 − p))

− |16 − 12|α p(apbp)

− |16 − 8|α(1 − p)p(apbp)

− |16 − 0|α(1 − p)2(apbp)

− |12 − 8|α(1 − p)p(ap(1 − b) + (1 − a)dp)

− |12 − 0|α(1 − p)2(ap(1 − b) + (1 − a)dp)

− |8 − 0|α(1 − p)2(apb(1 − p) + a(1 − p)cp + (1 − a)(1 − d))

− |4 − 0|α(1 − p)2(a(1 − p)(1 − c) + (1 − a)d(1 − p))

Since we are considering the case where p = 0.5, we can collect terms as though
p = (1 − p) (for ease of exposition we will wait to substitute 0.5 for p):

∇α(RWS, Sa,b,c,d) = |16|α(0 − abp4) + |12|α(acp3 − a(1 − b)p3 − (1 − a)dp3)

+ (|4|α p − |8|α p2)(abp2 + acp2 + (1 − a)(1 − d))

+ (|8|α p + |4|α p2 − |4|α p2)(a(1 − c)p + (1 − a)dp)
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+ |8|α(acp4 + abp4)

+ |4|α(0 − abp3 − a(1 − b)p3 − (1 − a)dp3),

which yields

∇α(RWS, Sa,b,c,d) = −|16|α(abp4) + |12|α(acp3 − a(1 − b)p3 − (1 − a)dp3)

+ |8|α(acp4 + a(1 − c)p2 + (1 − a)dp2

− abp4 − abp4 − acp4 − (1 − a)(1 − d)p2)

+ |4|α(abp3+acp3+(1 − a)(1 − d)p−abp3−a(1 − b)p3

−(1 − a)dp3),

which yields

∇α(RWS, Sa,b,c,d) = −|16|α(abp4) + |12|α(acp3 − a(1 − b)p3 − (1 − a)dp3)

+ |8|α(a(1 − c)p2+(1 − a)dp2−abp4−abp4−(1 − a)(1 − d)p2)

+ |4|α(acp3 + (1 − a)(1 − d)p − a(1 − b)p3 − (1 − a)dp3).

Recollecting terms gives us

∇α(RWS, Sa,b,c,d) = (12α + 4α)acp3 + 8αa(1 − c)p2

+ 4α(1 − a)(1 − d)p + 8α(1 − a)dp2

− (4α + 12α)(1 − a)dp3 − 8α(1 − a)(1 − d)p2

− (16α + 2 ∗ 8α)abp4 − (12α + 4α)a(1 − b)p3.

Substituting p = 1
2 and expanding the final term, we get

∇α(RWS, Sa,b,c,d) = 1
8

(12α + 4α)ac + 1
4

8αa(1 − c)

+ 1
4

(2 ∗ 4α − 8α)(1 − a)(1 − d) + 1
8

(2 ∗ 8α − 4α − 12α)(1 − a)d

− 1
16

(16α + 2 ∗ 8α)ab−1
8

(12α+4α)a+1
8

(12α+4α)ab,

which yields

∇α(RWS, Sa,b,c,d) = 1
8

(12α + 4α)(ac − a) + 1
4

8αa(1 − c)

+ 1
4

(2 ∗ 4α − 8α)(1 − a)(1 − d) + 1
8

(2 ∗ 8α − 4α − 12α)(1 − a)d

+ 1
16

(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab.

Since (ac − a) = −a(1 − c), this yields

∇α(RWS, Sa,b,c,d) = 1
8

(2 ∗ 8α − 4α − 12α)a(1 − c)

+ 1
4

(2 ∗ 4α − 8α)(1 − a)(1 − d) + 1
8

(2 ∗ 8α − 4α − 12α)(1 − a)d

+ 1
16

(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab.
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Finally, recollecting terms gives us

∇α(RWS, Sa,b,c,d) = 1
8

(2 ∗ 8α − 12α − 4α)(a(1 − c) + (1 − a)d)

+ 1
4

(2 ∗ 4α − 8α)(1 − a)(1 − d)

+ 1
16

(2 ∗ 12α + 2 ∗ 4α − 2 ∗ 8α − 16α)ab,

which matches Eq. (3).
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