
A Stochastic Language for Modelling Opponent Agents

Gerardo Simari Amy Sliva Dana Nau V.S.Subrahmanian
University of Maryland

College Park, Maryland, USA
{gisimari,asliva,nau,vs}@cs.umd.edu

ABSTRACT
There are numerous cases where a reasoning agent needs to
reason about the behavior of an opponent agent. In this pa-
per, we propose a hybrid probabilistic logic language within
which we can express what actions an opponent may take
in a given situation. We present the syntaxis and semantics
of the language, and the concept of a Maximally Probable
Course of Action.

Categories and Subject Descriptors
I.2 [Computing Methodolgies]: Artificial Intelligence

Keywords
Logic for agent systems, Formal models of agency

1. INTRODUCTION
There are numerous multiagent applications where we need

to build a model of an opponent agent. For example, con-
sider a computer implementation of a multi-player game
such as Diplomacy or Civilization — in such a game, a hu-
man (or agent) player may wish to have a model of how
another player might play in order to decide on the best
move or moves. Likewise, in strategic decision making ap-
plications such as negotiations, it is a good idea to have one
or more models of how an opponent might behave.

Alternatively, we have been building an application for
reasoning about the actions that certain tribes involved in
the opium business in the Pakistan Afghanistan borderlands
might take. We have been developing a set of rules that
would allow us to predict what possible reactions could arise
when US forces take certain actions. This has clear benefits
as US forces would like to take those actions that have a
desirable outcome with a high probability.

The two classes of applications - games and real world
cultural reasoning scenarios - have one significant difference.
Games are limited in scope and are governed by strict rules.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Cultural models are less strict and operate under very dif-
ferent rules. Second, and more important, in the case of
games, one can try to mine rules automatically from large
collections of past games. In the case of cultural models, this
is far harder. We are yet to see a single mined collection of
rules dealing with any culture at all.

Moreover, most opponent models are handcrafted in a lan-
guage that is selected on a case by case basis. In this paper,
we develop a single uniform language called SOMA within
which opponent models may be expressed by a human for a
wide variety of applications ranging from automated game
playing programs to strategic adversarial reasoning prob-
lems. Of course, in the case of games, automatically extract-
ing models from past histories is relatively easy compared to
performing similar extractions in cases where relevant his-
tories are harder to find.

In Section 2, we develop a formal syntax for SOMA-programs.
Section 3 develops a formal model-theoretic semantics for
SOMA-programs, and Section 4 includes a declarative defi-
nition of the ‘most probable course of action” (MPCOA) for
the opponent.

2. SYNTAX OF SOMA-RULES
Throughout this paper, we assume the existence of a rea-

soning agent which wishes to model and reason about an
opponent agent. At any given point in time, the reasoning
agent may have a state. This state may allow it to, for
example, record the actions she has observed an opponent
making and/or include the beliefs of the reasoning agent.
Without loss of generality, we will assume that the state
of the reasoning agent is logically describable using an al-
phabet consisting of a finite set of predicate symbols (each
with an associated arity), a finite set of constant symbols,
and an infinite set of variable symbols. We assume that no
function symbols are present. As usual, a term is either a
constant symbol or a variable symbol. If p is an n-ary pred-
icate symbol and t1, . . . , tn are all terms (resp. constants),
then p(t1, . . . , tn) is an atom (resp. ground atom). The ob-
servable state at any given point in time is a set of ground
atoms.

In addition, the reasoning agent believes in the existence
of some finite set of elementary actions that the opponent
can take. This set is represented by a finite set A of symbols
A called action symbols disjoint from the set of predicate
symbols. Every a ∈ A has an associated arity; if a is an
n-ary action symbol, and t1, . . . , tn are all terms (resp. con-
stants), then a(t1, . . . , tn) is an action atom (resp. ground
action atom).

 244

G. Simari, A. Sliva, V. Subrahmanian, and D. Nau. A stochastic language
for modeling opponent agents. In International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2006.

Definition 2.1 (action formula). Every action atom
is an action formula. If P and Q are action formulas, then
so are (P ∧ Q), (P ∨ Q), and ¬P .

An action formula denotes a complex action. For example,
¬a is the action where the opponent does not perform a.
(a ∧ b) is the complex action where the opponent does both
a and b.

Definition 2.2 (SOMA-rule). If B1, . . . , Bn are atoms,
0 ≤ ! ≤ u ≤ 1 are probability values, and P is an action for-
mula, then

P : [!, u] ← B1 ∧ . . . ∧ Bn

The above rule is an elementary SOMA-rule if P is an action
atom.

Intuitively, suppose S is the current state of the reasoning
agent (including any beliefs about the opponent agent). The
above rule states that if the state S satisfies all the atoms
B1, . . . , Bn, then the opponent agent will take action(s) P
with a probability between ! and u.

Definition 2.3 (SOMA-program). A (elementary)
SOMA-program is a finite set of (elementary) SOMA-rules.

Here is an (admittedly simplistic) example of a simple SOMA-
program – a more sophisticated and carefully developed pro-
gram of this kind that extracts the rules using sample data
such as Gallup poll data might enable an unprincipled politi-
cian to determine what stances will get him votes.

Example 2.1. Consider a simple example involving pol-
itics. By examining a set of surveys, we might be able to
write down a set of rules applicable to an arbitrary member
m of the population (opponent) as follows:

vote myway : [0.2, 0.3] ← democrat.

vote myway : [0.3, 0.6] ← promise cut tax.

¬vote myway : [0.3, 0.9] ← promise cut tax.

The first rule says that I (the reasoning agent) expect m to
vote for me with 20 to 30% probability if I am a democrat.
The probability goes up to 30 to 60% if I promise a tax cut
(independently of whether I am a democrat or not). The
probability that the example citizen either does not vote for
me is 30 to 90% if I promise a tax cut.

SOMA-programs are variations of generalized probabilistic
(gp) logic programs [Ng and Subrahmanian 1993] - the heads
of SOMA-rules are more expressive than gp-logic program
rule heads, but conversely the bodies of gp-logic programs
are more expressive. The semantics of SOMA-programs builds
on that of gp-programs and is briefly described below.

3. SEMANTICS OF SOMA-RULES
A reasoning agent can use a SOMA-program to represent

its beliefs about an opponent agent and estimate what the
opponent might do in a given situation.

A course of action (COA for short) that the opponent
might take is any finite set of ground action atoms. Suppose
C is the set of all possible courses of action. We assume
the existence of a function φ which takes a course of action
and a state as input, and returns either 0 or 1 denoting

whether the course of action is feasible or not (a course of
action may be infeasible, for example, if the actions in it are
mutually incompatible or if the actions cannot be executed
in the current state due to pre-conditions that do not hold
or if the the new state that results does not satisfy some
integrity constraints). In the following, we will write gr(A)
to denote the set of all ground action atoms. We first define
what it means for a COA to satisfy an action formula P .

Definition 3.1. A course of action C satisfies a ground
action formula P , denoted C &→ P if:

1. P is an action atom and P ∈ C, or

2. P has the form P1 ∧ P2 and C satisfies P1 and P2, or

3. P has the form P1 ∨ P2 and C satisfies P1 or P2, or

4. P has the form ¬P1 and C does not satisfy P1.

A SOMA-interpretation defined below assigns a probability
to each COA.

Definition 3.2 (SOMA-interpretation). A SOMA-
interpretation I is a mapping from C to [0, 1] such that
ΣX∈CI(X) = 1.

Intuitively, I(X) represents the probability that the oppo-
nent will perform exactly those actions in X. Clearly, the
opponent must choose some course of action which is why
ΣX∈CI(X) = 1. Let us now return to our political example.

Example 3.1. We have two COAs: C1 = {};
C2 = {vote myway}. A SOMA-interpretation I0 may as-
sign 0.3 and 0.7 respectively to these two COAs.

Definition 3.3. Suppose S is a state and I is a SOMA-
interpretation. I is said to satisfy a ground rule

P : [!, u] ← B1 ∧ . . . ∧ Bn

with respect to state S iff

1. {B1, . . . , Bn} (⊆ S or

2. ! ≤ Σφ(C,S)=1∧C #→P I(C) ≤ u.

We say that I satisfies a rule if and only if it satisfies all
ground instances of the rule.

Let us return to our political example.

Example 3.2. Consider the first rule of example 2.1 and
suppose the current state S0 = {democrat, promise cut tax}.
The first rule is not satisfied by the interpretation I0 of Ex-
ample 3.1 because I0(vote myway) = 0.7 /∈ [0.2, 0.3]. Had
the probability interval in the head of this rule been [0.5, 0.8],
then the rule would have been satisfied by I0.

We use the usual notion of consistency.

Definition 3.4 (consistency). A SOMA-program Π
is consistent with respect to state S if there is at least one
SOMA-interpretation that satisfies all rules in Π.

The following definition shows that we can associate a set
of linear constraints with any SOMA-program.

 245

Definition 3.5 (CONS(Π,S)). Suppose Π is a SOMA-
program and S is a state. The constraints associated with
Π, denoted CONS(Π,S) associates a variable pi with each
course of action Ci (denoting the probability of Ci) and are
defined as follows:

1. If

P : [!, u] ← B1 ∧ . . . ∧ Bn

is a ground instance of a rule in Π and {B1, . . . , Bn} ⊆
S, then the constraint:

! ≤ Σφ(Ci,S)=1∧Ci #→P pi ≤ u

is in CONS(Π,S).

2. Σφ(Ci,S)=1pi = 1 is in CONS(Π,S).

Example 3.3. Consider the “political” example shown in
Example 2.1 and suppose the state in question is
S0 = {democrat, promise tax cut}. Let C1 and C2 be the
two COAs from Example 3.1. The constraints in this case
are:

0.2 ≤ p2 ≤ 0.3;
0.3 ≤ p2 ≤ 0.6;
0.3 ≤ p1 ≤ 0.9;
Σφ(Ci,S)=1pi = 1.

The following result shows that a SOMA-program Π is con-
sistent w.r.t. a given state iff the set CONS(Π,S) of con-
straints has a solution.

4. MAXIMALLY PROBABLE COAS
When a reasoning agent builds a SOMA-program about

another opposing agent, his goal is to determine what the
opponent will do in a given state. We define below, the
lower probability that the opponent will take a given course
of action.

Definition 4.1 (lower probability of a COA). Let
Π be a SOMA-program and S be a state. The lower proba-
bility, low(Ci) of course of action Ci is defined as follows:

1. low(Ci) = 0 if φ(Ci,S) = 0, i.e. Ci is not valid.

2. Otherwise, low(Ci) = minimize pi subject to CONS(Π,S).

The upper probability, up(Ci) of course of action Ci can be
defined in a similar manner. Note that for an given course
of action C, we cannot exactly determine the probability
that the opponent will do C. This is true even if all rules
in Π have a point probability in the head — this is because
our framework does not make any simplifying assumptions
(e.g. independence) about the probability that the agent
will perform action b, given that he will do action a.

The following example explains what happens in the sit-
uation of our political example and the state S0 introduced
in example 3.1.

Example 4.1. As we saw in example 3.3, there are 4 con-
straints that must be satisfied at once in order to find an in-
terpretation that satisfies all rules in Π with respect to S. It
can be seen that low(C1) = 0.3, and low(C2) = 0.3. Similar
calculations lead to up(C1) = 0.9, and up(C2) = 0.3.

5. RELATEDWORK
We are not aware of much work on probabilistic agent

reasoning - the work that exists focuses on agents that are
reasoning about an uncertain state and trying to figure out
how best to act in such a situation. However, there are a
few relevant works that we build on top of.

[Gmytrasiewicz and Durfee 1992] have developed a logic
of knowledge and belief to model multiagent coordination.
Their framework permits an agent to reason not only about
the world and its own actions, but also to simulate and
model the behavior of other agents in the environment. In
an earlier paper, they show how one agent can reason with
a probabilistic view of the behavior of other agents so as to
achieve coordination.

[Dix et al. 2000] develop a model of probabilistic agents on
top of legacy code — in their framework, an agent reasons
about uncertainty in its state. However, there is no uncer-
tainty about what the agent will do. A subsequent work by
these authors [Dix et al. 2005] extends this framework to
the case of temporal probabilistic reasoning agents that can
reason with uncertainty about when certain things will be
true in the state.

6. CONCLUSIONS AND FUTUREWORK
In this paper, we have presented a hybrid logic/statistical

language called SOMA within which a reasoning agent can
represent knowledge about the probability that an opponent
agent may take one or more actions. We have developed a
formal model theoretic semantics for such agents.

In the full version of this paper, we make several addi-
tional contributions: first, we prove that checking consis-
tency of SOMA-programs is NP-hard. We have identified
syntactic fragments of SOMA-agents for which consistency
checking is polynomial. We show that checking if a given
course of action has a probability exceeding a given thresh-
old is NP-hard. We have developed an exact algorithm to
find an MPCOA and several heuristic algorithms that can
approximate the most probable course of action very quickly
and with high degrees of accuracy.

7. REFERENCES
Dix, J., Nanni, M., and Subrahmanian, V. 2000.
Probabilistic agent reasoning. ACM Transactions of
Computational Logic 1, 2, 201–245.

Dix, J., Kraus, S., and Subrahmanian, V. 2004.
Heterogeneous temporal probabilistic agents. ACM
Transactions of Computational Logic 5(3).

Gmytrasiewicz, P. and Durfee, E. 1992. A Logic
of Knowledge and Belief for Recursive Modeling. In
Proceedings of the 10th National Conference on
Artificial Intelligence. AAAI Press/MIT Press, San
Jose, CA, 628–634.

Hanks, S. and McDermott, D. 1994. Modeling a
dynamic and uncertain world I: Symbolic and,
probabilistic reasoning about change. Artificial
Intelligence 65(2), 1–55.

Ng, R. and Subrahmanian,V.S. 1993. A
Semantical Framework for Supporting Subjective and
Conditional Probabilities in Deductive Databases.
Journal of Automated Reasoning 10 (2), pps 191–235.

 246

