
Games: Planning and Learning, Papers from the 1993 Fall Symposium, AAAI Press, 1993.Strategic Planning for Imperfect-Information Games�Stephen J. J. Smith Dana S. NauComputer Science Department Computer Science Department andUniversity of Maryland Institute for Systems ResearchCollege Park, MD 20742 USA University of Marylandsjsmith@cs.umd.edu College Park, MD 20742 USAnau@cs.umd.eduAbstractAlthough game-tree search works well in perfect-information games, there are problems in tryingto use it for imperfect-information games such asbridge. The lack of knowledge about the oppo-nents' possible moves gives the game tree a verylarge branching factor, making the tree so im-mense that game-tree searching is infeasible.In this paper, we describe our approach for over-coming this problem. We develop a model ofimperfect-information games, and describe howto represent information about the game usinga modi�ed version of a task network that is ex-tended to represent multi-agency and uncertainty.We present a game-playing procedure that usesthis approach to generate game trees in which theset of alternative choices is determined not by theset of possible actions, but by the set of availabletactical and strategic schemes.In our tests of this approach on the game of bridge,we found that it generated trees having a muchsmaller branching factor than would have beengenerated by conventional game-tree search tech-niques. Thus, even in the worst case, the gametree contained only about 1300 nodes, as opposedto the approximately 6:01�1044 nodes that wouldhave been produced by a brute-force game treesearch in the worst case. Furthermore, our ap-proach successfully solved typical bridge problemsthat matched situations in its knowledge base.These preliminary tests suggest that our approachhas the potential to yield bridge-playing programsmuch better than existing ones|and thus we havebegun to build a full implementation.�This work supported in part by an AT&T Ph.D. schol-arship to Stephen J. J. Smith, Maryland Industrial Part-nerships (MIPS) grant 501.15, Great Game Products, andNSF grants IRI-8907890, NSFD CDR-88003012, and IRI-9306580.

IntroductionAlthough game-tree search works well in perfect-information games (such as chess (Berliner et al., 1990;Levy and Newborn, 1982), checkers (Samuel, 1967),and othello (Lee and Mahajan, 1990)), it does not al-ways work so well in other games. One example is thegame of bridge. Bridge is an imperfect-informationgame, in which no player has complete knowledgeabout the state of the world, the possible actions, andtheir e�ects. As a consequence, the branching factor ofthe game tree|and thus the size of the tree itself|isvery large. Searching this game tree is completely in-feasible, because the bridge deal must be played in justa few minutes (in contrast to a chess game, which cango on for several hours). Thus, a di�erent approach isneeded.In this paper, we describe an approach to this prob-lem, based on the observation that bridge is a gameof planning. The bridge literature describes a numberof tactical and strategic schemes for dealing with var-ious card-playing situations. It appears that there isa small number of such schemes for each bridge hand,and that each of them can be expressed relatively sim-ply. To play bridge, many humans use these schemesto create plans. They then follow those plans for somenumber of tricks, replanning when appropriate.We have taken advantage of the planning nature ofbridge, by adapting and extending some ideas fromtask-network planning. To represent the tactical andstrategic schemes of card-playing in bridge, we use in-stances of multi-agent methods|structures similar tothe task decompositions used in hierarchical single-agent planning systems such as Nonlin (Tate, 1976;Tate, 1977), NOAH (Sacerdoti, 1977), and MOLGEN(Ste�k, 1981), but modi�ed to represent multi-agencyand uncertainty. To generate game trees, we use aprocedure similar to task-network decomposition.This approach produces game tree in which the num-ber of branches from each state is determined not bythe number of actions that an agent can perform, butinstead by the number of di�erent tactical and strate-gic schemes that the agent can employ. If at each nodeof the tree, the number of applicable schemes is smaller

than the number of possible actions, this will result ina smaller branching factor, and a much smaller searchtree. For example, a prototype implementation of ourapproach produced game trees of no more than about1300 nodes in the worst case|a signi�cant reductionfrom the approximately 6:01� 1044 nodes that wouldhave been produced by a brute-force game tree searchin the worst case.Since our approach avoids generating all possiblemoves for all agents, it is in essence a type of forwardpruning. Although forward pruning has not workedvery well in games such as chess (Biermann, 1978;Truscott, 1981), our study of forward pruning (Smithand Nau, 1993) suggests that forward pruning worksbest in situations where there is a high correlationamong the minimax values of sibling nodes. We be-lieve that bridge has this characteristic. This encour-ages us to believe that our approach may work well inthe game of bridge|and a preliminary study of ourprototype implementation suggests that our approachcan do well on at least some bridge hands. To test thisidea further, we are developing a full implementationof the approach. Related WorkThe strongest work on bridge has focused on bidding(Gamback et al., 1990; Gamback et al., 1993). How-ever, there are no really good computer programs forcard-playing in bridge|most of them can be beatenby a reasonably advanced novice. The approachesused in current programs are based almost exclusivelyon domain-speci�c techniques. Some programs (suchas Great Game Products' Bridge Baron program) dodecision-making by repeatedly generating random hy-potheses for what hands the opponents might have,and doing a full game tree-search for each hypothe-sized hand|but this approach is feasible only late inthe game, after most of the tricks have been played.Some work has been done on extending game-treesearch to deal with uncertainty, including Horacek'swork on chess (Horacek, 1990), and Ballard's work onbackgammon(Ballard, 1983). However, these works donot deal with the kind of uncertainty that we discussedin the introduction, and thus it does not appear to usthat these approaches would be su�cient to accomplishour objectives.Wilkins (Wilkins, 1980; Wilkins, 1982) uses \knowl-edge sources" to generate chess moves for both theplayer and the opponent, and then chooses the moveto play by investigating the results. In their intent,these knowledge sources are similar to the multi-agentmethods that we describe in this paper. However, sincechess is a perfect-information game,Wilkins' work doesnot deal with uncertainty and incomplete information.Our work on hierarchical planning draws on Tate's(Tate, 1976; Tate, 1977) which in turn draws on Sac-erdoti's (Sacerdoti, 1974; Sacerdoti, 1990). In addi-tion, some of our de�nitions were motivated by those

in (Erol et al., 1992; Erol et al., 1993).A Model of Imperfect-InformationGamesIn this section, we describe a formalism for express-ing imperfect-information games having the followingcharacteristics:1. Only one player may move at at time.2. Each player need not have complete informationabout the current state S. However, each player hasenough information to determine whose turn it is tomove.3. A player may control more than one agent in thegame (as in bridge, in which the declarer controlstwo hands rather than one). If a player is in controlof the agent A whose turn it is to move, then theplayer knows what moves A can make.4. If a player is not in control of the agent A whose turnit is to move, then the player does not necessarilyknow what moves A can make. However, in thiscase the player does know the set of possible movesA might be able to make; i.e., the player knows a�nite set of moves M such that every move that Acan make is a member of M .Our motivating example is the game of bridge. Thespeci�c problem we wish to address is how the declarershould play the game after the bidding is over (i.e.,once trump suit has been chosen and one of the de-clarer's opponents has made an initial lead). Thereare four hands around the table; our player will playtwo hands (the declarer and the dummy), and two ex-ternal agents (the defenders) will play the other twohands. The two hands played by our agent are in fullview of our agent at all times; the two other hands arenot, hence the incomplete information.In order to talk about the current state S (or anyother state) in an abstract manner, we will consider itto be a collection of ground atoms (i.e., completely in-stantiated predicates) of some function-free �rst-orderlanguage L that is generated by �nitely many con-stant symbols and predicate symbols. We do not carewhether or not this is how S would actually be rep-resented in an implementation of a game-playing pro-gram.Among other things, S will contain informationabout who the players are, and whose turn it is tomove. To represent this information, we will considerS to include a ground atom Agent(x) for each playerx, and a ground atom Turn(y) for the player y whoseturn it is to move. For example, in the game of bridge,S would include the ground atoms Agent(North),Agent(South), Agent(East), and Agent(West). If itwere South's turn to move, then S would include theground atom Turn(South).We will be considering S from the point of view ofa particular player P (who may be a person or a com-

puter system). One or more of the players will be un-der P's control; these players are called the controlledagents (or sometimes \our" agents). The other play-ers are the uncontrolled agents, or our opponents. Foreach controlled agent x, we will consider S to include aground atom Control(x). For example, in bridge, sup-pose P is South. Then if South is the declarer, S willcontain the atoms Control(South) and Control(North).Since P is playing an imperfect-information game, Pwill be certain about some the ground atoms of S, anduncertain about others. To represent the informationabout which P is certain, we use a set of ground liter-als IS called P's state information set (we will write Irather than IS when the context is clear). Each pos-itive literal in IS represents something that P knowsto be true about S, and each negative literal in ISrepresents something that P knows to be false aboutS. Since we require that P knows whose turn it is tomove, this means that IS will include a ground atomTurn(y) for the agent y whose turn it is to move, andground atoms : Turn(z) for each of the other agents.For example, in bridge, suppose that P is South,South is declarer, it is South's turn to move, and Southhas the 6| but not the 7|. Then IS would contain thefollowing atoms (among others):Control(North), : Control(East),Control(South), : Control(West),: Turn(North), : Turn(East),Turn(South), : Turn(West),Has(South,6|), : Has(South,7|)Unless South somehow �nds out whether West hasthe 7|, IS would contain neither Has(West,7|) nor: Has(West,7|).In practice, P will know I but not S. Given a stateinformation set I, a state S is consistent with I if everyliteral in I is true in S. I� is the set of all statesconsistent with I.P might have reason to believe that some states inI� are more likely than others. For example, in bridge,information from the bidding or from prior play oftengives clues to the location of key cards. To representthis, we de�ne P's belief function to be a probabilityfunction p : I� ! [0; 1], where [0; 1] is the set of realsfalling between 0 and 1.To represent the possible actions of the players,we use STRIPS-style operators. More speci�cally, ifX0; X1; X2; : : : ; Xn are variable symbols, then we de-�ne a primitive operator O(X0;X1; X2; : : : ; Xn) to bethe following triple:11. Pre(O) is a �nite set of literals, called the precondi-tion list of O, whose variables are all from the setfX0; X1; X2; : : : ; Xng. Pre(O) must always includethe atoms Agent(X0) and Turn(X0).1The semicolon separates X0 from the rest of the argu-ments because X0 is the agent who uses the operator whenit is X0's turn to move.

2. Add(O) and Del(O) are both �nite sets of atoms(possibly non-ground) whose variables are all fromthe set fX0; X1; X2; : : : ; Xng. Add(O) is called theadd list of O, and Del(O) is called the delete list ofO.For example, in bridge, one operator might bePlayCard(P ;S;R), where the variable P represents theplayer (North, East, South or West), S represents thesuit played (|, }, ~, or �), and R represents therank (2, 3, : : : , 9, T, J, Q, K, or A). Pre(PlayCard)would contain conditions to ensure that player P hasthe card of suit S and rank R. Add(PlayCard) andDel(PlayCard) would contain atoms to express theplaying of the card, the removal of the card from theplayer's hand, and possibly any trick which may bewon by the play of the card.We de�ne applicability in the usual way, that is, aprimitive operator O is applicable in a state S if everyliteral in Pre(O) is in S. If an instantiation of a prim-itive operator (say O(a0; a1; a2; : : : ; an)) is applicablein some state Sa 2 I�, and if Control(a0) holds, thenwe require that the instantiation be applicable in allstates S 2 I�. This will guarantee that, as required,if P is in control of the agent a0 whose turn it is tomove, then P will have enough additional informationto determine which moves a0 can make. In bridge, forexample, this means that if P has control of South,and it is South's turn, then P knows what cards Southcan play.We de�ne S to be the set of all states. We de�ne Ito be the set of all state information sets.An objective function is a partial function f : S ![0; 1]. Intuitively, f(S) expresses the perceived bene�tto P of the state S; where f(S) is unde�ned, this meansthat S's perceived bene�t is not known. In bridge,for states representing the end of the hand, f mightgive the score for the participant's side, based on thenumber of tricks taken. For other states, f might wellbe unde�ned.Game-playing programs for perfect-informationgames make use of a static evaluation function, whichis a total function e : S ! [0; 1] such that if S isa state and f(S) is de�ned, then e(S) = f(S). Inimperfect-information games, it is di�cult to use e(S)directly, because instead of knowing the state S, allP will know is the state information set I. Thus, ourgame-playing procedure will instead use a distributedevaluation functione�(I) = XS2I� p(S)e(S):Intuitively, e�(I) expresses the estimated bene�t to Pof the set of states consistent with the state informationset I. Our game-playing procedure will use e� onlywhen it is unable to proceed past a state.22However, we can imagine that in time-sensitive situa-tions, one might want to modify our procedure so that it

These dotted linkslead o� to otherparts of the network,not shown here.Ru�(P ; S)Finesse(P ; S; R) GetRidOfALoser(P ; S)
FinesseBusts(P3 ;S)

Finesse234Results(P ; S; R)StandardFinesse(P ; S; R)Play(P ; S;R)Finesse4th(P3 ;S)FinesseSucceed(P3 ;S)FinesseFail(P3 ;S)
EasyFinesse(P ; S; R) BustedFinesse(P ; S;R)CrossIfNecessary(P0)LowFinesseLead(P0 ;S)

To other partsof the network To other partsof the networkFinesse2ndLow(P1 ;S)Figure 1: The part of the network of multi-agent methods for the game of bridge that deals with �nessing.A game is a pair G = (L;O) where L is theplanning language and O is a �nite set of operators.Given a game G, an problem in G is a quadrupleP = (IS0 ; p; f; e), where IS0 is the state informationabout an initial state S0, p is a belief function, f is anobjective function and e is a static evaluation function.For example, if G is the game of bridge, then the prob-lem P would be a particular hand, from a particularplayer's point of view. All the information required tocompute e� is expressed in e and p, thus we need notinclude e� in our de�nition of P .Networks of Multi-Agent MethodsWe de�ne a primitive operator method, or just op-erator method, M , to be a triple (Task(M), Pre(M),Op(M)), where1. Task(M) is a task. This may either be the ex-sometimes uses e� on nodes that it can proceed past, justas chess-playing computer programs use a static evaluationfunction rather than searching to the end of the game.
pression `NIL' or a syntactic expression of the formM (X0;X1; X2; : : : ; Xn) where each Xi is a variableof L.2. Pre(M) is a �nite set of literals, called the precon-dition list of M . Pre(M) must always include all ofthe literals in the precondition list of the operatorO(t0; t1; : : : ; tm), where O is as described below.3. Op(M) is a syntactic expression O(t0; t1; : : : ; tm),where O is an operator in O, and t0; t1; : : : ; tm areterms of L.As an example, the playing of a single card inthe game of bridge would probably be representedby a primitive operator method M . Task(M)might be PlayCardMethod(P ;S;R). Op(M) wouldbe the syntactic expression PlayCard(P ;S;R), wherePlayCard(P ;S;R) is the primitive operator describedin the previous section. Pre(M) would be identical tothe precondition list for PlayCard(P ;S;R).A decomposable method M is a triple (Task(M),Pre(M), Expansion(M)), where

Play(South; }, Q) Play(West; }, 4)Play(West; }, K)Play(West; |, 2)Play(West; �, 2) � � �� � �� � �� � �� � �Play(East; }, 3)Play(North; }, 2)Figure 2: A piece of the decision tree that might be generated by the �nessing part of the network of multi-agentmethods for the game of bridge.1. Task(M) is again either the expression `NIL' or asyntactic expression of the formM (X0;X1; X2; : : : ; Xn);where each Xi is a variable of L.2. Pre(M) is a �nite set of literals, called the precon-dition list of M . Pre(M) must always include theatom Agent(X0).3. Expansion(M) is a (possibly empty) tuple of tasks(T1(t1;1; t1;2; : : : ; t1;m1);T2(t2;1; t2;2; : : : ; t2;m2);� � � ;Tk(tk;1; tk;2; : : : ; tk;mk)):For example, Figure 1 shows part of the network ofmulti-agentmethods that we use for �nessing in bridge.In this �gure, each box represents a decomposablemethod.If an instantiation of a method (say M (a0; a1; a2;: : : ; an)) is applicable in some state Sa 2 I�, and ifControl(a0) holds, then we require that the instanti-ation be applicable in all states S 2 I�. This willguarantee that if P is in control of the agent a0 whoseturn it is to move, then P will have enough additionalinformation to determine which methods are applica-ble. In bridge, for example, this means that if P hascontrol of South, and it is South's turn, then P knowswhat strategic and tactical schemes South can employ.Let M be a set of operator methods and decom-posable methods. Then M is a network of multi-agentmethods (since the Expansions of methods serve to linkmethods, the term \network" is appropriate.)Game-Playing ProcedureOur game-playing procedure constructs a decision tree,then evaluates the decision tree to produce a plan forhow to play some or all of the game. It then executesthis plan either until the plan runs out, or until some

opponent does something that the plan did not antic-ipate (at which point the procedure will re-plan). Thedetails of the procedure are described in this section.Constructing a Decision Tree. Given a networkof multi-agent methods and a state information set I,our game-playing procedure uses these methods to con-struct a decision tree rooted at I.3 A decision treeresembles a game tree.4 It contains two kinds of non-leaf nodes: decision nodes, representing the situationsin which it is P's turn to move, and external-agentnodes, representing situations in which it is some ex-ternal agent's turn to move. The tree's leaf nodes arenodes at which the procedure does not have any meth-ods to apply, either because the game has ended, orbecause the methods simply don't tell the procedurewhat to do.Each node of the decision tree T will contain a stateinformation set and a sequence of 0 or more tasks tobe solved. Our procedure for creating T is as follows:3We use the term \decision tree" as it is used in the de-cision theory literature (French, 1986; Feldman and Yaki-movsky, 1974; Feldman and Sproull, 1977), to represent astructure similar to a game tree. We are not employingdecision trees (also, and less ambiguously, referred to ascomparison trees (Knuth, 1973)) as they are de�ned in thesorting literature (Cormen et al., 1990, p. 173). We apolo-gize for the confusion, but it is inescapable.4In the decision theory literature, what we call external-agent nodes are usually called chance nodes, because de-cision theorists usually assume that the external agent israndom. What we call leaf nodes are usually called con-sequence nodes, because they represent the results of thepaths taken to reach them.

Let the root node of T be a node containing the stateinformation set I and no tasks.loop:1. Pick a leaf node u of T such that u is not the endof the game and we have never tried to expand ubefore. If no such node exists, then exit, returningT . Otherwise, let Iu be the state information setin u, and U = (U1; U2; : : : ; Un) be the sequence oftasks in u.2. For each instantiated methodM that is applicableto u, let v be the node produced by applyingM tou. Install v into T as a child of u. (Below, we de-�ne the terms `instantiated method,' `applicable,'and `produced.')repeatAs an example of the operation of this procedure,Figure 2 shows a piece of a decision tree that the pro-cedure might generate for �nessing, using the networkshown in Figure 1.An instantiated method is any ground instance Mof some method M . Let u be a node whose state in-formation set is Iu and whose task sequence is U =(U1; U2; : : : ; Un). Then an instantiated method M isapplicable to u if the following conditions hold:1. Either U is empty and Task(M) is NIL, or Task(M)matches U1.2. Some state S consistent with Iu satis�es Pre(M),i.e., some state S 2 I�u satist�es Pre(M).If P is in control of the agent au whose turn it isto move at node u, and if one state S consistent withIu satis�es Pre(M), then all states S0 consistent withIu (i.e., all S0 2 I�u) satisfy Pre(M). We made thisproperty a requirement of our multi-agent methods inthe previous section.If P is not in control of the agent au whose turnit is to move at node u, then it is possible for onestate S1 consistent with Iu to satisfy Pre(M), whilesome other state S2 consistent with Iu does not sat-isfy Pre(M). In this case, our procedure will need tomake the assumption that Pre(M) holds, so that it caninvestigate what happens when some opponent makesa move using the instantiated method M . Other in-stantiated methods M1;M2; : : : ;Mm will investigatewhat happens in states where Pre(M) does not hold.For example, in Figure 2, before investigating themove Play(West; }, 4), our procedure would need tomake the assumption that West holds the 4}. Theprocedure would investigate the other moves for Westunder di�erent assumptions (say, that West holds theK}, or that West holds no cards in the } suit.)If M is applicable to u, then applying M to u pro-duces the node v whose state information set Iv andtask sequence V are as follows:� If M is a decomposable method, then Iv =Iu[Pre(M). Intuitively, Iv is Iu with all the con-ditions in Pre(M) assumed.

If M is an operator method, thenIv = [(Iu [Pre(M)) �Del(Operator(M))][Add(Operator(M)):Intuitively, Iv is Iu, with all the conditions inPre(M) assumed, and then all the conditions inDel(M) deleted, and all the conditions in Add(M)added.� If M is a decomposable method and Expansion(M)= (V1; V2; : : : ; Vm), then V = (V1; : : : ; Vm; U2; U3; : : :,Un). If M is an operator method, then V =(U2; U3; : : : ; Un). Intuitively, this corresponds tosaying that the tasks V1; V2; : : : ; Vm need to be solvedbefore attempting to solve the tasks U2; U3; : : :, Un.Evaluator and Plan Execution. Given a decisiontree T , P will want to evaluate this tree by assigninga utility value to each node of the tree. As we gener-ate the decision tree T (as described in the previoussection), it is possible to evaluate it at the same time.However, for the sake of clarity, this section describesthe evaluation of T as if the entire tree T had alreadybeen generated.In perfect-information games, the usual approach isto use the minimax procedure, which computes themaximum at nodes where it is P's move, and the min-imum at nodes where it is the opponent's move. Inthe decision theory literature, this procedure is re-ferred to as the Wald maximin-return decision crite-rion. This decision criterion is less appropriate forimperfect-information games: since we do not knowwhat moves the opponent is capable of making, itmakes less sense to assume that the opponent will al-ways make the move that is worst for us. Thus, a morecomplicated criterion which considers the belief func-tion is to be preferred, such as the weighted-average-of-utilities criterion outlined below.Let u be an external-agent node whose childrenare the nodes u1; u2; : : : ; un. For each ui, let Ii bethe state information set contained in ui. Supposewe have already computed a utility value vi 2 [0; 1]for each ui. Then we de�ne a external-agent crite-rion to be an algorithm C that returns a utility valuev = C(u; u1; u2; : : : ; un) for the node u.5Many external-agent criteria can be used, takingideas from the pure decision criteria (such as Hurwicz'soptimism-pessimism index, Savage's minimax regret,and Wald's maximin return, known to computer sci-entists as minimax). Some will make use of the belief5This de�nition of external-agent criterion is somewhatdi�erent from the usual de�nition of decision criterion indecision theory (e.g. (French, 1986), p. 28), which essen-tially de�nes decision criteria on a two-level structure of de-cision nodes and chance nodes, without the belief functionp. However, we believe that our de�nition, while in theoryis not always as powerful, is in practice strong enough toimplement most decision criteria we would want in mostdomains.

West� T98~ Q96} T86| A987 East� 7~ JT87} QJ97| KQJTDeal:Contract: South - 5 �Lead: West - 6 } W N E SPlay:2}2|3}3|4}5}2~3~4~5~
J}7}9}Q|K|Q}8~7~T~J~ 4|5|A}J| K}T| 5�6|K�Q�J�6�7�2�3�4� A~K~

6}7|T}8|8}A|6~9~Q~9|9�8�T� A�� 432~ 5432} 5432| 32South~ AK} AK| 654� AKQJ65North
Figure 3: One of the hands that Tignum correctly solved. Ranks in boldface represent cards that won tricks.function p, others will not. In bridge, we would gen-erally use an external-agent criterion that would givea weighted average, using p, of the utility values vi re-sulting from the best move the opponents could makein all the states consistent with the state informationset I.Given a decision tree, a external-agent criterion foreach uncontrolled agent, an objective function, and abelief function, we de�ne an evaluation of the decisiontree as follows:1. The utility value of a leaf node u is the value of e�(I),where I is the state information set associated withu. Recall that if f , the objective function, is de�nedat a state S, then e(S) = f(S). Thus, if we havereached a the end of the game, then the objectivefunction is used, as desired.2. The utility value of an external-agent node u is thevalue C(u; u1; u2; : : : ; un), where u1; u2; : : : ; un arethe children of u.3. The utility value of a decision node u is the maxim-ium of the utility values of its children.Although this evaluation may be computed recursivelyas de�ned, there may also be more e�cient compu-tations (for example, if C(u; u1; u2; : : : ; un) were theminimum of the utility values of u1; u2; : : : ; un, thenwe could use alpha-beta pruning).Once the decision tree is solved, a plan (a policyin the decision theory literature) has been created; Pwill, at the state information set associated with anydecision node, simply choose the method that leads tothe node with highest utility value.P follows the plan as far as possible. If the plantakes P to the end of the game, then the problem issolved. If the plan should terminate before the end ofthe game|which may occur either because an exter-nal agent performs an action which is not present inthe plan, or because the plan has reached a previously

unexpanded node|then P simply re-plans, starting atthe node where the plan ends.Implementation and Preliminary Testsin BridgeTo test our approach, we implemented and tested asmall prototype, called Tignum. Since Tignum is aprototype and its knowledge base was both too smalland too inaccurate, we did not carry out extensivetests. However, as described in this section, we per-formed some preliminary tests of Tignum on a suite ofbridge hands.We developed our suite of bridge hands with sev-eral criteria in mind. Some of them were developedin order to present various \worst case" situations toTignum, some were developed to represent \normal"bridge hands, and some were developed to representsituations that cause problems to previously developedbridge programs.Our test of Tignum had the following results:� On our suite of hands, the largest search tree gen-erated by Tignum contained 1301 nodes. Since weselected our suite of hands to include hands thatwe thought would generate \worst-case" sized searchtrees, we believe that Tignum will not generatesearch trees signi�cantly larger than this. This rep-resents a large improvement over the 6:01 � 1044nodes that would be generated by a brute-forcegame-tree search.� On hands that presented situations to Tignum thatcould be solved by schemes in Tignum's limitedknowledge base, Tignum came up with the correctplans. An example is shown in Figure 3, whereTignum successfully sets up and takes a club ru�in dummy.These results were encouraging enough that we de-cided to proceed with the full implementation of our

approach, called Tignum II, which we are still devel-oping. ConclusionIn this paper, we have described an approach to play-ing imperfect-information games. By using techniquesadapted from task-network planning, our approach re-duces the large branching factor that results from un-certainty in the game. It does this by producing gametrees in which the number of branches from each stateis determined not by the number of actions that anagent can perform, but instead by the number of dif-ferent tactical and strategic schemes that the agent canemploy. By doing a modi�ed game-tree search on thisgame tree, one can produce a plan that can be executedfor multiple moves in the game.Our approach appears to be particularly suited tobridge, since bridge is an imperfect-information gamethat is characterized by a high degree of planning dur-ing card play. Thus, to test our approach, we haveimplemented a prototype system that uses these tech-niques to do card-playing in the game of bridge. Intesting this prototype, we have found that it producesgame trees small enough that it can search them allthe way to the end of the game|and by doing so,it can successfully solve typical bridge problems thatmatched situations in its knowledge base.These preliminary tests suggest that this approachhas the potential to yield bridge-playing programsmuch better than existing ones|and thus we have be-gun a full implementation of our approach. We hopethat our work will be useful in a variety of imperfect-information games.ReferencesBallard, B. W. 1983. Non-minimax search strate-gies for minimax trees: Theoretical foundations andempirical studies. Technical report, Duke University,Durham, NC.Berliner, H. J.; Goetsch, G.; Campbell, M. S.; andEbeling, C. 1990. Measuring the performance poten-tial of chess programs. Arti�cial Intelligence 43:7{20.Biermann, A. W. 1978. Theoretical issues related tocomputer game playing programs. Personal Comput-ing 86{88.Cormen, T. H.; Leiserson, C. E.; and Rivest,R. L. 1990. Introduction to Algorithms. MITPress/McGraw Hill.Erol, K.; Nau, D. S.; and Subrahmanian, V. S.1992. Complexity, decidability and undecidabilityresults for domain-independent planning. (CS-TR-2797, UMIACS-TR-91-154, SRC-TR-91-96). Submit-ted for journal publication.Erol, K.; Nau, D. S.; and Hendler, J. 1993. Toward ageneral framework for hierarchical task-network plan-ning. In AAAI Spring Symposium.

Feldman, J. A. and Sproull, R. F. 1977. Decision the-ory and arti�cial intelligence ii: The hungry monkey.Cognitive Science 1:158{192.Feldman, J. A. and Yakimovsky, Y. 1974. Decisiontheory and arti�cial intelligence i. a semantics-basedregion analyzer. Arti�cial Intelligence 5:349{371.French, S. 1986. Decision Theory: An Introduction tothe Mathematics of Rationality. Wiley.Gamback, B.; Rayner, M.; and Pell, B. 1990. Anarchitecture for a sophisticated mechanical bridgeplayer. In Beal, D. F. and Levy, D.N.L., editors 1990,Heuristic Programming in Arti�cial Intelligence|The Second Computer Olympiad. Ellis Horwood.Gamback, B.; Rayner, M.; and Pell, B. 1993. Prag-matic reasoning in bridge. Technical Report 299,Computer Laboratory, University of Cambridge.Horacek, H. 1990. Reasoning with uncertainty in com-puter chess. Arti�cial Intelligence 43:37{56.Knuth, D. E. 1973. The Art of Computer Program-ming, Vol. 3: Sorting and Searching. Addison-WesleyPubl. Co.Lee, K.-F. and Mahajan, S. 1990. The development ofa world class othello program. Arti�cial Intelligence43:21{36.Levy, D. and Newborn, M. 1982. All About Chess andComputers. Computer Science Press.Sacerdoti, E. D. 1974. Planning in a hierarchy ofabstraction spaces. Arti�cial Intelligence 5:115{135.Sacerdoti, E. D. 1977. A Structure for Plans andBehavior. American Elsevier Publishing Company.Sacerdoti, E. D. 1990. The nonlinear nature of plans.In Allen, J.; Hendler, J.; and Tate, A., editors 1990,Readings in Planning. Morgan Kaufman. 162{170.Originally appeared in Proc. IJCAI-75, pp. 206-214.Samuel, A. L. 1967. Some studies in machine learningusing the game of checkers. ii{recent progress. IBMJournal of Research and Development 2:601{617.Smith, S. J. J. and Nau, D. S. 1993. Toward an anal-ysis of forward pruning. In AAAI Fall Symposium onGames: Planning and Learning.Ste�k, M. 1981. Planning with constraints (MOL-GEN: Part 1). Arti�cial Intelligence 16:111{140.Tate, A. 1976. Project planning using a hierarchicnon-linear planner. Technical Report 25, Departmentof Arti�cial Intelligence, University of Edinburgh.Tate, A. 1977. Generating project networks. In Proc.5th International Joint Conf. Arti�cial Intelligence.Truscott, T. R. 1981. Techniques used in minimaxgame-playing programs. Master's thesis, Duke Uni-versity, Durham, NC.Wilkins, D. E. 1980. Using patterns and plans inchess. Arti�cial Intelligence 14:165{203.Wilkins, D. E. 1982. Using knowledge to control treesearching. Arti�cial Intelligence 18:1{51.

