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Abstract

Sever0,1 early game-playing computer programs
used forward pruning (i.e., the practice of delib-
erately ignoring nodes that are believed unlikely
to affect a game tree’s minimax value), but this
technique did not seem to result in good decision-
making. The poor performance of forward prun-
ing presents a major puzzle for AI research on
game playing, because some version of forward
pruning seems to be "what people do," and the
best chess-playing programs still do not play as
well as the best humans.
As a step toward deeper understanding of how for-
ward pruning affects quality of play, in this paper
we set up a model of forward pruning on two ab-
stract classes of binary game trees, and we use this
model to investigate how forward pruning affects
the accuracy of the minimax values returned. The
primary result of our study is that forward prun-
ing does better when there is a high correlation
among the minimax values of sibling nodes in a
game tree.
This result suggests that forward pruning may
possibly be a useful decision-making technique in
certain kinds of games. In particular, we believe
that bridge may be such a game.

Introduction
Much of the difficulty of game-playing is due to the
large number of alternatives that must be examined
and discarded. One method for reducing the num-
ber of nodes examined by a game tree search is for-
ward pruning, in which at each node of the search
tree, the search procedure may discard some of the
node’s children before searching below that node. On
perfect-information zero-sum games such as chess, for-
ward pruning has not worked as well as approaches

*This work supported in part by an AT&T Ph.D. schol-
arship to Stephen J. J. Smith, Maryland Industrial Part-
nerships (MIPS) grant 501.15, Great Game Products, and
NSF grants IRI-8907890, NSFD CDR-88003012, and IRI-
9306580.

that do not use forward pruning (Biermann, 1978;
Truscott, 1981). This presents a major puzzle for AI
research on game playing, because some version of for-
ward pruning seems to" be "what people do," and the
best chess-playing programs still do not play as well
as the best humans. Thus, it is important to try to
understand why programs have been unable to utilize
forward pruning as effectively as humans have done,
and whether there are ways to utilize forward pruning
more effectively.1

As a step toward deeper understanding of how for-
ward pruning affects quality of play, in this paper we
set up a model of forward pruning on two abstract
classes of binary game trees, and we use this model to
investigate how forward pruning affects the accuracy
of the minimax values returned: Our results suggest
that forward pruning works best in situations where
there is a high correlation among the minimax values
of sibling nodes. Since we believe that bridge has this
characteristic, this encourages us to believe that for-
ward pruning may work better in the game of bridge
than it has worked in other games.

Forward-Pruning Models

Consider a zero-sum game between two players, Max
and Min. If the game is a perfect-information game,
then the "correct" value of each node u is normally
taken to be the well known minimax value:

the payoff at u
if u is a terminal node,

mm(u) 
max{ram(v) : v is a child of l,}

if it is Max’s move at u,

min{mm(v):v is a child of u}
if it is Min’s move at u.

Due to the size of the game tree, computing a node’s
true minimax value is impractical for most games. For

1In particular, we are developing a forward-pruning
search technique for the game of bridge (Smith et al., 1992;
Smith and Nau, 1993), by extending task-network plan-
ning techniques (Tate, 1976; Tate, 1977; Sacerdoti, 1977;
Stefik, 1981) to represent multi-agency and uncertainty.
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Figure 1: Example of an N-game-like tree.

this reason, game-playing programs usually mark some
non-terminal nodes as terminal, and evaluate them us-
ing some static evaluation function e(u). The simplest
version of this approach is what Shannon (Shannon,
1950) called "Type A" pruning: choose some arbitrary
cutoff depth d, and mark a non-terminal node u as
terminal if and only if u’s depth exceeds d. A more so-
phisticated version of this is quiescence search: mark
a non-terminal node u as terminal if and only if u’s
depth exceeds d and u is "quiet" (i.e., there is reason
to believe that e(u) will be reasonably accurate at u).

To decrease the number of nodes examined even fur-
ther, a number of game-tree-search procedures have
been developed such as alpha-beta (Knuth and Moore,
1975), B* (Berliner, 1979), or SSS* (Stockman, 1979).
These procedures will ignore any node v below u
that they can prove will not affect u’s minimax value

The above approach has worked well in games
such as chess (Berliner et al., 1990; Levy and New-
born, 1982), checkers (Sanmel, 1967), and othello (Lee
and Mahajan, 1990). A more aggressive approach
is forward pruning, in which the procedure deliber-
ately ignores v if it believes v is unlikely to affect
turn(u), even if there is no proof that v will not af-
fect ram(u). Although several early computer chess
programs used forward pruning, this approach is no
longer widely used, because chess programs that used it
did less well than those that did not (Biermann, 1978;
Truscott, 1981).

Our Model of Forwm’d-Pruning. Our model of a
forward-pruning algorithm works as follows. At each
node u where it is Max’s move or Min’s move, u has two
children, Ul and u2. The forward pruning algorithm
will choose exactly one of these two nodes to investigate
further. There are two possible cases:

1. Ul and u2 do not have the same minimax value.
Then the correct child to investigate further is the
one whose minimax value is the same as the minimax
value of u. Thus, for a Max node, the correct child
is the one with the higher value; for a Min node, the
correct child is the one with the lower value. If the
algorithm does not choose the correct child, it will
continue its search down an incorrect branch, which
is likely to result in an error in the algorithm’s com-
putation of u’s minimax value. We assume that the
algorithm’s probability of choosing the correct child
is p, where p is constant throughout the tree.

2. ul and u2 have the same minimax value. In this
case, we assume that the algorithm’s probability of
choosing Ul is 1~, and likewise for u2.

Game-Tree Models
In this section, we define two different classes of game
trees. In later sections, we will investigate how forward
pruning behaves on these trees.

N-Game-Like "IYees. In this section, we define an
class of abstract game trees that are similar to the N-
games described in (Nau, 1982; Nau, 1983). For this
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Figure 2: Example of a P-game-like tree, with m = 40.
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reason, we call them N-game-like trees.2 Each N-game-
like tree is a complete tree that contains the following
types of nodes (an example appears in Fig. 1):

1. Max nodes, where it is Max’s move. Each Max node
is either a leaf node or has exactly two children, both
of which are Min nodes.

2. Miu nodes, where it is Min’s move. Each Min node
has exactly two children, both of which are I~VA
nodes.

3. RVA (random-value addition) nodes, which have nu-
meric values assigned to them at random, to repre-
sent the outcome of the trick. The numeric value
of each RVA node is chosen independently from the
set {0, 1/h}, where h is as defined below. Each I~VA
node has a single child, which is a Max node.

The tree’s Max-height, h, is one less than the number
of Max nodes on any path from the root to a leaf node.3

Since the tree is complete, each leaf node has the same
height, and thus the same Max-height. The value of
each leaf node u is the sum of the values of the P~VA
nodes on the path from the root to u. Thus, the value
of each leaf node falls in the range {0, l/h,..., 1}.

2The primary difference is that N-games have no RVA
nodes. Instead, a value of 1 or -1 is randomly assigned to
each arc, and the strength of each leaf node u is taken to
be the sum of the arc values on the path from the root
to u. Thus if u is a leaf node, its strength is between -k
and k (inclusive), where k is the height of the tree. A leaf
node is called a win or loss, depending on whether or not
its strength is nonnegative.

aThis is analogous to the height of a complete tree
(which is one less than the number of nodes on any path
from the root to a; leaf node), except that here we only
count Max nodes.

Comparison with Bridge. In the game of bridge,
the basic unit of play is the trick. After each side has
made a move, one side or the other wins the trick. At
each point in a bridge hand, the trick score for each_
side is the number of tricks that side has scored so far.
The outcome of the hand depends on each side’s trick
score at the end of the hand.

This trick-scoring method gives bridge a superfi-
cial resemblance to the the N-game-like trees defined
above. To see this, consider a node v in a bridge game
tree, and suppose that v represents a bridge deal in
which n tricks are left to be played. If T is the sub-
tree rooted at v, then the trick scores of the leaves of
T cannot differ from one another by any more than
n. A similar situation occurs in an N-game-like tree
of height h: if a Max node v has a Max-height of n,
and T is the subtree rooted at v, then the value of the
leaves oft cannot differ from one another by any more
than n/h.

P-Game-Like ’IYees. In this section, we define a
class of abstract game trees called P-game-like trees,
which are similar to the P-games described in (Nau,
1982; Nau, 1983; Pearl, 1984).4 Each P-game-like tree
is a complete tree that contains the following types of
nodes (an example appears in Fig. 2):

1. Max nodes, where it is Max’s move. Each Max node
is either a leaf node or has exactly two children, both
of which are Min nodes.

2. Min nodes, where it is Min’s move. Each Min node
has exactly two children, which are both h’fax nodes.

As before, the tree’s Max-height, h, is one less than
the number of Max nodes on any path from the root to

4The primary difference is that in a P-game, the leaf
node values are chosen from the set {win, loss} rather than
the set {0, 1/m,..., 1}.
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a leaf node. Since the tree is complete, each leaf node
has the same height, and thus the same Max-height.
The value of each leaf node u is randomly, indepen-
dently chosen from a uniform distribution over the set
{0, 1/m,..., 1), where m is an arbitrary constant. Be-
cause u’s value does not depend on the path from the
root to u, there is no need for RVA nodes.

Mathematical Derivations
Forward Pruning on N-Game-Like Trees. We
are interested in computing the probability that the
forward-pruning algorithm estimates a value of z and
the actual value is y for an N-game-like tree T whose
Max-height is h. That is, we want

Pr[estimated x, actual y I T’s Max-height is h].

More specifically, we write

estimated x,
eh,x,y = Pr actual y

estimated x,fh:,y = Pr actual y

estimated z,
gh,z,y = Pr actual y

These probabilities depend on
are Max nodes, we can write

T’s Max-height is ]
h and its root is a] ;
Max node
T’s Max-height is ]
h and its root is anJ ;
RVA node
T’s Max-height is ]
h and its root is a] .
Min node

p. Since all leaf nodes

1 ifj=Oandk=O,
e0,j,k = 0 otherwise.

It is clear that fh:,v depends on eh 1 l and..,x-- -~ ,y-- -K
eh:,y, that is,

1 1

There are three cases for gh,z,y:

1. The forward-pruning algorithm chooses the correct
branch, i.e., the one that gives the correct minimax
value. In this case, gh,~,y is based on fh:,y and fh,ij
for every i and some j > y.

2. The forward-pruning algorithm does not choose the
correct branch. In this case, gh:,v is based on fh:,j
and fh,i,y for every i and some j > y.

3. The choice does not matter, i.e., both branches yield
the same minimax value. In this case, gh,~,v is based
on fh:,y and fh,i,y for every i.

Thus,

gh:,y = 2p~ ~ (fh::,y " fh,,,j)
i j:j>y

+ 2(1 - p) E E (fh:,j" fh,i,y)
i j:j>y

+ E(fh:::~" fh,i,y).
i

For eh+l,x,y , the cases are similar, yielding

i j:j<y

+ 2(1-p)E (gh:,j "g h,i,~)
i j:j<y

+
i

Forward Pruning on P-Gnme-.Like Trees. For a
P-game-like tree T, we will defineeh,m:,y/ and g’h,m:,u
in a way similar to .the way we defined eh,$,y and gh,s,y
for N-game-like trees:

[

esti- I T’s Max-height is h, its ]

mated [ root is a Maxnode, and= Pr
x, ac- I its leaf node values are ;
tual y I in the set {0,~,...,1}

esti-
T’s Max-height is h, its ]

g~h,m,~,u= Pr
mated root isaMinnode, and
x, ac-

its leaf nod0 values are

"
tualy in the set { ,N,-...,1}

the base case for the recur-In P-game-like trees,
rences is

l 1

eo,m,z,y
0

The recurrences themselves
those for N-game-like trees:

if 0 < x < m and x = y,

otherwise.

are almost identical to

gh,rn,x,y = 2p EE e’ - e~ "! ( h ..... y h,m,i,j)
i j:j>y

+2(1 p)~ e’ .e’- ( h,.,:,j h,.,:,~,)
i j:j>y

+ E(eh,m,x,y 
.t . eh,ra,i,y),

i
I

E
I I

eh+l,m,s,y = 2p E (gh,m,x,y " gh,m,i,j)

i j:j<y

+ 2(1 g’- ( h,,,,,,,,j" h,,,,:,~,)
i j:j<y

+ ’ "h,m,i,y).
i

Expected Absolute Value of Difference. We can
use the above recurrences to measure the accuracy of
the forward-pruning algorithm’s estimate of the value
of the game tree. In particular, the expected value of
the absolute value of the difference between the true
minimax value and the value computed bythe forward-
pruning algorithm is
. ]x - yl-Pr [ estimated x, lT, s Marx-height is h ]

actual y
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Figure 3: Dh and D’h,m versus h for various values of p, using rn = 40.
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For an N-game-like tree whose root is a Max node, this

is Dh = ~ ~-~,(Iz - y]" eh,~,v).
x y

For a P-game-like tree whose root is a Max node, it is

D ,m = (Ix - yl.
x y

Results and Interpretations

To derive closed-form solutions for the recurrences
described in the "Mathematical Derivations" section
would be very complicated, so we do not attempt it
here¯ However, since we do have exact statements of
the base cases and recurrences, we can compute any

and thus any desireddesired value of eh,x,y or eh,m,z,y,
value of Dh or D~

h,rn "
We have computed Dh for trees of height h =

1,2, 40; and we have computed Dt for trees of¯ " " " h,m
height h = 1, 2,...,40, with m set at 40. The results
are shown in Fig. 3. Our interpretation of these results
is as follows:

1. The higher the value of p is, the more likely it is that
the forward-pruning algorithm will choose the cor-
rect node at each level of the tree, and thus the more
likely it is that the algorithm will return a good ap-
proximation of the tree’s minimax value. As shown
in Fig. 3, this behavior occurs in both P-game-like
trees and N-game-like trees.

2. In N-game-like trees, there is much stronger corre-
lation among the values of sibling nodes than there
is in P-game-like trees. Therefore, in N-game-like
trees, even if the forward-pruning algorithm chooses
the wrong node, the minimax value of this node is
not too far from the minimax value we would com-
pute anyway. Thus, as shown in Fig. 3, for each
value of p, the forward-pruning algorithm returns
more accurate values in N-game-like trees than in
P-game-like trees¯

3. In N-game-like trees, the returned values gener-
ally get more accurate as the game tree’s height
increases--but in P-game-like trees, the returned
values generally get less accurate as the game tree’s
height increases¯ We believe this behavior is related
to the fact that P-games are pathological and N-
games are not (Nau, 1982; Nau, 1983).

Conclusion

In this paper, we have set up a model of forward prun-
ing on two classes of game trees:, binary N-game-like
game trees, and binary P-game-like game trees. Based
on this, we have computed the expected error in the
minimax values that would result from forward prun-
ing in these game trees.

As discussed in tile "Results and Interpretations"
section, our results suggest that forward pruning does
better when there is a high correla6ion among the min-
imax values of sibling nodes in a game tree. Thus, for-

ward pruning may possibly be a viable decision-making
technique on game trees having the following charac-
teristics:

first characteristic: there is generally a high correla-
tion among sibling nodes;

second characteristic: when there are exceptions to
the first characteristic, one can accurately identify
them.

Two straightforward ways to extend our research re-
suits are by studying what happens on game trees of
branching factor larger than two, and by examining
how the expected error in the minimax values affects
the probability of making a correct decision. We in-
tend to finish these extensions in the very near future.
As longer-term goals, we hope to examine how well
forward-pruning performs when playing entire games
against an ordinary minimax strategy, and to exam-
ine game trees other than N-game-like and P-game-like
trees.

In addition to the above work, we intend to do an
empirical study of forward pruning on the game of
bridge. We are interested in bridge for the following
reasons:

* Bridge is an imperfect-information game, because no
player knows exactly what moves the other players
are capable of making. Because of this, the game
tree for bridge has a large branching factor, resulting
in a game tree containing approximately 6.01 × 1044
nodes in the worst case. Ordinary minimax search
techniques do not do well in bridge, because they
have no chance of searching any signil%ant portion
of the game tree.

¯ Our preliminary studies on the game of bridge show
that by using forward-pruning techniques based on
task-network planning, we can produce search trees
of only about 1300 nodes in the worst case (Smith
et al., 1992). Thus, forward pruning will allow us
to search all the way to the end of the game. Thus,
we will not need to use a static evaluation function,
and thus will not have to deal with the inaccuracies
produced by such functions.

* We believe that bridge has the two characteris-
tics described above, primarily becaus5 of the trick-
scoring method used in bridge (this is discussed in
more detail in the "Forward Pruning Models" sec-
tion). Thus, we believe that forward pruning tech-
niques may produce reasonably accurate results in
bridge.
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