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Al planning systems
m Hle real world

R S

goal. They start from a specification of the valid actions (alsomlledoperam},whlch .
inciudes both the conditions under which an action applies (the preconditions) and the ex- |
pected outcome of applying that action (the effects). The general problem is guite hard both K
because of the potentially enormons search space and the difficulty in fully and accurately .
representing real-world problems. Approaches to planning include operator-based planning,
hierarchical task-network planning, case-based planning, reactive planning, and many more.
Early planning work focused largely on “toy” problems (for example, the blocks world). More
recently, there has been a big push toward applying planning systems to real-world applica- -
tions. While planning systems have not yet achieved the level of commercial success enjoyed
by some other areas of artificial intelligence—neural nets, for example—a number of success-
ful applications of planning technology to real-wosld problems have recently emerged. -

This installment of “Trends & Controversies™ highlights five such applications, I have
asked the developers of these systems 1o describe the application domain and the planning .
technology used to solve the problems. These systems all use some form of hierarchical task-
network planning (in some cases combined with other techniques). HTN planning provides a
way of specifying, as part of the operator definition, how to hierarchically expand actions into
partially ordered sequences (task networks) of actions. This approach suceeeds, in part, be-
cause it provides a natural way of limiting the possibly very large search spaces. See Readings
in Planning (Morgan Kaufmann, 1990) or Artificial Intelligence: A Modern Approach (Pren-
tice Hall, 1995) for more details on various planning techniques. :

In the first article, Stephen Smith, Dana Nan, and Thomas Throop describe their use of
planning technology to build a system for declarer play in contract bridge. The system can
beat the best commercially available program and is currently being incorporated into a com-
mercial product. Second, John Mark Agosta and David Wilkins describe how the SIPE-2 plan-
ner helps evaluate the US Coast Guard’s ability to respond to marine oil spills. This system,
which automates a problem that is currently done by hand, is undergoing evaluation by the
Coast Guard. Third, Austin Tate desctibes a planning application, in use by the Evropean
Space Agency, for the project management of spacecraft assembly, integration, and verifica-
tion. Fourth, Steve Chien and his colleagues describe their use of 2 planning system to auto-
mate the operations of NASA's Deep Space Network commanication antennas, This system is-
currently being integrated into a new system that will become operational in 1997. Finally,
Thomas Lee and David Wilkins describe their use of SIPE-2 in producing military air cam-
paign plans. Their planner is part of a demonstration system that is fully integrated wllh the
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other software modules cumrently used for solving parts of this problem.

Al planning’s strong svit
Stephen J.J. Smith, Hood College
Dana Nau, University of Maryland
Thomas Throop, Great Game Products
Although game-tree search techniques
work well in perfect-inférmation games
such as chess, checkers, and Othello, diffi-
culties arise in adapting them to imperfect-
information games such as bridge. In
bridge, the game tree’s branching factor is
very large becanse no player has complete
knowledge about the state of the world, the
possible actions, and their effects. Because
bridge deals must be played in just a few
minutes, a full game-tree search will not
search a significant portion of this tree

—-Crmg Krwbloc

il A

within the time available. Matthew Gins-
berg is developing a modified game-tree
search procedure to address this problem.!
However, others have shown some pitfalls
in any approach that (like Ginsberg's)
treats an incomplete-information problem
as a collection of complete-information
problems. No evidence yet proves that
these pitfalls can be overcome.

Our approach grows out of the observa-
tion that bridge is a game of planning. The
bridge literature describes a number of
tactical and strategic schemes (such as fi-
nessing, ruffing, and crossruffing) that peo-
ple combine into plans in playing bridge
games. We have taken advantage of the

planning nature of bridge, by adapting and
extending some ideas from HTN planning.

Approach

HTN planning is an Al planning
methodology that creates plans by task
decomposition—by decomposing tasks
into smaller and smaller subtasks until
primitive tasks are found that can be per-
formed directly. HTN planning systems
have knowledge bases containing methods
that tell how to develop plans by such de-
compositions.>* Given a task to accom-
plish, the planner chooses an applicable
method and instantiates it to decompose
the task into subtasks, and chooses and
instantiates other methods to decompose
the subtasks even further. If the constraints
on the subtasks or the interactions among
them prevent the plan from being feasible,
the planning system will backtrack and try
other methods.

To represent the tactical and strategic
schemes of card playing in bridge, we use
structures similar to the methods described
just now, but modified to represent multi-
agency and uncertainty. For example, Fig-
ure 1 shows a portion of our task-network
structure for a bridge tactic called finess-
ing. To generate game {rees, we use a pro-
cedure similar to task decomposition to
build up a game tree whose branches repre-
sent moves generated by these methods.

For a game tree generated in this man-
ner, the number of branches from each state
is not the lumber of actions an agent can
perform (as in conventional game-tree
search procedures), but instead is the num-
ber of different tactical and strategic
schemes the agent can employ. This results
in a smaller branching factor and a much
smaller search tree: Tignum 2 generates
garmne trees containing only about 420,000
nodes in the worst case and 26,000 nodes
on the average, as compared to 6x10*
nodes in the worst case and 102% nodes on
the average if we had generated a conven-
tiona! game tree. Thus, Tignum 2 can
search the game tree all the way to the end,
to predict the likely results of the various
sequences of cards it might play.57

Comparison with conventional HTN
planning

In Tignum 2, we have extended HIN
planning to include ways to represent and
reason about possible actions by other
agents (such as the opponents in a bridge
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game), as well as uncertainty about
their capabilities (for example, lack
of knowledge about what cards they
have). However, to accomplish this,
we needed to restrict how Tignum 2
formulates its plans. Most HTN plan-

Onlead:  West at trick 3
. East West Out:
- #KJ74

#A2 - #0T98653

ners develop plans in which the ac-
tions are only partially ordered, post-

poning some of the decisions about :
the order in which the actions will be
performed. In contrast, Tignum 2isa |
total-order planner that expands tasks |
in left-to-right order.

Because Tignum 2 expands tasks
in the same order in which they will
be performed when the plan exe-
cutes, this means that when it plans
for each task, Tignum 2 already
knows the state of the world (or as
much as can be known about it in an
mmperfect-information game) at the

 West—42

{North—e0)

(North—&3)

| StandardFinesseTwo(F,; 5) |[StandardFinesseThree(P3: 5)[

I FinesseFour{F,; 5) |

¢ o

|| Praycard(p;; s, 7,

IPlayCard(Pz; 5 Rz)]

l PlayCard{F,; S, R,) I

| PlayGard{F,: 5, A') I

North—#3 East—a)

South—a5 Sputh—a(

time that the task will be performed.
Consequently, we can write each
method’s preconditions as arbitrary
computer code, rather than using the
stylized logical expressions found in
most Al planning systems. This enables us
to encode the complex numeric computa-
tions needed for reasoning about the prob-
able locations of the opponents’ cards, For
example, by knowing the current state,
Tignum 2 can decide which of 19 finesse
situations are applicable: with partial-
order planning, it would be much harder
to decide which of them can be made
applicable.

Performance

To test Tignum 2, we played it against
Bridge Baron, from Great Game Products,
Winner of a number of important bridge
competitions, Bridge Baron is probably the
best program for declarer play at contract
bridge. In reviewing seven commercially
available bridge-playing programs, the
American Contract Bridge League rated
Bridge Baron best and also best of the five
that do declarer play without “pecking” at
the opponents’ cards.?

When we tesfed Tignum 2 against Bridge
Baron on 1,000 randomly generated bridge
deals (including both suit and no-trump
contracts), Tignum 2 beat Bridge Baron by
254 t0 202, with 544 ties. These results are
statistically significant at the a = 0.05 level.
‘We had never run Tignum 2 on any of these
deals before this test, so these resulis are
free from any training-set biases.

Figure 1. A porfion of o finesse method,

Conclusions

The use of HTN planning techniques in
Tignum 2 enables it to do bridge declarer
play better than Bridge Baron. Tignum 2 is
being incorporated into Bridge Baron fo
improve the Baron's declarer play.

We have been quite successful in using
the same modified version of HTN plan-
ning (as well as some of the same code!) in
another very different application domain:
the task of generating process plans for the
manufacture of complex electro-mechanical §;+
devices.? That this same approach works
well in two such widely varying areas is
quite striking, suggesting that our approach
may be useful in a number of practical
planning problems.
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begins by entering the specifics of a spill
incident—Ilocation, time of day, spill rate,
and so on—then forecasting the spill tra-
jectory, considering the uncertainty in its
spreading caused by wind and waves. This
forecast determines which environmentally
sensitive shore sectors the oil will hit, and
when. The planner works from this fore-
cast, together with geographic information,
such as the sectors into which the region is
divided and the USCG requirements for
protection of these areas. In addition, the
planner works with the database of the
quantities and capabilities of available
equipment and resources, and where they
are Jocated. The planner, SIPE-2, and
scheduler, Tachyon, then work interactively
with the user to generate a plan of equip-
ment deployment and employment actions
that meet constraints among oil spreading,
equipment cleanup capabilities and trans-
port times, and environmental protection
requirements. Finally, the evaluation mod-
ule uses the scheduler output and the pro-
jected flows from the trajectory model to
determine the effectiveness of the plan.?
Most of the user’s interaction with SRCS is
mediated by a map interface, implemented in
the Arcview commercial geographical infor-
mation system. The user thus can immedi-
ately see both the extent of the spill and where
resources are employed at varions times.

Evaluating the plan
In the SRCS domain, plans are distin-
guished by the degree to which they
achieve the overall objective of cleaning up
the spilled oil. In many spills, much of the
oil will escape, no matter how much equip-
ment is available, because of the difficulty
of operations and speed of spreading due to
the weather. Furthermore, for any spill,
SRCS can generate many possible plans,
and users can partially or completely sacri-
fice a sector cleanup goal if they believe
_equipment that would have been assigned
-10 a sector better serves the overall goals by
being used elsewhere. The plan and the oil
flows determined by the trajectory model
become the input to the evalvation model.
The evaluation model accounts for the
quantities of oil contained and removed in
each sector, for each period. From this ac-
counting, it can calculate measures of plan
merit, such as the final fraction of oil re~
moved under each plan.
Because the evaluation model is graphic

and efficiently computed, SRCS has
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