
IAAI-98/AAAI-98 Proceedings, pp. 1079–1086

1

Success in Spades: Using AI Planning Techniques to Win the World

Championship of Computer Bridge

Stephen J. J. Smith Dana S. Nau Thomas A. Throop

Department of Mathematics
and Computer Science

Hood College
Frederick, MD, USA

sjsmith@nimue.hood.edu

Department of Computer Science,
and Institute for Systems Research

University of Maryland
College Park, MD, USA

nau@cs.umd.edu

Great Game Products
8804 Chalon Drive

Bethesda, MD, USA
brbaron@erols.com

Abstract
The latest world-championship competition for computer

bridge programs was the Baron Barclay World Bridge Computer
Challenge, hosted in July 1997 by the American Contract Bridge
League. As reported in The New York Times and The Washington
Post, the competition’s winner was a new version of Great Game
Products’ Bridge Baron program. This version, Bridge Baron 8,
has since gone on the market; and during the last three months of
1997 it was purchased by more than 1000 customers.

The Bridge Baron’s success also represents a significant
success for research on AI planning systems, because Bridge
Baron 8 uses Hierarchical Task-Network (HTN) planning
techniques to plan its declarer play. This paper gives an overview
of those techniques and how they are used.

Problem Description

To be successful both in bridge competitions and as a
commercial product, a computer program for the game of
bridge must perform as well as possible in all aspects of the
game. Customers want as challenging an opponent as
possible, and of course the strongest program has the best
chance of winning a competition. However, although
researchers have had great success in developing high-
performance programs for games such as chess and
checkers, they have not had as much success in the game of
contract bridge. Even the best bridge programs can be
beaten by the best players at many local bridge clubs.

One important reason why it is difficult to develop good
computer programs for bridge is that bridge is an imperfect
information game. Bridge players don’t know what cards
are in the other players’ hands (except for, after the
opening lead, what cards are in the dummy’s hand); thus
each player has only partial knowledge of the state of the
world, the possible actions, and their effects. If we were to
use a naive adaptation of the classical game-tree search
techniques used in computer programs for games such as
chess and checkers, the game tree would need to include all

Copyright © 1998, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

of the moves a player might be able to make. The size of
this tree would vary depending on the particular bridge
deal—but it would include about 5.6x1044 leaf nodes in the
worst case (Smith 1997, p. 226), and about 2.3x1024 leaf
nodes in the average case (Lopatin 1992, p. 8). Since a
bridge hand is normally played in just a few minutes, there
is not enough time for a game-tree search to search enough
of this tree to make good decisions.

Until recently, the approach that was most successful in
computer programs for the game of bridge was to use
domain-dependent pattern-matching techniques that do not
involve a lot of look-ahead. Most commercially available
bridge programs use this approach, including the previous
version of Great Game Products’ Bridge Baron (Throop
1983, Great Game Products 1997). The Bridge Baron is
generally acknowledged to be the best available
commercial program for the game of contract bridge.
Before the incorporation of AI techniques (described later
in this paper), it had won four international computer
bridge championships. In their review of seven
commercially available bridge-playing programs (Manley
1993), the American Contract Bridge League rated the
Bridge Baron to be the best of the seven, and rated the skill
of the Bridge Baron to be the best of the five that do
declarer play without "peeking" at the opponents' cards.

Despite the success of the Bridge Baron, improving its
performance became more and more difficult as its
relatively simple pattern-matching techniques revealed
their limitations. Without more sophisticated techniques,
the Bridge Baron would risk becoming less competitive
with other bridge programs. Thus, we needed to develop
more sophisticated AI techniques to improve the
performance of the Bridge Baron.

Application Description

Overview of Bridge
Bridge is a game played by four players, using a standard
deck of 52 playing cards, divided into four suits (spades ♠ ,

2

hearts ♥ , diamonds ♦ , and clubs ♣), each containing 13
cards. The players (who are normally referred to as North,
South, East, and West), play as two opposing teams, with
North and South playing as partners against East and West.
A bridge deal consists of two phases, bidding and play:

Bidding. The cards are dealt equally among the four
players. The players make bids for the privilege of
determining which suit is trump and what the level of the
contract is. Nominally, each bid consists of two parts:
some number of tricks (see below) that the bidder promises
to take, and which suit the bidder is proposing as the trump
suit. However, various bidding conventions have been
developed in which these bids are also used to convey
information to the bidder’s partner about how strong the
bidder’s hand is.

The bidding proceeds until no player wishes to make a
higher bid. At that point, the highest bid becomes the
contract for the hand. In the highest bidder’s team, the
player who bid this suit first becomes declarer, and
declarer’s partner becomes dummy. The other two players
become the defenders.

Play. The first time that it is dummy’s turn to play a card
(see below), dummy lays her or his cards on the table, face-
up so that everyone can see them; and during the card play,
declarer plays both declarer’s cards and dummy’s cards.

The basic unit of card play is the trick, in which each
player in turn plays a card by placing it face-up on the table
as shown in Figure 1. The first card played is that card that
was led; and whenever possible, the players must follow
suit, that is, play cards in the suit of the card that was led.
The trick is taken by whoever played the highest card in
the suit led, unless some player plays a card in the trump
suit, in which case whoever played the highest trump card
wins the trick.

The card play proceeds, one trick at a time, until no
player has any cards left. At that point, the bridge hand is
scored according to how many tricks each team took, and
whether declarer’s team took as many tricks as they
promised to take during the bidding.

The Bridge Baron
The Bridge Baron consists of tens of thousands of lines of
C code. Separate Bridge Baron executables run as a
Windows application, an MS-DOS application, and a
Macintosh application; the Windows application accounts
for the overwhelming majority of sales.

In the Bridge Baron, over fifty thousand lines of code are
devoted solely to the bridge engine, which calculates what
bids to make and what cards to play. The bridge engine can
be roughly divided into three parts, based on functionality:
declarer play, defensive play, and bidding. The bridge
engine represents knowledge largely through ad-hoc pieces
of code developed to address particular bridge situations.

Other tens of thousands of lines of code handle the user
interface. The user interface allows customers to play
matches against the computer, to generate deals that
conform to particular specifications, to see how the Bridge
Baron determines its bids, and the like.

The user interface interacts with the bridge engine by
calling C functions that recommend a particular bid or play
in the current situation. The user interface also updates the
data structures that provide the bridge engine with the
details of the current situation.

Most commonly, a customer sits down with the Bridge
Baron to play some number of deals. The customer takes
the role of one of the four players, and the Bridge Baron
takes the role of the customer’s partner. The Bridge Baron
also takes the roles of the customer’s two opponents. Each
role is separate: for example, one opponent does not know
what cards the other opponent has, nor what cards the
customer’s partner has. (The customer can allow all of the
Bridge Baron players to have complete knowledge of all of
the cards by changing an option.)

For declarer play, previous versions of the Bridge Baron
used ad-hoc pattern-matching techniques. However,
Bridge Baron 8 (the latest version) makes use of the new
AI planning techniques described later in this paper. Users
may select whether they want to use the new AI planning
techniques or the old ad-hoc techniques, which we did not
remove from the Bridge Baron. We added options to limit
the time that the new AI planning techniques spend on a
particular play to 30 seconds, 60 seconds, or 120 seconds.
This new version of the Bridge Baron became
commercially available in October 1997.

Uses of AI Technology

To improve the play of the Bridge Baron, we supplemented
its previously existing routines for declarer play with
routines based on HTN (Hierarchical Task-Network)
planning techniques. Our approach (Smith et al. 1996a;

West

North

East

South

6©
2©

8©
Q©

Q«
J
6«
5

«

9ª

7ª
A©
K©
5©
3©

A¨

9¨

«

Figure 1. An example of a bridge hand during the
play of the first trick. Here, South is declarer,
North is dummy, and West and East are defenders.

3

Smith et al. 1996c; Smith et al. 1996e; Smith 1997) grew
out of the observation that bridge is a game of planning. In
playing the cards, there are a number of standard tactical
ploys that may be used by the various players to try to win
tricks. These have standard names (such as ruffing, cross-
ruffing, finessing, cashing out, and discovery plays); and
the ability of a bridge player depends partly on how
skillfully that player can plan and execute these ploys.
This is especially true for declarer, who is responsible for
playing both declarer’s cards and dummy’s cards. In most
bridge hands, declarer will spend some time at the
beginning of the game formulating a rough plan for how to
play declarer’s cards and dummy’s cards. This plan will
normally be some combination of various tactical ploys.
Because of declarer’s uncertainty about what cards are in
the opponents’ hands and how the opponents may choose
to play those cards, the plan will usually need to contain
contingencies for various possible card plays by the
opponents.

We have taken advantage of the planning nature of
bridge, by adapting and extending some ideas from HTN
planning. We use planning techniques to develop game
trees in which the number of branches at each node
correspond to the different strategies that a player might
pursue rather than the different cards the player might be
able to play. Since the number of sensible strategies is
usually much less than the number of possible card plays,
this lets us develop game trees that are small enough to be
searched completely, as shown in Table 1. Below we give
an overview of HTN planning, and describe how we
adapted it for use in the Bridge Baron.

Table 1. Game-tree size produced in bridge by a full
game-tree search and by our HTN planning approach.

Brute-force search Our approach
Worst case ≈ 5.6x1044 leaves ≈ 305,000 leaves
Avg. case ≈ 2.3x1024 leaves ≈ 26,000 leaves

Overview of HTN Planning
HTN planning was originally developed more than 20
years ago (Sacerdoti 1974; Tate 1977), and has long been
thought to have good potential for use in real-world
planning problems (Currie and Tate 1985; Wilkins 1988),
but it has only been recently that researchers have
developed a coherent theoretical basis for HTN planning.
Recent mathematical analyses of HTN planning have
shown that it is strictly more expressive than planning with
STRIPS-style operators (Erol et al. 1994b), and have
established a number of properties such as soundness and
completeness of planning algorithms (Erol et al. 1994a),
complexity (Erol et al. 1996), and the relative efficiency of
various control strategies (Tsuneto et al. 1996; Tsuneto et
al. 1997). A domain-independent HTN planner is available
at <http://www.cs.umd.edu/projects/plus/umcp/manual>
for use in experimental studies, and domain-specific HTN
planners are being developed for several industrial
problems (Aarup et at. 1994; Hebbar et al. 1996; Smith et
al. 1996b; Smith et al. 1996d; Wilkins & Desimone 1994).

To create plans, HTN planning uses task decomposition,
in which the planning system decomposes tasks into
smaller and smaller subtasks until primitive tasks are found
that can be performed directly. HTN planning systems
have knowledge bases containing methods. Each method
includes a prescription for how to decompose some task
into a set of subtasks, with various restrictions that must be
satisfied in order for the method to be applicable, and
various constraints on the subtasks and the relationships
among them. Given a task to accomplish, the planner
chooses an applicable method, instantiates it to decompose
the task into subtasks, and then chooses and instantiates
other methods to decompose the subtasks even further. If
the constraints on the subtasks or the interactions among
them prevent the plan from being feasible, the planning
system will backtrack and try other methods.

As a very simple example, Figure 2 shows two methods

see on video

two possible
methods
for seeing
a movie

go by bicycle

unlock bicycle ride (x,y) lock bicycle

go (x,y)

see-movie (Titanic)

go (home, theater)

unlock bicycle
ride (home, theater)
lock bicycle

unlock bicycle
ride (theater, home)
lock bicycle

get-ticket (Titanic)
watch (Titanic)
go (theater, home)

see-movie (x)

go(home,theater) get-ticket(x) watch(x) go(theater,home)

see in theater

one possible
method
for going
somewhere go(home,store) go(store home) watch(x)buy(x)

Figure 2. A very simple example illustrating how HTN planning might be used to plan to see a movie.

4

for seeing a movie: seeing it in a theater, and seeing it
at home on videotape. Seeing it in a theater involves going
to the theater, getting a ticket to the movie, watching the
movie, and going home. Seeing it at home involves going
to the store, buying the videotape, going home, and
watching the movie. Figure 2 also shows one method for
going places: riding a bicycle.

Now, consider the task of seeing the movie Titanic.
Figure 2 shows how a planner might instantiate the “see in
theater” method for this task, and how it might instantiate
the “ride bicycle” method twice to handle the subtasks of
getting to the theater and getting home.

Solving a planning problem using HTN planning is
generally much more complicated than in this simple
example. For example, the planner may need to recognize
and resolve interactions among the subtasks (such as the
necessity of getting to the theater before the movie begins).
If such interactions cannot be worked out, then the planner
may need to backtrack and try another method instead.

HTN Planning for Declarer Play
The Tignum 2 portion of Bridge Baron 8 uses an

adaptation of HTN planning techniques to plan declarer
play in contract bridge. To represent the various tactical
schemes of card-playing in bridge, Tignum 2 uses
structures similar to HTN methods, but modified to
represent multi-agency and uncertainty. Tignum 2 uses
state information sets to represent the locations of cards
about which declarer is certain, and belief functions to
represent the probabilities associated with the locations of
cards about which declarer is not certain.

Some methods refer to actions performed by the
opponents. In Tignum 2, we allow these methods to make
assumptions about the cards in the opponents’ hands, and
design our methods so that most of the likely states of the
world are each covered by at least one method. In any of
our methods, the subtasks are totally ordered; that is, the
order in which the subtasks are listed for a method is the

order in which these subtasks must be completed.
For example, Figure 3 shows how our algorithm

would instantiate some of its methods on a specific bridge
hand. Here, South (declarer) is trying a finesse, a tactical
ploy in which a player tries to win a trick with a high card,
by playing it after an opponent who has a higher card. If
West (a defender) has the ♥ K, but does not play it when
hearts are led, then North (dummy) will be able to win a
trick with the ♥ Q, because North plays after West. (West
wouldn’t play the ♥ K if she or he had any alternative,
because then North would win the trick with the ♥ A and
win a later trick with the ♥ Q.) However, if East (the other
defender) has the ♥ K, East will play it after North plays
the ♥ Q, and North will not win the trick. Note that the
methods refer to actions performed by each of the players
in the game.

To generate game trees, our planning algorithm uses a
procedure similar to task decomposition to build up a game
tree whose branches represent moves generated by these
methods. It applies all methods applicable to a given state
of the world to produce new states of the world, and
continues recursively until there are no applicable methods
that have not already been applied to the appropriate state
of the world. For example, Figure 4 illustrates the
evaluation of the game tree resulting from the instantiation
of the finessing method. This game tree is produced by
taking the plays shown in Figure 3 and listing them in the
order in which they will occur. In Figure 4, declarer has a
choice between the finessing method and the cashing-out
method, in which declarer simply plays all of the high
cards that are guaranteed to win tricks.

For a game tree generated in this manner, the number of
branches from each state is not the number of moves that
an agent can make (as in conventional game-tree search
procedures), but instead is the number of different tactical
schemes the agent can employ. As shown in Table 1, this
game tree is small enough that it can be searched all the

… …

PlayCard(P3;S,R3)PlayCard(P2;S,R2) PlayCard(P4;S,R4)

FinesseFour(P4;S)

PlayCard(P;S,R1)

StandardFinesseTwo(P2;S)

LeadLow(P;S)

PlayCard(P4;S,R4’)

StandardFinesseThree(P3;S)

EasyFinesse(P2;S) StandardFinesse(P2;S) BustedFinesse(P2;S)

Finesse(P;S)

FinesseTwo(P2;S)

Us: South declarer, North dummy
Opponents: defenders, West & East
Contract: South – 4«
On lead: South at trick 2South:ª2

North:ªAQ765
Out: ªKJT9843

(West—«3)
South—ª2

East—ª4 East—ªKNorth—ªQWest—ª3

(West—ªK)

Figure 3: An instantiation of the “finesse” method for a specific bridge hand.

5

way to the end, to predict the likely results of the various
sequences of cards that the players might play.

To evaluate the game tree at nodes where it is declarer’s
turn to play a card, our algorithm chooses the play that
results in the highest expected score. For example, in
Figure 4, South chooses to play the ♥ 2 that resulted from
the “finesse” method, which results in an expected score of
+210, rather than the ♠ A that resulted from the “cash out”
method, which results in a score of -100.

To evaluate the game tree at nodes where it is an
opponent’s turn to play a card, our algorithm takes a
weighted average of the node’s children, based on
probabilities generated by our belief function. For example,
because the probability is 0.9844 that North holds at least
one “low” heart—that is, at least one heart other than the
♥ K—and because North is sure to play a low heart if
North has one, our belief function generates the probability
of 0.9844 for North’s play of a low heart. North’s other
two possible plays are much less likely and receive much
lower probabilities.

Application Use and Payoff

We brought a pre-release version of Bridge Baron 8 to the
most recent world-championship competition for computer
bridge programs: the Baron Barclay World Bridge
Computer Challenge, which was hosted by the American
Contract Bridge League (ACBL). The five-day
competition was held in Albuquerque, New Mexico, from
28 July 1997 to 1 August 1997. As reported in The New
York Times (Truscott 1997) and The Washington Post
(Chandrasekaran 1997), the winner of the competition was
the Bridge Baron—more specifically, the winner was the
pre-release version of Bridge Baron 8, incorporating our
Tignum 2 code. The contenders included five computer
programs; the final place of each program in the
competition is shown in Table 2.

Table 2: The contenders in the Baron Barclay World
Bridge Computer Challenge, and their final places.
Program Country Performance
Bridge Baron USA 1st place
Q-Plus Germany 2nd place
MicroBridge 8 Japan 3rd place
Meadowlark USA 4th place
GIB USA 5th place

The official release of Bridge Baron 8 went on sale in
October 1997; and during the last three months of 1997,
more than 1000 customers purchased it. In his review of
bridge programs, Jim Loy (1997) said of this new version
of the Bridge Baron: “The card play is noticeably stronger,
making it the strongest program on the market.”

Application Development and
Deployment

Chronology
A single graduate student did all of the programming of our
HTN planning techniques for bridge, reusing a few
hundred lines of code from the Bridge Baron. Other
people—primarily two of them, with occasional assistance
from at least two others—helped by discussing what
knowledge to incorporate and how to perform the
implementation. We did not use any formal development
methods.

We began our work on adapting HTN planning
techniques to bridge with a program called Tignum. We
began working on some routines for reasoning about the
probable locations of cards in 1989, most of which were
eventually abandoned because they required too much
execution time. We began work in earnest on Tignum in
1991, and after writing nine thousand lines of code,
abandoned almost all of it in 1993.

We abandoned Tignum because it was poorly
implemented. It did not allow us to consider alternative
plays; it required every piece of bridge knowledge to be
coded by hand with very little possibility of code reuse; it
ran slowly; and it was difficult to maintain.

After abandoning Tignum in 1993, we began work
immediately on Tignum 2, a much better implementation
of the ideas used in Tignum. Tignum 2 allowed us to
consider alternative plays. While bridge knowledge still
had to be coded by hand, judiciously chosen macros and
well-designed components made code reuse easy. Tignum
2 ran more quickly and was much easier to maintain.

Tignum 2 became ultimately successful in February
1997. To test our implementation of it, we played it
against an older version of the Bridge Baron. In (Smith
1997) we reported the results of our comparison of Tignum
2 against this version of the Bridge Baron on 1,000
randomly generated bridge deals (including both suit and

E—«5

"FINESSE"

N—«4

"CASH OUT"

W—«3

…
+620

…
–200

…
+620

…
–200

+620+620

–200–200

+210+210

…
–100–100–100–100

+210

+210 0.0078

0.0078

0.9844
0.5

0.5

S—«A

S—ª2 W—ªK

W—ª3

W—«3

N—ªQ

N—ªA

N—ªA

E—ª4

E—ªK

E—ª3

E—ª3

Figure 4: Evaluating the game tree produced from the
instantiated “finesse” method of Figure 3.

6

no-trump contracts). Each deal was played twice, once
with Tignum 2 as declarer and once with Bridge Baron as
declarer; the winner of the deal was defined to be
whichever declarer did better. On declarer play, Tignum 2
defeated Bridge Baron by 250 to 191, with 559 ties. These
results are statistically significant at the a = 0.025 level.
We had never run Tignum 2 on any of these deals before
this test, so these results are free from any training-set
biases.

These results allowed us to move forward with the
incorporation of Tignum 2 into a new version of the Bridge
Baron, Bridge Baron 8. In Bridge Baron 8, we added an
option to allow customers to select whether they wanted to
use the new AI planning techniques or the old ad-hoc
techniques, which we did not remove from the Bridge
Baron. We added options to limit the length of Tignum 2’s
planning time on a particular play to 30 seconds, 60
seconds, or 120 seconds. This new version of the Bridge
Baron became commercially available in October 1997.

Lessons Learned
We learned several lessons from the development of this

product. We wish we had thought out the implementation
more carefully before beginning to write code for it.
Having Tignum as an unintended prototype before the full
implementation in Tignum 2 worked out surprisingly well;
in the future, we intend to plan our development to include
both a prototype and a full implementation.

To develop Tignum 2, we needed to extend HTN
planning to include ways to represent and reason about
possible actions by other agents (such as the opponents in a
bridge game), as well as uncertainty about the capabilities
of those agents (for example, lack of knowledge about
what cards they have). However, to accomplish this, we
needed to restrict how Tignum 2 goes about constructing
its plans. Most HTN planners develop plans in which the
actions are partially ordered, postponing some of the
decisions about the order in which the actions will be
performed. In contrast, Tignum 2 is a total-order planner
that expands tasks in left-to-right order.

Tignum 2 expands tasks in the same order that they will
be performed when the plan executes, and so when it plans
for each task, Tignum 2 already knows the state of the
world (or as much as can be known about it in an
imperfect-information game) at the time that the task will
be performed. Consequently, we can write each method's
preconditions as arbitrary computer code, rather than using
the stylized logical expressions found in most AI planning
systems. For example, by knowing the current state,
Tignum 2 can decide which of 26 finesse situations are
applicable: with partial-order planning, it would be much
harder to decide which of them can be made applicable.
The arbitrary computer code also enables us to encode the
complex numeric computations needed for reasoning about
the probable locations of the opponents' cards.

Maintenance
To date, only the original programmer has maintained the
HTN planning routines in Bridge Baron 8, though we hope
to have another programmer begin modifying these
routines soon. In the past, the Bridge Baron has been
improved on a daily basis, to make its performance of
bidding and play better; in the future, we expect this to
continue. Domain knowledge about bridge changes
relatively infrequently, but plenty of domain knowledge
about bridge has simply not been implemented yet in our
HTN planning techniques.

The HTN planning routines in Bridge Baron 8 explicitly
handle many bridge techniques: cashing out, ruffing out,
crossing, finesses, free finesses, automatic finesses, marked
finesses, proven finesses, sequence winners, length
winners, winners that depend on splits, opponents on lead,
opponents finessing against declarer and dummy,
dangerous opponents, ducking, hold-up plays, discarding
worthless cards, drawing trumps, ruffing, and setting up
ruffs. Some obvious domain knowledge missing from
these routines include endplays and squeezes; we have not
handled these techniques because they are relatively rare.
As well, the existing techniques certainly need to be
improved.

HTN planning techniques are based on tasks. The HTN
planning routines in Bridge Baron 8 have a separate C
function for each task that it can perform in declarer play
during a bridge deal. These separate functions are very
important for ease of maintenance; if Bridge Baron 8 is not
performing well in particular types of situations, we can
often rapidly improve its performance in many similar
situations by changing the way it performs a single task,
and these changes are often restricted to a single C
function.

Conclusions

For games such as chess and checkers, the best computer
programs are based on the use of game-tree search
techniques that “think” about the game quite differently
from how human players do (Biermann 1978, IBM 1997).
For bridge, our new version of the Bridge Baron bases its
declarer play on the use of HTN planning techniques that
more closely approximate how a human might plan the
play of a bridge hand.

Since computer programs still have far to go before they
can compete at the level of expert human bridge players, it
is difficult to say what approach will ultimately prove best
for computer bridge. However, the Bridge Baron’s
championship performance in the Baron Barclay World
Bridge Computer Challenge suggests that bridge may be a
game in which HTN planning techniques can be very
successful.

Furthermore, we believe that our work illustrates how AI
planning is finally “coming of age” as a tool for practical
planning problems. Other AI planning researchers have

7

begun to develop practical applications of AI planning
techniques in several other domains, such as marine oil
spills (Agosta 1996), spacecraft assembly (Aarup et al.
1994), and military air campaigns (Wilkins and Desimone
1994). Furthermore, the same adaptation of HTN planning
that we used for computer bridge is also proving useful for
the generation and evaluation of manufacturing plans for
microwave transmit/receive modules, as part of a project
that some of us have with Northrop Grumman Corporation
(Hebbar et al. 1996; Smith et al. 1996b; Smith et al. 1996d;
Smith 1997). Since the same approach works well in
domains that are as different as these, we are optimistic
that it will be useful for a wide range of practical planning
problems.

Acknowledgments

This work was supported in part by an AT&T PhD
scholarship to Stephen J. J. Smith, by Maryland Industrial
Partnerships (MIPS) Grant 501.15, by ARPA grant DABT
63-95-C-0037, and by National Science Foundation Grants
NSF EEC 94-02384 and IRI-9306580. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the view of the funders.

References

Aarup, M.; Arentoft, M. M.; Parrod, Y.; Stader, J.; and
Stokes, I. 1994. OPTIMUM-AIV: A knowledge-based
planning and scheduling system for spacecraft AIV. In
Fox, M. and Zweben, M., editors, Intelligent Scheduling,
451–469. Morgan Kaufmann, San Mateo, California.

Agosta, J. M. 1996. Constraining influence diagram
structure by generative planning: an application to the
optimization of oil spill response. Proceedings of the 12th

Conference on Uncertainty in Artificial Intelligence,
11–19. AAAI Press, Menlo Park, California.

Biermann, A. 1978. Theoretical issues related to computer
game playing programs. Personal Computing, Sept. 1978,
86–88.

Chandrasekaran, R. 1997. Program for a better bridge
game: A college partnership aids industry research. The
Washington Post, Sept. 15, 1997. Washington Business
section, pp. 1, 15, 19.

Currie, K. and Tate, A. 1985. O-Plan—control in the open
planner architecture. BCS Expert Systems Conference,
Cambridge University Press, UK.

Erol, K.; Hendler, J.; and Nau, D. 1994. UMCP: a sound
and complete procedure for Hierarchical Task-Network
planning,” Proc. 2nd Int'l Conf. on AI Planning Systems,
249-254.

Erol, K.; Nau, D.; Hendler, J. 1994. HTN planning:
complexity and expressivity.” Proc. AAAI-94.

Erol, K.; Hendler, J.; and Nau, D. Complexity results for
hierarchical task-network planning. Annals of Mathematics
and Artificial Intelligence 18:69–93, 1996.

Great Game Products. 1997. Bridge Baron.
<http://www.bridgebaron.com>.

Hebbar, K.; Smith, S. J. J.; Minis, I.; and Nau, D. S. 1996.
Plan-based evaluation of design for microwave modules.
In ASME Design for Manufacturing Conference, p. 262
(abstract; full paper on CD-ROM).

IBM. 1997. How Deep Blue works. <http://www.chess.
ibm.com/meet/html/d.3.2.html>.

Korf, R. 1994. Presentation of “Best-First Minimax
Search: Othello results” at Twelfth National Conference on
Artificial Intelligence.

Lopatin, A. 1992. Two combinatorial problems in
programming bridge game. Computer Olympiad,
unpublished.

Loy, J. 1997. Review of bridge programs for PC
compatibles. Usenet newsgroup rec.games.bridge, 9
October 1997, Message-Id: <343CAB0B.C6E7D2B1@
pop.mcn.net>.

Manley, B. 1993. Software “judges” rate bridge-playing
products. The Bulletin (published monthly by the
American Contract Bridge League), 59:11, November
1993, 51—54.

Sacerdoti, E. D. 1974. Planning in a hierarchy of
abstraction spaces. Artificial Intelligence 5:115-135.

Schaeffer, J. 1993. Presentation at plenary session, AAAI
Fall Symposium.

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996a. A
planning approach to declarer play in contract bridge.
Computational Intelligence 12:1, February 1996,
106–130. An ear l ie r vers ion is a t
<http://www.cs.umd.edu/TR/ UMCP-CSD:CS-TR-3513>.

Smith, S. J. J.; Nau, D. S.; Hebbar, K.; and Minis, I.
1996b. Hierarchical task-network planning for process
planning for manufacturing of microwave modules.
Proceedings: Artificial Intelligence and Manufacturing
Research Planning Workshop, 189—194. AAAI Press,
Menlo Park, CA.

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996c. Total-
order multi-agent task-network planning for contract
bridge. AAAI-96, 108–113.

Smith, S. J. J.; Hebbar, K.; Nau, D. S.; and Minis, I.
1996d. Integrated electrical and mechanical design and
process planning. IFIP Knowledge Intensive CAD
Workshop, CMU, 16-18 September 1996.

Smith, S. J. J.; Nau, D. S.; and Throop, T. 1996e. AI
planning's strong suit. IEEE Expert, 11:6, December 1996,
4–5.

Smith, S. J. J. 1997. Task-Network Planning Using Total-
Order Forward Search, and Applications to Bridge and to
Microwave Module Manufacture. Ph.D. Dissertation,

8

University of Maryland at College Park. <http://www.cs.
umd.edu/users/sjsmith/phd>.

Tate, A. 1977. Generating project networks. IJCAI-77.

Throop, T. 1983. Computer Bridge. Hayden Book
Company, Rochelle Park, NJ.

Truscott, A. 1997. Bridge. New York Times, 16 August
1997, p. A19.

Tsuneto, R.; Erol, K.; Hendler, J.; and Nau, D. 1996.
Commitment strategies in hierarchical task network
planning. In Proc. Thirteenth National Conference on
Artificial Intelligence, pp. 536-542.

Tsuneto, R.; Nau, D.; and Hendler, J. 1997. Plan-
refinement strategies and search-space size. In Proc.
European Conference on AI Planning.

Wilkins, D. E. 1988. Practical Planning. Morgan
Kaufmann, San Mateo, California.

Wilkins, D. E. and Desimone, R. V. 1994. Applying an
AI planner to military operations planning. In Fox, M. and
Zweben, M., editors, Intelligent Scheduling, 685—709.
Morgan Kaufmann, San Mateo, California.

