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o tions among both the individual goals and .the sub-
Abstract goals of each—a combinatorially explosive proposi-

The wsual approach to maultiple-goal planning is to
Create a single conjoined goal and solve the individual
_;oa]s s its subgoals. This approach suffers due to the
inherent exponential behavior of planning algorithms—

“solving the conjoined goal takes much longer than solving
the individual goals. In this paper, we show that multiple-
goal planning problems can be solved more efficiently by

generating individual, separate plans for each goa! inde- -

pendently and then optimizing the conjunction of these
goals, provided that certain restrictions on goal interac-
tions are satisfied. We demonstrate that this approach
works well on two different multi-goal planning problems:
the problem of finding least-cost multiple goal plans and
the problem of firding multiple-goal plans containing the
largest possible amount of parallelism.

1. Introduction

Multiple-goal planning systems have long caused
problems for artificial intelligence researchers. Sys-

tems planning a single task must handle interactions -

among subgoals of the single plan, but multi-goal sys-
tems, solving either a set of potentially interacting
goals or a single conjoined goal, must handle interac-
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tion {Chapman 1987]. Therefore, it seems unrealis-
tic to expect that general-purpose planners can be
developed which can handle a comprehensive set of
interactions efficiently. Domain-dependent planners,
on the other hand, can often do better at dealing with
goal/subgoal interactions in their domain by posing

domain-dependent restrictions on the kinds of inter- - -
actions that are allowed. But the restrictions they

use are often either too domain-dependent or too re-
sirictive for the planners to be applicable to other
domains.

This paper discusses another

dividual, and separate, plans for each goal indepen-
dently and then combining the conjunction of these

goals is a viable alternative. In particular, we show _

that although this problem is NP-hard in general, it

‘can be solved more efficiently by imposing restric-

tions on the kinds of intér-goal interactions involved.
Our goal has been to develop restrictions with the
following properties: o

1. the restrictions are stateable in a clear and pre-

cise way {rather than simply referring to general
knowledge ahout the characteristics of a partic-
ular domain of application):

2. the resulting classes of planning problems are
large enough to be useful and interesting:

3. the classes of problems allowed are “well-
behaved” enough that planning may be done
with a reasonable degree of efficiency.

As discussed in this papér, we have developed such

restrictions for two different multiple-goal planning
problems: the problem of finding least-cost multiple-
goal plans, and the problem of finding multiple-goal

approach to-
multiple-goal planning. We show that generating in-




plans containing the largest possible amount of par-
allelism. The restrictions, although limiting, are not
as severe as the domain-dependent heuristics used by
many application-specific planners, With these re-
sirictions, we have developed branch-and-bound al-
gorithms with effective heuristics for solving both of
these planning problems.

2. Complexity Analysis

Let G1,Ga2,...,Gnbe the goals to be achieved.
For each goal G;, let b; be its branching factor and
d; its depth [Korf 1987). If the goals are solved con-
Junctively, the size of the search space is

o((Y_b)&im ),
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which is O((nb)"?), where b = max_,};. and d =
maxi._; d;.

On the other hand, if we can solve the goals in-
dividually and then combine the solutions to form a
global plan, the complexity of the method will be

Oo(nb® + T,

where T is the complexity for identifying and han-
dling interactions between the plans. Moreover, in
cases where there are several alternative plans for
each goal, T will also include an additional complex-
ity for choosing one plan for each goal in order to.
satisfy certain optimality criteria. In general, T is
still exponential. However, when the goal interactions
are limited, we can construct branch-and-bound al-
gorithms with good heuristics for combining and op-
timizing the plans. As a result, we expect that the
total time complexity will be reduced. We demon-
strate this claim in Sections 3 and 4.

3. The Least-Cost VMulti.ple Goal
Planning Problem

Problem Statement ~

In this paper, a plan is defined to be a pamally
ordered set of actions. Actions can have costs, and
the cost of a plan is the sum of the costs of the actions.

Let G be a goal which is the conjunct of 2 Bumber of -

&5

-other goals G, Gy, ...,
- the individual goals have already been found, and we
‘look at how to combine them into a global plan.

Gy. We assume the plans for

Depending on what kinds of interactions occur
among the actions in the plans, it might or might

" not be possible for the plans to be combired. In this

section, we consider only the following kinds of inter-
actions.

1. An action-precedence interaction is an interac-

tion which requires that an action a in some
plan P; must occur before an action b in some
other plan F;..

2. The sdentical-action interaction occurs when an
action in one plan must be identical to an action
in one of the other plans.

3. Sometimes, two different actions must occur
at the same time. We call such interaction a
simullaneous-action interaction. .

4. Let A be a set of actions {a;,4a2,...,a,}. Then
there may be a merged action m{A) capabie
of accomplishing the effects of all actions in A.

The cost of m{ A) could be either higher or Jower’

than the sum of the costs of the other actions—
but it is only useful to consider merging the
actions in A if this will result in a lower total
cost. Thus, although we allow the case where
cost(m(4)) > 3. ,c 4 cost(a), we can ignore it
for the purposes of planning. Thus, we only
consider A to be mergeable if cost{m(A4)) <
Y.ze4 co8t{a); and in this case we say that an
aclion-merging interaction occurs.

One way in which an action-merging interaction
can occur is if the actions in A contain vari-
ous sub-actions which cancel each other out, in
which case the action m(A) world correspond
to the set of actions in A with these sub-actions
removed. If the cost of each action is the sum
of the costs of its sub-actions, then the cost of

m(A) is clearly less than the sum of the costs

of the actions in A.

~ Note that even though a set of actions may be

mergeable, it may not always be poesible to
merge that set of actions in a given plan. For
example, suppose @ and a’ are mergeable, but
in the plan P, a must precede b and & must pre-
cede a’. Then a and A’ cannot be merged in P,
‘because it would require & to precede itself.
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Depending on what interactions sppear in a given
planning problem, it may or may ot be possible to
combine the plans into a global plan. We call the
problem of finding out whether or Tot » set of plans
can be combined into a global plan the multiple goal
plen ezistence problem. '

As an added complication, each goal G; may have
severa] alternate plans capable of achieving it, and
thus there may be several different possible identities
for the global plan for G. The least costly plan for
G; is not necessarily part of the least costly global
plan, because some more costly plan for G; may be
mergeable in a better way with the plans for the other
goals. '

We define the least-cos! multiple goal planning
problem to be the problem of choosing which plan

to use for each goal, and which actions to merge in

these plans, so as to produce the Jeast costly global
plan for G. '

The least-cost multiple-goal plan problem occurs '

in & number of problem domains. As an example,
consider a blocks-world problem in which the robot
hand has several different grippers, for picking up sev-
eral different types of blocks. Only one gripper can
be mounted on the hand at any given time. Sup-
_ pose the action pickup(B) consists of mounting the
appropriate gripper for block B and then picking up
B, and the action putdown(B) consists of pufting
down B and removing the current gripper. Then the
sequence of actions

{putdown( A), pickup(B))

would consist of putting down A, removing the grip-
per for A, mounting the appropriate gripper for B,
and picking up B If A and B were the same kind
of block, then these actions could be merged into an

“action which put down A and picked up B without -

changing grippers.

Solving the Problems

We have proved that the least-cost muliiple-goal

plan problem is NP-hard in general, even when we
restrict only one plan for each goal, Moreover, when
there exists several alternative plans for each goal,
the multiple-goal plan existence problem is also NP-
hard. One way of handling an NP-bard problem is to
* simplify it by imposing restrictions on it. The follow-

ing restrictions will simplify the least-cost multiple.

~ goal plan problem:

Restriction 1. Mergeability is an equivalence rela-
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tion: i.e., it is transitive, reflexive, and symmet-
ric. Thus, welet A3, Az, ..., Ak be the resulting
equivalence classes of actions. =~

Restricticn 2. The global plan 11 defines a parti
order over the equivalence classes; i.e., if the
equivalence classes A; and A; are distinct and
an action in A; appears in II before an action
in A;, then nowhere in II can an action in Aj-
appear before an action in A;. (This does not
rule out the possibility of an action in A; eccur-- .
ring immediately before another action in A;;in
guch 2 case, the two actions can be merged.)

 With the above restrictions, we are able to con-
struct a hearistic approach that performs well in prac- .
tice on these problems. The approach is to formulate
the problem as a state-space search and solve it using
a best-first branch-and-bound algorithm, as discussed
below. :

Suppose that we are given the following: (1) for:
each goal G;, aset of plans T containing one or more
plans for G;, and (2) a list of the interactions among
the actions in all of the plans. In the state-space
search, the state space is a tree. Each state is a set
of plans; it contains one plan for each of the first i
goals for some i.
(ie., i=0). If S is a state containing plans for the
goals G1.G1.. .., Gj, then an immediate successor of
S is any set SU{P} such that Pisa plan for Gis1. .
A goal state is any state in which plans have been
chosen for all of the goals G1.Ga2. .. .,Gg. The cost
of a state S is the cost of the plan obtained as the
following: '

cost(S) = Cost(merge(combine(S))),

where combine(S) is the result of resolving all the
action-precedence, identical and simultaneous action
interactions between the plans in S, and merge(P)
is the plan after merging all the actions belonging to
the same equivalence classes in plan P. A state S is
infeasible if combine(S) is no longer partially ordered.

Associated with each state S is a jower bound
function L for ordering the members of the list of al-

ternatives being considered. Assuming that merging . '

plans for two different goals always results in a plan at
least as expensive as either of the two original p'la‘nls.
If this is true, then clearly Lo(S) = cost(S) is a lower
bound on the cost of any successor of § {this would
correspond to using b = 0 in the A* search algo-
rithm). However, a better lower bound can be found

The initial state is the empty set . .



as follows. Suppose S contains plans for G, .. .,G,-.'

For each j > i, let P*(S, j) be the plan P for&7; which
minimizes cost{merge(combine{S U {P}))). Let

Li(8s) = t:];.:c cost(merge(combine(S U {P*(S, ))})))-

In [Yang, Nau, & Hendler 1988}, we show that L, is
admissible, and show how to compute it efficiently.

4. The Most Parallel Multiple Goal
Planning Problem

Problem Statement

A plan is usually associated with protecied condi-

tions. These are assertions which must remain true
during certain time intervals because they are needed
either as goals to be achieved or as preconditions for
certain actions. ' '

In this section, the only kind of protected
condition we comsider is one which is sspervised
[Tate 1977], i.e., it is achieved by some action in the
plan. For example, if an action a achieves a precondi-
tion p of some other action b, then this condition has
to be protected from the end of a to the beginning of
b. Such a protected condition can be denoted by the
triple (p.a,b).

Consider again the problem of planning for mul-
tiple gosals Gy, Ga, ..

some condition p which is needed by action a’, and
suppose some action b in P; achieves some condition s
which denies p. Then we say that a deleted-condition
conflict occurs between G; and Gj. -For simplicity,
we disallow the possibility of “white knights” (as de-
fined in [Chapman 1987]), and assume that deleted-
condition interactions occur only between pairs of
goals. Then there are two possible cases for this con-
flict, depending on whether s is needed by some other
action in F;.

1. If s is needed by some action b’ in P;, then both
~ p and s are protected conditions (p, a,a’) and
(s, 0,1}, s0 the conflict is denoted by the pair
{(p.a,a’).({s,b,¥)). In this case, the only way to
remove the conflict 1s to impose a time ordering
such that a’ occurs before &, or ¥ occurs before
a. .

2. If s is not needed by any action in in P;, then it
is not a protected condition, so the conflict can

.. Gp . where a plan P; exists for
each goal G;. Suppose some action 4 in F; achieves’
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be denoted by the pait ((p,a,a’),(s,5). In this
case, the way to remove the conflict is to order
b before a or after a'.

~ Although this problem domain is similar to the
one described in Section 3, there are several sig-
nificant differences. On obe hand, the deleted-
condition conflict is a more general kind of interaction
than the action-precedence interaction of Section 3.
On the other hand, we do not allow the identical-
action, simultaneous-action, and action-merging in-

teractions. Because of these differences, the optimiza-

tion algorithm developed in-Section 3 is not applica-
ble. :

For this problem domain, we consider the problem
of finding a globa! plan with the minimum number

of ordering constraints between the individual plans. - .

We call such a problem the most parallel multiple goal
plan problem. For the problem domain of Section 3,
this problem can be solved in polynomial by comput-
ing combine(S) when there is only one plan for each

- goal, and is NP-hard if there is more than one plan

for each goal. For the current problem domain, the
“combine” procedure cannot be used, and the prob- |
lem is NP-hard regardless of whether or not there is

- more than one plan for each goal. .

As an example. consider the blocks world prob-
lem with two goals G; = On(A,B) and G; =
On(E.F). Assume that in the initial situation, the
blocks A,B,E and F are all on a table, and C
ison A and D is on B. Suppose that block C
is too large to fit on any block other than A or
E. A plan P, for the goal G, is move(C. E) and
move{ D, Table) in parallel, followed by move(A. B)..
A plan P, for the goal G, is- move(E, F). A most
parallel plan for solving both goals G\ and Gy is the
action move(D,Table) and the sequence of actions .
move( E. F) — move(C, E) in parallel, and both are
followed by the action move(A. B). -

Solving the Problems

Our approach is to formulate the problem as a
state-space search problem and solve it using a best-
first branch-and-bound algorithm, similar to the one
presented in Section 3. :

Suppose we are given a plan F; for each goal G;,

along with a set of protected conditions in each plan.

Then the set C of all the deleted-condition conflicts
can be found in low order polynomial time in the
number of conditions asserted in the plans. _

The state space is a tree in which each state is & set
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of plans, one plan for each goal G;. The initial state
is the original set of plans with no ordering constraint
imposed. A goal state is any state for which all of the
conflicts in C sre removed. If 5 is sny siate, then the
immediate successors of S are those in which a next
chosen confiict from C is removed by imposing partial
ordering contraints as discussed previcasly. State s
is infeasible if the newly imposed ordering introduces
a cycle in the multigoal plan.

The cost of a state is defined as follows. Let R
be the set of pairs (s,t) such that & is an action for
a goal G;, t is an action for another goal Gj, and
is constrained to occur before £. We define cost(S)
1o be the size of R. It is not hard to see that a goal
state with a minimum cost contains 3 most parallel
multiple-goal plan.

We can compute a heuristic H(5) by first updat-
ing the set C of remaining conflicts. This is necessary
because removing a conflict may also remove some
other conflicts in C. Secondly, for each way of remov-
ing a conflict ¢ in C, we compute the member of new
pairs (s, ) added by imposing an ordering constraint
for removing ¢, such that action s is constrained to
precede action 1. Let the minimum number of pairs
be calied N7. Then

H(S) - Tea":x ‘Nc '
~ and lower bound function for ‘branch-and-boundl
scarch is F(S) = cost(5) + H(S}). This heurigtic can
be shown to be admissible.

More Than One Plan For Each Goal

It is reasonable to expect that more than one
plan may be available for each goal for some plan-
ning problems. In cases like this, it is necessary to
select one plan for each goal such that the resulting
multiple goal plan is the most parallel.

In general, if thete are K conflicts existing among '

a set of plans, and for each conflict there are B ways
for resolving it, then the worst case time complexity
for finding a conflict-free multi-goal plan is O(BX).
This formula tells us that by minimizing the total
number of conflicts to be resolved, we can increase
the search efficiency by an exponential amount. In
. fact, this argument provides us with & good heuristic
for choosing among the alternative plans for each goal
when solving the most paralle! multiple goal problem:
We can first search for the set of alternative plans for
a set containing the minimum number of conflicts,
and then use the branch-and-bound search algorithm

discussed in Section 3 for finding the most paraliel
multiple goal plan. ' ' ,

5. Summary

This paper describes a new approach to multiple-
goal planning, based on the idea of generating in-
dividual, separate plans for each goal independently
and then optimizing the conjunction of these goals.
We have shown that with certain restrictions over
gosl interactions, heuristic search methods can’ be
used for combining and optimizing the multiple goal
plans. In domains where such restrictions are sat-
isfied, we expect this approach to be more efficient
than solving the goals conjunctively. ' '

Currently we are conducting further experiments

with the algorithms discussed in this paper. We are

also looking for other planning problems which can be

formulated within the framework of our multiple-goal -

planning approach, as well as ways of lifting some of
the restrictions which were impoeed on goal interac-
tions. L
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