
362 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 3, JUNE 1995

W S + Branch and Bound = Stable Models
V.S. Subrahmanian, Dana Nau, and Carlo Vag0

Abstract-Though the semantics of nonmonotonic logic pro-
gramming has been studied extensively, relatively little work has
been done on operational aspects of these semantics. In this paper,
we develop techniques to compute the well-founded model of a
logic program. We describe a prototype implementation and
show, based on experimental results, that our technique is more
efficient than the standard alternating fixpoint computation. Sub-
sequently, we develop techniques to compute the set of all stable
models of a deductive database. These techniques first compute
the well-founded semantics and then use an intelligent branch and
bound strategy to compute the stable models. We report on our
implementation, as well as on experiments that we have con-
ducted on the efficiency of our approach.

monotonic reasoning, negation by failure.
Index Term-Logic programming, deductive databases, non-

I . INTRODUCTION

N the past several years, the problem of representing nega- I tive information in logic programs and deductive databases’
has been intensely studied. However, most of this work has
concentrated on the declarative aspects of negation in logic
programming--in particular, the focus has been on developing
declarative semantics that are applicable to all, or at least a
wide variety of logic programs, and which possess various
epistemologically satisfying properties. An important research
area that has been left relatively untouched is that of develop-
ing operational semantics and implementation techniques for
logic: programs that contain negation. It is only in the past year
that a number of researchers have started working on this
endeavor.

‘The primary contribution of this paper is the design and
implementation of a bottom-up algorithm to compute: the well-
founded model of a logic program [21] and the set of stable
models of a logic program [SI. The algorithm for computing
the well-founded model is based on the observation that Fit-
ting’s Kripke-Kleene semantics for logic programming is
“sound,” but not complete w.r.t. well-founded semantics
(WFS, for short). It is sound in the sense that if Fitting’s
Kripke-Kleene semantics assigns either true or false to a
ground atom, WFS makes the same assignment. However,
WFS may assign true/false to some atoms that are assigned
“unknown” by Fitting’s semantics. Our procedure first com-
pules Fitting’s Kripke-Kleene semantics (using an optimized

I ’Throughout this paper, we will consider only deductive databases, i e.,
logic programs without function symbols.

Manuscript received July 9, 1992; revised Sept. 7, 1993.
V S. Subrahmanian and D. Nau are with the Institute for Advanced Computer

Studies, Institute for Systems Research, Departpent of Computer Science, Uni-
versity of Maryland, College Park, MD 20742; e-mail: vs@cs.umd.edu.

C Vag0 is with Universita Degli Studi di Milano, Dipartimento di Scienze
delta Znformazione. Via Moretta da Brescia 9, 20133 Milano, Italy.

lEEECS Log Number K95035.

version of Fitting’s OP operator) and simultaneously
“compacts” the program by deleting parts of the program. It
then applies an optimized version of the alternating fixpoint
procedure [20], [3] to the compacted program. Our alternating
procedure compacts the (already compacted) program further
at each step. It is well-known [20], [3] that the alternating fix-
point procedure (without compaction) can compute the well-
founded semantics. Experiments show that in practice, our
procedure of first computing the Kripke-Kleene semantics and
simultaneously compacting the program, and subsequently
performing the alternating fixpoint computation with compac-
tion, is much faster, than the naive alternating computation.

The algorithm for computation of stable models is of par-
ticular interest because stable models may be computed by
first computing the well-founded model of the program and
then using an intelligent branch and bound strategy. Intui-
tively, the search for stable models may be viewed as taking
the atoms assigned “unknown” by the WFS, and making a
true/false assignment to some of these atoms. This corresponds
to the “branch”ing step. Two aspects are key to the success of
branch and bound: first, the selection of atom@) on which to
branch plays a key role, and secondly, an efficient strategy to
prune branches of the search tree needs to be found. We de-
velop an algorithm based on branch and bound, for generating
stable models. The algorithm has been implemented-we re-
port on experimental results reflecting the efficiency of both
the algorithm, as well as numerous optimizations present in the
algorithm.

The techniques we develop here are intended to be used
primarily on those parts of a deductive database where fast
run-time performance is expected and almost no time is avail-
able for performing deduction at run-time (for domains where
deduction may be performed at run-time, techniques like those
of [22], [12] may be used). An example of a concrete domain
where this kind of database support is critically needed is con-
trol systems (e.g., plant monitoring systems, weapons guidance
systems, avionics systems, etc.).

11. PRELIMINARIES

In this section, we quickly recapitulate the basic definitions
of the stable and well-founded semantics for logic programs.
We assume that readers are familiar with the basic ideas of
constants, predicates, atoms, literals, Herbrand interpretations*,
clauses, and logic programs [161. We assume that we have an
underlying hnction-free first order language L containing only
finitely many constant and predicate symbols. The Herbrand

2 Throughout this paper, we will use the words “interpretation” and
“model” to mean “Herbrand interpretation” and “Herbrand model,” respec-
tively. Recall that an Herbrand interpretation is simply a set of ground atoms
of the language in question

1041-4347/9SS04 00 0 1995 TEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

mailto:vs@cs.umd.edu

SUBRAHMANIAN. NAU, AND VAG0 WFS + BRANCH AND BOUND = STABLE MODELS 363

base of L is denoted by BL. In many cases, we will abuse nota-
tion and use BP to denote the Herbrand Base of the language
generated by the constant and predicate symbols occurring in a
logic program P. We will use grd(P) to denote the set of
ground instances of clauses in P. We now define the Gelfond-
Lifschitz transform which forms the basis of both the well-
founded semantics and the stable model semantics for logic
programs ([3], [20]).

DEFINITION 1. Suppose P is a logic program and I c B,.. The
Gevond-Lifschitz transformation of P , denoted P‘, is the
logic program dejned as follows:

A+-- B1 & . . . & B,, n 2 0, is a (ground) clause in P‘ rffthere
exists a clause

A t BI & ... & B, & -IDI & ... & -0,

(m2 0) in grd(P) such that I fl {D, , ..., D,} = 0. Nothing
else is in P‘. Thus, $ is a negation-free logic program.

Given a program P and an Herbrand interpretation I, we
may define an operator, Fp, associated with P, as follows:
Fp(l) is defined to be the least Herbrand model of the negation
free logic program P’.
DEFINITION 2. (Gelfond and Lifschitz) I is a stable model of P

iff1 = FAO.
PROPOSITION 1. (van Gelder [20], Baral and Subrahmanian

[2]) Let P be any logic program. Then F p is anti-monotone,
i.e., if I I r Z2, then F&) c Fp(ll). Consequently, F i , the
function that applies Ff3 twice is monotonic.

We use the notation wfs-true(P) to denote the set of
ground atoms true in the well-founded semantics of a logic
program P. Likewise, wfs-false(P) denotes the set of ground
atoms false in the well-founded semantics of P.
DEFINITION 3 . Let P be a y logic program. Then:

1) A E wfs-true(P) zf l A E lfp(F,?) and

2) A E wfs-false(P) rff A E gfp(F ,),

(Here, Ifp($) denotes the least fupoint of F; and
gfp(F j) denotes the greatestfixpoint of F, .)

111. COMPUTATION OF WELL-FOUNDED SEMANTICS

Suppose P is a logic program. Our algorithms work with
fully instantiated programs. Later, in Section IV.D, we will
outline how, given any technique to compute WFShtable
models for propositional programs, this method can be lifted
to the first order case. However, the details of this first order
“lifting” are left to a future paper.

In the Monotonic Iteration stage (MI-stage, for short), we
mimic the upward iteration of Fitting’s operator [7] and it-
eratively build up a set of ground atoms, denoted mi-true(P),
which are known to be true, and a set mi-false(P) of ground
atoms known to be false. However, there is one key difference
from Fitting’s operator that has a significant impact on efi-
ciency: in addition to mimicking these iterations, the program P
undergoes repeated simplification, resulting, in the limit, in a

target program mi-target(P) that is usually considerably sim-
pler than P. In practice, the monotonic iteration phase is efficient
(Experiment V.A. 1) when compared to the alternating fixpoint
computation strategy described in [20], [3].

In the Gelfond-Lijschitz Oscillation stage (GLO-stage, for
short), we use the simplified program mi-target(P) produced
by the MI-stage, and (recursively) oscillate by applying an
optimized version of the Gelfond-Lifschitz transform. Each
step of the recursion builds up the set glo-true(P) of ground
atoms identified to be true in the GLO-stage, and the set
glo-false(P) of atoms identified to be false in the GLO-stage.
There are two key differences which distinguish this method
from the alternating fixpoint strategy described in [20], [3]:

First, the GLO-stage applies only to mi-target(P) which
is usually significantly smaller than P in size
(Section V.A.2). The alternating fixpoint approach would
use the program, P, which is usually much larger than
mi-target(P).
Second, the alternating fixpoint approach [20], [3] would
proceed as follows: it would hold mi-target(P) fixed and
start with Io = 0. Given I,, wherej 2 1, it would construct
I/+l as follows:

a) it would transform mi-target(P) w r.t. 4 accord-
ing to the Gelfond-Lifschitz transform.
b) it would then set I,+l to the least Herbrand model
of the negation-free program G(mi-target(P), I,) ob-
tained in (a) above.

The iteration would stop when we find a k such that

Our approach adopts a different point of view. We will
not hold mi-target(P) fixed. As the sequence Io, 11, . . . is
constructed, we will keep changing the program to up-
date previously obtained information. These changes in
the program will cause the program to grow “smaller and
smaller,” thus leading to greater efficiency in computing
the least Herbrand model (Experiment V.A.3).

Furthermore, at any given point in time, we will not
transform the program w r t I,, but always w.r.t. the
empty-set. This can be implemented much faster because
all one needs to do is to ignore all negative literals that
occur in clause bodies. Both these optimizations play a
significant role in reducing the time required to compute
the well-founded semantics (Experiment V.A. 1).
In the Combination stage (C-stage, for short), we com-
bine the results of the previous two stages (i.e., the sets
mi-true(!‘), mi-false(P), glo-true(P), glo-false(P)) in a
sound and complete manner.

0 Last, but not least, the logic prograddeductive database
may be updated after its initial creation. Such updates
may cause the well-founded model (or the set of stable
models) to change. The purpose of the update module is
to handle such changes.

Before proceeding to formally describe the details of the
three-stage approach, we present a simple example to illustrate
the approach, and help to fix intuitions.

Ik = Ik+2.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

364 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL 7, NO. 3, JUNE 1995

EXAMPLE 1. Consider the very simple program containing the G(mi-target(P), 1, following nine clauses: -
P + 4

P c r

9 c l r & ~ 3)

r 4- 1 v [4)

S t t 5)

t c 6)

V c V (7)

w t 1 v (8)

U t 1 s (9)

MI-stage: The first thing to observe about this program is
that t is in wfs-true(P) by virtue of Clause 6 and hence, so
is s, by virtue of Clause 5. Thus, these two clauses may be
deleted once it is realized that s, f E wfs-true(P). But once
it is known that s, r E wfs-true(P), Clause 9 can be deleted
as .s is surely true, and similarly, s can be deleted from the
body of Clause 3 . In effect, then. U E wfs-false(P) as there
is no clause left at this point with U in the head. The
MI-stage mimics this kind of reasoning and leads to the
computation of the following sets: mi-true(P) = {s, t } and
mi--false(t’) = {U}, and the simplified target program
mi.-target(P) below:

9 t

r t

V c V (20)

W t (21)
The least model of this program is I , = {p , 4, P, w}. The
Herbrand Base of mi-target(P) = @, 4, r, v, w). As
I , = (v), it follows that v MUST be false, and hence, we can
add v to glo-false(mi-target(P)). At this point, we can use
this information to simplify mi-target(P); as v must be
false according to the WFS. Clause 14 can be deleted from
mi-target(P) and -v can be deleted from the body of
Clause 15. Hence mi-target(/‘) now becomes the program
glo-simp,(P) shown below:

Iglo_simp,(P]

P t 4

P t r

P t r

4 t 7 r

r +- 1 4

V 6- V

W f- - 7 v

W t (26)
Recursively calling the Gelfond-Lifschitz transform w.r.t.

(lo) this program yields the sets mi-true(glo-simp,(P)) =

(1 1) mjfalse(glo-simpt(P)) = Yj. Thus, the GLO-stage retums,
as its final output, the set glo-faIse(mi-target(/‘)) = {v} of

(I 2) atoms that are “false” according to WFS, and
(13) glo-true(mi-target(P)) = {w} as the set of “true” atoms.

C-stage: At this stage, we simply combine the sets of true
(14) and false atoms returned by the MI-stage and the GLO-stage

(I to get, as final output, the sets

mi-target(P) is constructed in such a way that no atoms in
either mi-true(P) or mi-false(P) occur, either positively or
negatively, anywhere in mi-target(/‘). It is important to
note that according to Fitting’s Kripke-Kleene semantics
(which does not handle positive loops well [21]), v is con-
cluded to have an “unknown” truth value due to the loop in
clause 14). The truth value of M. is the negation of
“unknown,” which is “unknown” too
GLO-stage: In this stage, we first realize that no atoms in
mi-true(P) IJ mi-false(P) occur in mi-target(P) We ig-
nore P and Rork with mi-target(P), and first set 1, = 0 and
glo_true(mi-target(P)) = glo-false(mi-target(P)) = 0.
We then compute the least model of the Gelfond-Lifschitz
transformed program (mi- target(P))’I, and denote this
least model by I , . (mi- target(P))‘“ is the program:

wfs-true(P) = {s, t } U {w} = {s, t , w) and

wfs-false(P) = I U} U {v) = {U, v}.

The atoms p , 4 , r are all assigned “unknown” by WFS. I

A. The Monotone Iteration Module
In this section, we describe the technical details of the mono-

tone iteration module. We assume that readers are familiar with
the well-known Kripke-Kleene three-valued logic, and the three-
valued interpretation of logic programming using Fitting’s @,>
operator [7]. QP assigns to atom A if if there is a clause C in
grd(P) such that A is the head of c‘ and such that i satisfies the
body of C. It assigns f to A if, for every clause C in grd(P) hav-
ing A as the head, it is the case that I satisfies Body where
Bo& is the body of C. Otherwise, it assigns U to A.

When performing an upward iteration of Fitting’s operator,
the program P is held constant. In our approach, at each step

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBRAHMANIAN, NAU, AND VAG0 WFS + BRANCH AND BOUND = STABLE MODELS 365

of the upward iteration, we modify the program P so that the
modified program is smaller, in terms of the number of occur-
rences of literals, than P.
DEFINITION 4. Suppose P is a ground program, and I is cl

three-valued interpretation. The mod!fied version of P w.r.t.
I is a ground logic program, denoted mod(P, I) obtained as

1) !f A occurs in the head of a clause C E P and I (A) # U,
then delete clause C jrom P.

2) I fA occurs positively in the body o j a clause C E P and
I (A) = f, then delete clause Cfrom P.

3) i f A occurs positively in the body o f a clause C E P and
I (A) = t, then delete A from the body of clause C.

4j i f A occurs negatively in the body of a clause C E P and
/ (A) = t, then delete clause Cfrom P.

5) !f A occurs negativeb in the body of a clause C E P and
I (A) = f, then delete 4 from the bo(& of clause c‘.

We use mod(P, I) in the computation of 1@(Qp) in the fol-
lowing way: Initially, we set Po to P (the program under con-
sideration). We then proceed to compute (€+(Io) where lo as-
signs U to all ground atoms. @,,(Io) will make some atoms true,
some atoms false, and leave others unknown. The atoms that
are made true (respectively, false) will stay true (respectively,
false) in I@(@ ?) because @ p is monotone w.r.t. the 5 ordering
(I, il Ik iff for all ground atoms A , I I (A) = t (respectively, 0
impries that 12(A) = t (respectively, 9). Suppose A is an atom
that is made true in this process. then any clause in P with A in
the head can be safely deleted as it has nothing new to con-
tribute. Likewise, any clause with i-i occurring in the body
can also be deleted because it can have nothing to contribute
either (the body will stay false in all further iterations). If .-i
occurs positively in the body of C. then we can delete A from
the body. Symmetric transformations occur if A’s truth value
had been fixed to f instead o f t . The following definition for-
malizes this informal strategy of pruning P iteratively (the
word pruning is used because either whole clauses are deleted,
or individual literals are deleted).

DEFINITION 5 . (Pruning Iteration) Let P be a logic program,
and let I be the interpretation that assigns U to all ground
atoms in the language S. We define two sequences, called
the interpretation-sequence (I-sequence, for short) and a
program-sequence (P-sequence, for short) as follows.

1(, := I

I,+I(A) = @)PI(IJ)(A) Y’I,(A)-= U
and I,@) otherwise

As all programs dealt with in this paper are deductive dati-
bases, it is easy to see that there is a minimal integer n such
that I,, = I,,, and P, = P,+, . Hence, given any program P, there
is a unique I-sequence I,, I, and a unique P-sequence
Po, ..., P, associated with P. The following result is straight-
forward.

LEhlMA 1. Suppose P is a logic program, and 10, . . ., I,, is the
I-sequence associated with P. r f 12 j < k 2 n, then 4 i: 1,. I

follows:

Po = P

PI+, = mod(P j , J) .

THEOREM 1. (Soundness of Pruning Iteration w.r.t. WFS) Let
P be a logic program, and let lo, . . . , I,, and Po, . . ., P,, be the
I-sequence and P-sequence associated with P. Then:
1) (Soundness w.r.f. Fitting’s Semantics) I, = I@(@,).
2) for all atoms A, ifI,(A) = t then A E wfs-true(P), i e., A

is true according to the well-founded semantics for P.
3)j.or all atoms A, ifI,,(A) = f then A E wfs-false(P), i.e., A

is false according to the well-founded semantics for P. 1

The MI-stage is not complete w.r.t. the well-founded se-
mantics, as can be easily seen by the following example:

EXAMPLE 2. Consider the single clause program P = { a t a} .
The well-founded semantics for P assigns f to a; however,
the set mi-false (P) generated by the MI-module does not
contain a. I /

As a final remark on the computation of WFS, we observe that
if the truth value of a ground atom A is determined, during the
MI-stage, to be either t or f, then the atom A is completely
eliminated tiom the target program mi-target(P).
LEMMA 2. 1) Suppose Ifp(@p)(A) # U. Then A does not occur

either positively or negative41 zn mi-target(P). 2) Suppose
Ifp(@],)(A) = U. Then there exists a clause C in mi-target(P)
having A as the head and such that at least one literal in the

I
Before proceeding to a detailed description of the GLO-

stage, we draw the reader’s attention to Fig. 1 and the compu-
tation of stable models. The idea is that if we want to eventu-
ally compute the stable models of a deductive database P, we
first compute the well-founded semantics of P and simultane-
ously generate a “small” program (denoted glo-simp(P) in
Fig. 1) which is then piped to the branch and bound procedure
that computes stable models. Thus, we need to be sure that the
transformation performed during the WFS coniputation mod-
ule do not compromise the stable models in any way. The fol-
lowing lemmas are needed to establish this property.

body of C is assigned the truth value U b.y I@(@,).

to mtable model

not .

.

Pig. 1. Architecture of the WFS compulation module

LEMMA 3. Suppose P is a logic program and A (respectively,
B) is a ground atom which is assigned t (respectively, f! by
the well-founded semantics of P. Let Q (respectively, Q) be
the program obtainedfrom f by:

1) deleting all clauses in P with head A (respectively, B),
and

3 When implementing, we modify a copy ofthe program P

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

366 IEEE TRANSACTIONS O N KNOWLEDGE AND DATA ENGINEERING, VOL 7, NO. 3, JUNE 1995

2) deleting all clauses in P with 4 (respectively, B) in the
body, and

3) deleting positive (respectively, negutive) occurrences of
A (respectively, B) from the body of any clause in which
it occurs.

Then: A two-valued interpretation I is a stable model of Q
Iff1 U { A } is a stable model of P .
The above lemma indicates that as long as the three valued

interpretation I is "sound" w.r.t. the well-founded semantics (in
the sense that whenever I assigns true to an atom .4, then
A E wfs-true(P) and whenever I assigns false to an atom B,
then R E wfs-true(P)), then P's stable models may be ob-
tained from those of mod(P, I) by appending the true atoms in
I to the stable models of mod(/', I) .

B. The Gelfond-Lifschitz Oscillation Module
As seen in Exaniple 2, the MI-stage alone is not complete

w.r.t. WFS computation. However, it is sound w.r.1. WI"S
computation. The Gelfond-Lifschitz Oscillation (GL.0, for
short) stage performs some further computations with a view
to computing that part of the WFS which is not already com-
puted in the MI-stage. The CLO-module takes as input, the
program mi-target(P) produced by the monotone iteration
module. It then perfonns an altemating lixpoint-like compula-
tion ([20], [3]). However, there are a Iew significant differ-
ences which allow our strategy to be much more efficient
(Experiment V.A. 1) than the ordinary altemating fixpoint
computation strategy. The first difference is that unlike the
altemating fixpoint computation, our GLO-procedure only
applies to the program mi-target(P) which is usually much
smaller than the program P. Secondly, as we perform the oscil-
lation, we continue pruning the program, so that at each stage,
the oscillation steps are applied to "smaller and smaller" pto-
grams. This causes the oscillation to be much more efficient
than othenvise (Experiment V.A.3).

Lf we look carefully at the well-founded semantics, the it-
erations of the F,. operator exhibit the following behavior (this
behavior has been observed by Baral and Subrahmanian [?-I,
[3] and van Gelder [20]): the interpretations at even levels of
the oscillation form a monotonically increasing sequence, and
gradually build up, in the limit, the set wfs-true(/'):
FP((LZI) c F ; (0) s . . . ~ F i ' (0) E The odd levels of the
oscillation form a monotonically decreasing sequence and
gradually build up the complement of the set wfs-false(1'):
F;(@)=, $(0)2 ...2 Fb""(0) 2 In other words, the se-

quence, F ; (~ z ~) c $(@*I E... .E F:'+'(D)G ... is a monotoni-
cally increasing sequence, and in the limit, it constructs the set
wfs-false(P). Thus, when we apply FT, first to the empty set
and compute F i (0) , we know that all atoms in I$(@) are
false. Hence, we can use this information to transform the pto-
gram P. In the next stage, when we apply F/, to F i (0) , we
know that all atoms in the set F i (0) are true. We may use this
information to transform the program. Thus, at odd levels, we
should transform the program P according to what was leamed
to be false, while at even levels, we should transform the pro-

gram under consideration according to what has been leamed
to be true. These intuitions are formalized in the following
definitions.
DEFINITION 6 . (Transformatiori Strategy) Given a program P,

and a two-valued interpretution I , we now define a trans-
formation of P w.r.t. This transformation depends on one
extra parameter, called pas or neg.

trans(P, I , neg) is dejined a3 follows:

1) i f A E J , and A occurs in rhe head o fa clause C E P, then
delete C f iam P.

2) i f A I, and A occurs positively in the body of a clause
C E P, then delete C from P.

3) $A E I, and A occurs negatively in the body of a clause
C E P, then delete all occurrences of 4 +om the body
of c.

trans(P, I , pos) is defined as,fbllows:

1) i f A E I and A occurs in the head of a clause C E P, .then
delete Cfiom P.

2) i f A E I and A occurs negatively in the body of a clause
C E P, then delete C from P.

3) $ A E I and A occurs positively in the body of a clause
C E P, then delete all occurrences ofAJi.om the body of C.

DEFINITION 7. (Pruning Oscillation) suppose P is a logic pro-
gram. Define the GLO-iteration of P as four sequences: a
sequence of two-valued interpretations Io, . .., I,,, ..., a se-
quence of programs Po, ..., P,, ..., a sequence of sets of
true atoms glo-trueo, ..., glo-true,, ..., and a sequence of
sets of false atoms glo-false,, . . ., glo-false,, These se-
quences are constructed asjollows:

D]
Io = 0
Po = P

glo-true, = 0

glo-falseo = 0

It = FI,(~O)

P I = trans(PO, 11, neg)

glo-truel = 0

glo-falsel = (BIa - 11)

por evenj , j > 0 1 lFor0-g
I/+? = FpI+i(Jj+l) I,,? =: F,~,+l(lJ+t)

PIt2 = trans(P/+l, pos) P,+2 = tran.s(PT+I, I,+*, neg)
glo-true,+2 = glo-true, U I,42 glo-true,+2 = glo-truei
glo-false,+2 = glo-false, glo-false,+-, = glo-false, U

Note that the above definition simultaneously defines both the
sequence of interpretations and the sequence of programs. It is
well-defmed because, each I, is defmed in terms of P,-I,
I,-t fo r j > 0. Likewise, each P, is defined in terms of I, and P,,;
as I, is defined in terms of this does not lead to any cir-
cularity. Similar comments apply to glo-true, and glo-false,.

In order to better illustrate pruning oscillations, we return to

(B/Tj+ I - I,+z)

4 Unlike Section Ill A where we modified programs using three-valued in-
lerpretations, the transformation strategy described here uses two-valued
interpretations

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBRAHMANIAN. NAU, AND VAGO: WFS + BRANCH AND BOUND = STABLE MODELS 361

Example 1.

EXAMPLE 3. Consider the program P of Example 1. We focus
upon mi-target(P) which consists of clauses 10-15. Our
sequence of Is and Ps is built as follows:

1) Io= 0.

3) glo-falseo = glo-trueo = 0.
4) Il = Fql(lo) = { p , q, r, w). Note that v E I.
S)Thus, P, = trans(Po,Ip, q, r , w } , neg). There are two

clauses in Po containing occurrences of v-clause 14 and
clause 15. Clause 14 gets deleted, while lv gets deleted
from the body of clause 15. Thus. P , consists now of
clauses

2) P o = (10, 11, 12, 13, 14, 15).

P + - 4 (27)

4 + - l r (2 9
r t l q (30)
U’ t (31)

6) glo-false, = I , = { v) , and glo-truel = 0.
7) The next stage is the construction of I, = F., (I,) which

is equal to { w} .
8) P2 is now set to trans(PI, {w} ,pos) . Computing trans(PI,
{w), pos) leads to Clause 31 being deleted from PI.
Therefore, P2 consists of clauses 27-30.

9) At this stage, glo-false2 = glo-falsel, but glo-true2 == { w} .
10)The next stage is the construction of I , = & (I 2) which

is equal to (p, q, r}.
1 1)P3 is now set to trans(P2, Ip, q, r) , neg). No clauses are

deleted nor modified in this step, and we have P3 = P 2 .
12)glo-false3 = glo-false, U = (v}. Note, in particular,

that complement of 1, is w.r.t. the Herbrand Base of P2,
and hence, I , = 0.

13)The next stage is the construction of f4 = Fp, (I,) which
is equal to 0.

14)P4 is now set to truns(P3, 0, pos) and leads to no change.
15)The values of both glo-false4 and glo-true., are the

same as the values of glo-false3 and glo-true3, respec-
tively. As there are no changes in the values of both
glo-true3 and glo-true4, we may terminate construction

The alternating fixpoint approach [20] , [3] allows us to stop
constructing our sequence(s) as soon as we find the smallest n
such that glo-true,, = glo-true,+2. It turns out that in this case,
glo-true,, = lfp(F$) = wfs- true(P) and that glo-false,,,
= gfp(F i) = wfs- false(P) . The equality lfp(F i)
= wfs-true(P) has been proved in [3], as has the equality
gfp(Fi) = wfs-false(P). What remain to be established are
the equalities glo- true, = lfp(F,?) and glo- true,, +,
= gfp(F:) . We show this below.

THIDREM 2. Suppose P is U logic progrcim. Then, for ull even
integers i, it is the case that

P + r (28)

-

of the sequence. I1

1) wfs-true(P) = wfs-true(P,) U glo-true,(P) and
2) wfs-false(P) = wfs-false(P,) U glo-falseXP). 0

Part 1) of Theorem 2 says that to compute wfs-true(P), we
can perform pruning oscillations for i stages. At the end of
these i stages, we have a set glo-true,(P) of ground atoms, and
a “pruned” program PI. wfs-true(P) may be obtained by com-
puting wfs-true(P,) and then adding all the atoms in
glo-truel@‘) to this set. Part 2) of the theorem is similar. Theo-
rem 2 has, as an important corollary, the following result:
COROLLARY 1. (van Gelder [20] , Bard and Subrahmanian [3])

Suppose P is a logic program. Then wfs-true(P) =

n
Though the above corollary says that the GLO-module

alone is sufficient to compute the well-founded semantics of
any program P, it turns out that using the GLO-oscillation on a
program P is relatively inefficient (Experiments V.A.1 and
V.A.3). Instead, it is computationally faster, in practice, to run
the MI-module first on program P, and generate the sets
mi-true(P) and mjfalse(P) and the modified program
mi-target(P). mi-target(P) is usually much “smaller’’ than P
(Experiment V.A.2); applying the GLO module on
mi-target(P) leads to the computation of the sets
glo-true(mi-target(P)) and glo-false(mi-target(P)) which
may then be combined using the combination module below.

C. The Combination Module
The combination module takes as input, the sets mi-true(P)

and mi-false(P) returned by the monotone iteration module,
and the sets glo-true(mi-target(P)) and glo-false(mi-target(P))
returned by the GLO-module. It returns, as output, the set
mi-true(P) U glo-true(mi-target(P)) of “true” atoms, and
mjfalse(P) U glo-false(mi-target(P)) of “false” atoms. The
following result now follows immediately from Theorem 2 and
Corollary 1.
THEOREM 3. Let P be any logic program. Then.

glo-true(P) and wfs-false(P) = glo-false(P).

1) wfs-true(P) = mi-true(P) U glo-true(mi-target(P))
2) wfs-false(P) = mi-false(P) U glo-false(mi-target(P))

U

Given a logic program P, once the MI-module,
GLO-module and the combination modules have been exe-
cuted, the sets wfs-true(P) and the sets wfs-false(P) are hl ly
computed. A simplified version, glo-simp(mi-target(P)), of P
is also computed. This simplified program is now fed into the
stable model computation module (described below).

IV. COMPUTATION OF STABLE SEMANTICS

It is well-known [20] , [3] that the well-founded model ap-
proximates the stable models of a logic program in the follow-
ing sense: for any logic program, P, and for any stable model,
M, of P:

wfs-true(P) c A4, i.e. the set of ground atoms true in the
well-founded semantics of P is a subset of the set of at-
oms true in Mand

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

368 IEEF TRANSACTIONS IN KNOWLEDGE AND DATA ENGINEERING, VOL 7, NO. 3, JUNE 1995

wfs-false(P) c (B,. M), i.e. the set of ground atoms
false in the well-founded semantics of P is a subset of the
set of atoms false in M.

A. Informal Description of Branch and Bound Algorithm

as follows:
Given a logic program P. we compute its stable models

1) First, we compute the well-founded semantics of f“ wing &e
p r o w h e outlined in the precedny: section. The WFS computa-
tion module (Fig. I) returns the following: the sets wfs-true(P)
and wfs--fali;e(P), as well as the program glo_simp(P). which is
a simplified version of mi-target(P). glo*-simp(P) is the final
element P, of the sequence Po, . . ., P, specitied in Definition 7.
(As we are only dealing with deductive databases, there must
exist an integer n such that f’,, P,, ,).

2) Our branch and bound algorithm for computing stable
models takes glo-simp(1’) as inpul, and returns the set. S,
of all stiible models crfglo-simp(l-’) as output.

3) ’The set of (;table models of the original program P is then
.(wfs-trueiLP) IJ I I I e: S) .

An imporfanl point to note is that the program, P, whose
stable models we wish to compute should not be fed diiectly
to the branch and bound algorithm (doing so may lead to
incorrect results). Only glo_simp(P) may be fed to the
hi ‘inch and bound algorithm The exainple below illustrates
thc working of the algorithm Formal definitions are given
after the cxample.
E U M P L E 4. Suppose q = glo-simp(f’) is the program:

{ LZ t 4; h f- ,a; c 4- a; c t h } . All the atoms a, b, c are
‘ unknown” according to the well-founded semantics. In our
branch and bound algorithm, we piocess this program as
follows: Ne first initialke the list S (of stable models found
thus far) to G3 and we have a list I, containing one node-
the four-tuple p = (glo_-simp(P), D, D, { a , h, c }) L points
to a list of nodes that are yet to be processed. The four-tuple
consists of the program to be processed. atoms assumed to
be true, atoms assumed to be false, and atoms currently
‘ unknown.” We select ,in atom that is unknown Ilvt us say
we select a) and branch by assigning either fulse or Irue to
c r . How best to select an atom from the set of currently
‘ unknown” atoms is a significant problem; one method of
doing so is described in Section 1V.C. Fig. 3 shows the
trranching process once the atom I I ha? been chosen as the
atom on which to branch. The left Iwanch assumes a to be
ialse, the right branch a\sumes a to be true.

In the left branch, which assumes U to be false, we replace
occurrences of U (positive and negative) in the body of
clauses in glo,-simp(f‘) as follows: I f ~1 occurs positively in
the body of a clause, replace it by jklse, and if a occurs
negatively in the body c)f a clause. then delete that negative
occurrence of LI from the body. ‘Ihi.; leads to a new node
consisting of

q : the modified program--- in this case, it consists of the
clauses. { U c- -1 h; h t- , c c-fulw, c t h } . A recursive
call is made to the WFS computation algorithm The set

of atoms true in the well-founded semantics of this new
program is {b, c} and the set of atoms false in the well-
founded semantics of this new program is { a} .
T -: The true atoms consist of the true atoms fiom the par-
ent node (0 in this case) plus the atoms determined to be
true in the well-founded semantics of the new program.
Hence, the set of true atoms in the new node is {b, c } .
F - : First of all, a must be in F - because we are branching
on the assumption that a is false. Ln addition, F - includes
all the false atoms from the parent node (0 in this case)
plus the atoms determined to be false in the well-founded
semantics of the new program (also 0 in this case).
Hence, the set of false atoms in the new node is { a } .
U-: The set of unknown atoms in the new node is 0 (all
atoms’ truth values have been “fixed” as above).
We then check if T is a superset of anything in S. It is
not. Fnrthermore, we observe that T - n F = 0, i.e., the
assumption that a is false has not led to inconsistency.

Finally, we observe that nothing is now unknown, i.e., U -
is empty. IIence, all atorns have been assigned truth Val-
ues, and no inconsistency results. Consequently, we know
that T i s stable, and we add it to S. (Had U - been non-
empty, we would have added the tuple (q , T- , F-, U-) to
the list L.)

In the right branch, which assumes a to be true, we delete
positive occurrences of a in clause bodies, and replace oc-
currences of -la in clause bodies by false. This leads to a
new node consisting of:

9+: The modified program consisting of the clauses
{ a t T b ; b c false; c t ; c t h} . When the well-
founded computation module is called with this program
as input, the set {c) is determined to be true and { b } is
determined to be false.
T’: Consists of the assumption, a, and c, and hence is the
set {a , c } .
F +: Consists of { b }

0 U’: This set is empty.

We then check if T’ is a superset of something in S. It is
not. Furthermore, T ’ n F ‘ = 0 and hence, there is no in-
consistency. Furthermore, U + is empty. Consequently, we
add T ’ to S.
At this point, L contains no nodes, and we are done. S contains
the two stable models of this program {a, c} and {b , c } . 0

B. Formal Properties of Branch and Bound Algorithm
In this section, we develop the formal theory of computing

stable models using the branch and bound strategy of Fig. 2.
As can be observed by a cursory glance at the algorithm of
Fig. 2, various expressions used in the description need to be
formally defined. The first is the concept of what expressions
like ‘‘9- is q modified by 4” and ‘‘9’ is 9 modified by A”
mean. These modifications are similar, but not identical to, the
transformation strategy given in Definition 6 .

DFFINITION 8. Suppose q i~ U logic program, and A is a
ground alom. The result of modi&ing 9 MI r.t. 4, denoted
CH(q, -VI), i s the 1ogic.program obtained us follows:

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBRAHMANIAN, NAtJ, ANI) V A G 0 WFS 1 HKANCH AND BOUNI) - YT,\BLE MODELS 369

1) r f A occurs in the hotly (f a c1au.x in q, then A is r+

2) I f -4 occurs in the hoh, of U clause in 4, thtw th, it

The result of modijjing q IY r 1 A , denoted CH(q, '1) 15 the
logic program obtained ~xsjolluws

1) lf-4 occurs in the hody of U c luzue in q, then 7 1 is r$;-
placed by the atom fiilse.

2) I f A occurs in the hodit of a L . 1 u u . w in 4. then thtrt occuv-
rence of 4 is dcdeled

placed by the atorn false.

occurrence of -,A is deleted

L = ((P,0,0,Bp)), (* Bp is the Herbrand Base of P *)
S = 0, (* S 18 the set of stable models obtained 80 far *)
W (L # 0) rln

&&the first node Q = (q, T F, 6') ~QKI hst L ,
Ranlove Q from L,

there is no To E S such that To <; T h&
Select ground atom A from U.
Q- = (q - ,T - . F-, U -) where

q- IS q modified by -.A and
T - 1 TU the set of atoms true in WFS(q-) and
F- 16 F U { A) U the Ret of atoms false in WFS(q) and
U - 1s the set (U - (A)) - (T U F-)

d I - is not a superset of any To F '? h
If Q- 18 consistent t k

add T- to S
d U - = B k

& append Q' to the end of hat I ,
Q+= (q + , T + , F + , U +) whwe

q+ is q modified by A a n d
T+ 18 T U { A } U the net of atoms true in WFS(q+ I and
F+ 18 F'U the set of atonis Mae in WFS(q+) axid
U + 18 the net (U - (A)) - (T* L I Fe)
T+ is not a superset of any TO E S
rf Q' 18 consistent *a

add T+ to S
d u + = 0 t h

& append Qt to the end of list L,
F&

return S ,

Fig 2. Rranch and bound algorithm for computing stable models

I I

I m I

terminates as "unknown"
net is empty.

Fig 3 . Ilranch and bound example

We assume that the proposition fu/w is an artificial atom
that is not considered (for ease of presentation) to occur in the
Herhrand Base of the program. The key difference between the
modification mod(-, -) and CH(-, -) I S that the latter neber
causes any clause to be deleted and never affects the head of
an) clause
DEI:INITION 9. Suppos~ Tis a Bititrq. ttec' The root oj 7'iv said

IO be a level 1 node. r f h is a level I node, and N' IS a chfld
o f N then N' i~ said to be a I~~vel (I + I) node.
I f 7' contains jinitely ~nuny tiodt's, tiim lhe height of T is
I Jt>$neii to he may {level(y) 1 N E 7')

I)EFINITION Io. Suppose f is 11 logic program Let BP be the
Herbrand Base of P. Furthermore, suppose the cardinality
of B,, is ti und le1 a,, .., a,, be un enumeration of Bp. The
abstract computation tree, diwoted .4('T(P), associated with
P und the enumerution ordtwng a, , .., a,, is a full hinary
tree oj height (11 -t I) de$ned as $f; , l lo~~s

1) The root of A C T (P) is luhtded with (P , 0, 0, Bp).
2) I f N i s u level I node in A('T(P) labeled with (q, T, F, U),

and i S n then N has /uxo children, A' arid N &. The link
from N to N 1 % 1aheIc.d with TU,, und the* link from N to
Ni IJ Iuheled M ith a,.

3) The luhel of N is (4 .7' .F ,iJ whrrc
a) q = CH(q, -q)
b) 7' -= 7' CI wfs-true(glo-simp(CH(y,
c) I . = I. CI {a,} I J wfs;_faIse(glo-simp(CH(q, -,a,)))

4) The luhel oj N I F (q' . 7 '. I ; I , I / ') where
a) 4' - <'H(y, a,)
b) 7" - 7 'CI {a,) U wll's_trne(glo_simp(CH(q, a,)))
c) P - b' 1 wfs_false(glo-simp(CH(y. a,)))
d) I ' Il ({ u l } U 7 IJI.")

d) [' - (' - ({ a ,) 1J 7 1J I')

Pruning S ~ U / ~ J ~ I ~ I'he abstrxt conipiitation tree associated
with a program I' is, in general very large. [ht: reason for this
IY that ACT(! ') is of height lIB, 11 I I v here Ill?, /I is the number
of ground aloms in the language being considered. Thus, as
4('T(P) is a full binary tree, it contain$ (2"'9''1' I) - 1) nodes: a
potentially very large number 1 he %table niodel algorithm, as
cnvisaged in Fig. 2, would attetnpt tu alleviate this problem by
the following methods:

1) First. given a logic program P. we would call the branch
and bound algorithrti with the program glo-simp(P)
which IS typically much maller than P and has a much
smaller Herbrand Base. 1i i other words, we would study
the abstract computation tree ilCT(glo-simp(P)) as op-
posed to A('T(P) . This reduces the number of nodes from

- I) . I n practice the size of
the program glo-simp(P) as compared to the size of P is
very small indeed.

2) Second, many branches in A('T(glo-simp(P)) can be
pruned away. If N is a ncde with label Q = (q, T, F, U)
such that 7 n F # @ then (1 is wid to be inconsistent and
the left and right subtrees are pruned away via the if-tests
in lines 14 and 24 of the branch and bound algorithm.

3) rhird. further pruning c m he done based upon the set U
As soon as a node's lab-l has an empty U-component.
there is no need to expand that node an) further. so it is
pruned in lines 15 and 25 of the algorithm

4) Fourth, it is not difficult to see that if \+e consider any
branch in AC,'7(P), the 'I-components of the nodes in this
branch are inonotonicallv increasing as we get further
away from thc root, i.e.. if A I , ..., Nk IS the branch in
question, and f', is the 7-component o f the label of node i,
then TI c T, c . Furthermore, Marek arid 'rruszczynski
[171 have shown that every stable model I of a logic pro-
gram I' IS minimal in the sense that no strict subset ,I c I
can be a stablc model of P Consequently, if we already

(2(lll?,.llkl) - ,) to (21141s . 4mp,i

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

370 IEEE TRANSACTIONS ON KNOWLEDGE AND D4TA ENGINEERING, VOL 7, NO 3, JUNE 1995

know when, exploring a particular branch, that I is a sta-
ble model, and if we find that T / is a label in that branch
such that I c T,, then we can prune away all subtrees
rooted at node N,. This is done in lines 13 and 23 of the
branch and bound algorithm.

5) Fifth, the specification of ACT(P) is non-deterministic in
the sense that there are many possible ways of selecting
which atom to branch on. A judicious choice of the atoms
on which to branch an may well lead to:

a) the set of “unknown” atoms heing quickly disposed
of andlor
b) pruning of a subtree below the current node

Given a logic program P, and an enumeration al , .. , ti , of
the Herbrand base of P, we use PRUNE _ACT(P) to denote the
tree obtained by pruning ACT(P) as much as possible using
conditions 1)-4) above.
DEFINITION 11. Suppose P is U logic program 1,et

LEAF(g1o-simp(P)) = { T I there txists a leaf riode m
PRP/NEACT(glo_simp(P)) having, LIS its label, (y, T, I;,
0) ,such that T fl F -0).
Let MIN-LEAF(g1o-simp(P)) be the set of all c-minimal
elements ofLEAF(g1o-simp(P)).
In other words, LEAF(g1o-simp(P)) is simply the set of all T-

components of the labels of consistent leaves of
PRCTAUE_ACT(glo-simp(P)) Similarly, MIN-LEAF
(glo-simp(P)) is the set of minimal elements of
LEAF(GL0-SIMP(P)) The following example shows the tree
PRUNE-ACflP), and how stable models may be generated

EXAMPLE 5. Consider a program I‘ containing the following
clauses:

a t 4 h t -la

C t a c c - h

Fig. 4 shows the tree PRUNE--ACT(P) corresponding to this
program P. Note that in this case, P = glo-simp(P).

hanuistent hconristent Stable Stable

Fig 4 The (pruned) tree AC r(P) for Example 6 i~sing selection ordering c,b,a

If one looks carefblly at this figure, h e strutem to select a
literal is c , 6 , a. In other words, branching at the root is based
on c, branching at level 1 nodes is based on b. It turns out that
we never need to branch on a.

Suppose we choose, instead, to consider selection of the
branch literals to occur in the order h, 0, c. In that case, Fig. 5
shows the tree PRUNE-ACT(P). One will observe that using this
selection order causes PRCINE-ACT(P) to contain fewer nodes.

Hence, this ordering is preferable to the ordering c, b, a. Section
1V.C provides an outline of how to make such selections a priori.

I‘ig S The (pruned) treee ACT(P) for Example 6 using selection ordering b,a,c

Note that once a specific literal ordering is given, the ab-
stract (un-pruned) computation tree ,4(’T(P) is uniquely de-
temiined. Strictly speaking, the depth of ACT(P) remains the
same irrespective of the specified literal ordering because
technically, ACT(/‘) contains branching nodes for all atoms.
I’he effect of pruning is to cut down ACT(PI by refbsing to
branch on nodes that are either

1) completely determined, I e , the node’s label is of the
form (y, 7: F, a) or

2) subsumed, i.e.. 7’ 2 I for some I that is already known to
be stable. or

3) inconsistent, i.e., T 11 F = 0.

The following result is straightforward and is of great utility
in proving the soundnes and completeness of the branch and
bound algorithm.

LEMMA 4. Suppose P is a logic progrum and A is a ground
atom Then

1) VA is “unknown ” according to WFS, then there exists a

a) some literul L in tile body of(’ is “unknown” ac-
cording to WFS and
b) tlierr is no clause C‘ E glo-simp(P) with A in the
head such that all Icttwds in the body of C‘ are true
in WFS.

2) If A OCL urs (positivelv or negativtdy) either in the head
or in the bo43 of any cltnise in glo-simp(P), then A is

Note that the branch and bound algorithm should not be
applied directly to a deductive database P. It works only after
P has been converted to glo-simp(Pt-if applied directly to P,
incorrect results may be obtained. The reason why the branch
and bound algorithm should not be directly applied to P is that
all atoms occurring in glo-sinip(P) are “unknown” according
to the well-founded semantics of glo-simp(P). It is precisely
to preserve this property that the programs occurring in labels
of nodes are of the form glo-simp(CH(y, ta)) rather than just
CWy, +a).
THEOREM 4. I IY a stable model of glo-simp(P) i f l

Before proceeding to prove the soundness and completeness
of our branch and bound algorithm in lheorem 5 below, a
number of technical lemmas ni:ed to be established.

clause C’ E glo-simp(P) with A in the heud such that

assigned U by WFS. LJ

I E MIN_L,EAF(glo-simp(P)). I1

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBKAHMANIAN NAU, ANI) VA(;O. WPS + RRAVCH AND BOUND = STABLE MODELS 371

LEMMA 5 . The brunch and bound algorithm generates the
1

COROLLARY 2. (Termination of Branch and Bound Algorithm)
I I

COROLLARY 3. The brunc h und bound algorithm generates the

LEMMA 6. I f N and K a n node.\ of YKIJNE-ACT(P) with
labels (q, T , I;, U) and (q‘, T‘, F:’, Lr‘), respectively, and rf
N is to the left of N (then T’

THEOREM 5. (Soundness and Completeness of Branch and
Rcrund Algorithm) When L alled with glo-simp(P) as input,
the Branch and Bound Algorithm rvturny as output, the stit
MIN-LEAF(glo- simp(P)) which I.\ iJmtical to the et of
stable models of glo- simp(P).
Before proceeding to discuss intelligent branching

strategies, we observe that sometime5. we may be intei-
ested in truth in some stable model (i t P . Stable models
reflect multiple possible way\ 0 1 completing an
“incomplete” description of the worltf Any one of these
may be the “right” one, but based on the available intui-
tion, we do not know which. To deteinune truth of a query
in some stable model of f’, the branch dnd bound niethod
can be modified as follows as soon as the fiist stable
model MI is discovered by the blanc ti and bound algo-
rithm, write down the tuplcs { p (l , i) lp , (t) E M i) Basicall>,
the tuple p(i , 7) rays that the ground d o n i p (7) i s true i n

the ith stable model of P When wanting to know i t the
query (3x,, ,. , x k) (p I , ii,)B . . & p , (im)) is true i n w m e
stable model of P, the above set of iuples can be queiied
as: (3i)(3x1, ... x,) (p , i , (i, ,st ... & p m (i , im)). Alternatibely,
should we so desire, the hranch and hound algorithm can
be easily modified to terminate as soon 21s one stable mudr.1
has been discovered. Whether thir non-deterministic way
of selecting a stahle model (and commiuing to it) I \ q i r o -
priate would depend on thr application

C. Intelligent Branching
As described earlier (Example S), the \election of atoms on

whicli to branch makes a significant difference in the height of
PRI/NE-ACT(P). We describe below, a simple methodology
for selecting atoms on which to bianch which, in practice,
causes PRUN.E-ACT(P) to be relatively “small.” We will
heavily use the “depentiencq graph” of Apt, Blair, and Walker
[1 I for this puipose.
DEFINITION 12. The graph rmocrated w r h U logic program P

i \ deftned as follows
the nodes of the graph are the ,?rotincl atoms in our uti-
derlying languugr and
there is U (dim-ted) edge from A to i3 i f there is a ckiwbe
in grd(P:i with A i n the head such that B occurs erthvr
positively or negativel? in the hutlv

DEFINITION 13. Suppose P 1.s a logic pmqram. A ground atom
A I S said to depend on ground atom LI i f l there is U path of
lmigth 0 or mow from A t o B in the depmdency graph o f t ’ .

nodes qf PRUNE_ACl‘(P) in pre-order (Knuth [131)

The branch and bound algorithm ulway, ter~nrnrctes

nodes in LEAF(g1o-simp(P)) in Eefi t~ right order. I

7: I

I

Apt, Blair, and Walker [I] use the above dependency graph
(together with a labeling of the edges) to develop a notion of
slratification. We will use this graph in a different way. It is
well known [1] that “depends on” is a reflexive and transitive
relation. Using the “depends on” relationship, we will build a
quotient algebra in the usual way.

Given a ground atom A, the equivalence class of A , de-
noted IbII is the set (B l B is a ground atom such that A
depends on B and B depends on A) . (The equivalence
classes correspond to the strongly connected components
of the dependency graph.)
We define an ordering, denoted _a, on equivalence classes
as follows: U 11 BII iff there exists an atom a E 1b11 and
an atom b E llBll such that b depends upon a.

on equivalence
classes is a partial ordering.

UXAMPLE 6. Consider the program of Example 5 . Here, the
equivalence classes are: llall = {a , b) and llcll = I C } . In par-
ticular, llbll = Ilall. It is easy to see that { a, b } q { c } . The rea-
son is that c depends on a.

In fact, it is not difficult to see that if 1b11 and llBl1 are
equivalence classes such that 1b11 a_ 11811, then every atom in
B must depend on every atom in A

Given a logic program P , we tnay use the ordering g on the
rquivalence classes defined above to list the equivalence
classes in “layers.” This can be done as follows: define Eo to
tje the set of all +minimal equivalence classes of P . For i 2 0,
define E,+i to be the set of all a-minimal members of the set

EXAMPLE 7. Continuing with the program of Example 5 and
Example 6, we note that & = { (a , b) and El = ({ c } } .
Intelligent Branching Strategy. The strategy for selecting

atoms on which to branch may now be described as follows:
Suppose N is the node we are currently attempting to branch
from, and the label of N is (9, 7: F, U). An atom a E U is se-
Iccted for branching iff llall e Ei implies that there is no
ground atom h E U such that Ilbll E E, wherej < i .

In other words, the candidates for branching are picked
Irom the “lowest” possible levels of the Eo, El, ... hierarchy.
‘Thus, in the case of the root of the tree associated with the
Iirogram Example 5 and Example 6. we would choose to
lrranch on either a or b instead of choosing to branch on c .
‘I’his leads to a “shorter” tree.

Experiment V.A.5 reports on some experiments that we
l i ne run to determine the utility of intelligent branching.

An alternative formulation of the intelligent branching strat-
egy is to partition the logic program being processed by the
Ilranch and bound module according to the equivalence classes
generated by the <-ordering. The <-minimal components’ sta-
hie models can then be computed first; stable models of com-
ponents that are not <-minimal rnay be done once all the stable
models of all (programs corresponding to) components
“strictly below” have been computed. This is equivalent to the
intelligent branching strategy.

It is not difficult to see that the relation

111.111 I A E BLI -U,,, El.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

172 lEEE TKANXACIII INS ON KN0WLEI)GII AND DATA FNGINEI KING, VOl 7, NO 3. JUNE 1995

D. Partial Instantiation: The Non-Ground Case
A valid critique of the work presented this far in this paper

is that it applies to ground programs. This is a drawback be-
cause the ground instantiation of a logic program is signiii-
cantly ‘‘larger’’ than the original program. In [IO] , we have
developed techniques that, given a definite (i.e., negation-free)
logic program P, and any method for computing the semantiics
of propositional (i.e., grounded out) logic program, will
show how to instantiate P on an “instantiate by need” basis ?o
that the set of atomic logical consequences of the non-ground
program P can be computed

13asically, this partial instantiation niethod for evaluatirig
logic programs proceeds as follows -first, a (non-ground)
logic program P is treated as if it were a propositional logic
program /’“(i.e., an atom ‘ 1 occurring 113 I’ is considered to be a
piopositioii p,& Program 1’” may then be evaluated using any
kmwn mechanisni for evcxluating p r opos it iorzcxl logrc pro-
gruwis [4], [SI. Assignments of trueKalse to different propou-
tioiis p,4 and pB i n P* may lead to “conflicts” when A and B are
unifiable, but pA and pH ‘irr assigned different truth values. If
there are n o such conflicts, then we are done. When h
conflicts are present, then [IO] articulates 3 precise strategy for
renitwing such conflicts and shows that this strategy of

L\ , d u m PnJpositional Progrmi +Identity (’o i i f l i i t r -t Patlidlh IwLaiitiatc

yields a soundnes:, and completeness theorem for the cornpu-
tation of answer substitutions [161

rhe extension of the partial instantiation strategy for deti-
nitis progrmis to apply to well-founded and stable models is
being studied in two separale efforts [I 1 I. 191. As in [lo], both
thew efforts assunie the exiqtence of two methods, M,, and M,
that, given any ground logic program will compute the well-
founded semantics and the \et of stable models, respectively of
the ground program. The ntetlindy 1 ke;\crihed in the prcwdirig
sections p r f o r m the.se L orrrpututions in the ground cuse Sub-
sequently, “conflicts” m i l l be identified and partial instantia-
tion will be used to reitlove these contlicts Neither of the two
paixrs [I 11, [9] in preparation S ~ O N how to compute the well-
founded (or stable models) semantics of propositional pio-
granis -rather, they alhoh how to use a propositional sra-
bleiwell-founded seinaiitics computation strategy to generate a
partial instantiaticrn strategy that will instantiate non .ground
programs on a “need to-instantiate’‘ h a w Consequcrrtlt , rhe
rtietirods developd in thu paper cun he iised in conjundion
wrrh the pLm.tial in ytantiiitron slrutegre, hving developai in [‘J],
[I 1] to jwld computalionul purudigrtzs /or nonmonotonrc loj:ic
prf ~~:rumrnizng serrrantics in the non-ground case.

We give beloa, an outline of how the partial instantiation
strategy cdn he wed to ctrmpute the well-founded semantics
The detailed description at the scheme and its sountlness and
completeness resulls are wntained in [I 1 I .
E ~ A M P I r: 8 Let P be the (non-ground) logic program below

P(X,,YI)C- 7 y(.Yi,YI).
r (a) t . r(/I)<-

q (w) + “

L/(,Y,,Y,)t -1p(Xz,Yz)

According to the well-founded semantics, the ground atoms

r(a), r(h), q(a, a) are true, the atom p(a, a) is false, and all
other ground atoms are “unknown.”
The partial instantiation strategy works by considering all

I he atoms occurring in P to be distinct propositional symbols -
thus, for instance, p(Xi, VI) and q(Xi, Y ,) are considered to be
distinct propositional symbols. The well-founded semantics of
1 his “propositional” version of P says that r(a), r(b), q(a, a) are
true, andp(X1, Yl), q(Xl , YI), p(X2, Y2), y(&, Y2) are unknown.
Nothing is assigned false. At this stage, we notice that there is
<i conflict -+U, U) 1s unifiable with both q(X,, Yl), q(X2, Y,)
\ia unifiers HI = {XI = U, Yi = U) and 6$ = {X2 = a, Y2 = a) ,
respectively. The conflict exists because q(a, a) is “true” ac-
cording to the well-lounded semantics, but q(A I, YI), q(&, Y2)
<ire assigned the truth value ‘ unknown ” We instantiate the
Llauses in P by 8, and (22, rel,pectively, leading to two new
clauses: p(a, U)& --q(a, a) and y(a, U)<- 7p(c~, a). These are
then added back into P and the process repeated. At this stage,
r(a), r(b), q(u, U) are assigned “true” by the propositional WFS
computation process, p(u, a) i k , assigned “falsc” and all other
doms are assigned “unknown. ’ The only conflicts that occur
illow generate the same substilutions 8, and (A , that we saw
before, and hence, n e can terminate.

v. IMPL.EMBNTA’IlON AND EXPERIMFNTATION

All the components of Fig. 1 as well as the entire branch
md bound procedure and the procedure for selecting atoms
have been implemented in a prototype compiler.

The prototype compiler is written in C running under the
1 Jnix environment on a Dec-2 IO0 workstation It has roughly
6200 lines of C code implementing the pruning iteration strat-
cgy described in Section III.A, the transformation strategy, the
pruning oscillation described i n Section IILB, the branch and
bound procedure of Section IV. and the intelligent branching
5trategy of Section 1V.C.

4. Experimental Results

We have conducted a number of experiments testing the ef-
ficiency of our prototype compiler. First of all, we have ex-
perimented with the programs considered in the literature (e.g.,
[201) These include definite, stratified, locally-stratified, as
well as non-locally stratified programs. Our prototype com-
piler handles all those progranis correctly, and given the rela-
tively small sizes of those programs, our compiler finishes all
computations very rapidly lliiless otherwise .jtated, the com-
putation times of our prototype compiler presented below in-
clude all computations5 including the total time taken to: read a
I ground) program, perform the MI-stage and (;LO-stage com-
putations and output the results In cases where stable models
‘ire considered, the time to exccute the branch and bound pro-
cedure is also included. All times are reported m milliseconds.

Though we have experimented with a number of alternative
examples, we will only report here on experiments conducted
with the “win-move” example of van Celder [20]. Other ex-
periments and examples are described in the longer technical

5 . The IJnix utility pwgram pro j l e is used to rccord computation times.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBRAHMANIAN, NAlJ. ANI) VAGO: WFS i BRANCH AND BOUND = SrA9L.E MODELS 313

report [19]. These results are representative of our other re-
suits. The “win-move” example consists of the single rule
win(X) c move(X, U) & -win(Y), together with a set of facts

graph (which we call the “game graph”) representing the
moves in a game. We ran an extensive se1 of experiments with
the win-move example. In our experimentation, we varied thi:
number of nodes in the game graph from 50 to 100 in steps of
10. Once the number of nodes was fixed, we randomly gener

edges, in steps of 20. Once hoth the number of nodes and the
number of arcs was fixed, we generated 75 sets ofedges. In
other words, once the number of nodes and number of arcs wab

Two conclusions may be drawn from the graph of Fig. 6. . The first Is that approach takes considerably less
than the alternating approach. For each value of n, the

low the bold line (for the alternating approach) that is
marked with the same value of n.

proach degrades at a lower degree than does the alternat-
ing approach. Why? Consider the slopes of the lines in-

bold line n = 100). The slope of the dotted line is smaller
than the corresponding slope for the bold line.

Of the form move(-, -). This set Of facts represents a dotted line representing olir approach Is completely be-

. The second conclusion that may be drawn is that our

ated edges between these We generated 6o valved (take, for example, the dotted line n = 100 and the

fixeti, 75 different extens,onal databases The second conclusion is further reinforced by the graph of
predicates were generated. Each of these was run eight time, Fig. which the time (*en by r)rocedure with
to average out variations in timing. In totti], we ran 6 x t(x 75 the time taken by the “lternatlng procedure.

A 2. Size ofmi-brget(p) cornl,crred to the, Size (,fp 8 28,800 logic prograns to get these readings.

A.1. Our Approach vs. Alternuting Approach to WFS Fig. 7 below shows the number of clauses in mi-target(P)
Computation ay the number of nodes (represented by constants in P) in the

gdme graph 1s increased. The gratph is plotted or1 a logarithmic
approach cc,mpared with the alternating approach as described st ale which means that a linea1 downward slope on the log-
by van [201. We wished to comp;lre the rate at whicll sc.ale means <in exponential downward slope on an ordinary

larger in size (in terms of having nlOre cclnstmts and more ot arcs) in the game-graph, Ihertb is a clear downward slope on
clauses in them), Our approach consists nrnning the (grounci the log-scale graph, showing that in practice, the effect of

through the MI. (;LO, and C-mOdules pruning iterations causes the sile of mi-target(P) to decrease
described in Fig. 1. The naive alternating approach would rul, exponentially as a function of the nurrtbcr of constants This

means that pruning iterations halve a more and more significant the entire program through the GLO module alone.
Ihe al- impact on the s i x of mi-target{/‘) as the number of constants

ternating fixpoint approdch. ‘The x-axis specifies the numbei of gets larger.

when the number of arcs in the graph differ. Thus, for exain-
ple, the dotted line marked ri = 100 denotes the time taken b y

The main aim of this was determllle how

perfomance in both approaches degraded as the programs got SC ale. AS Fig. 7 show\, for each Of the Values Of I 2 (the number

of) a program

shows how our approach performed

nodes. The dotted lines denote the times taken by our approach S l r e of the program ni-targct(P1
10’

proach. The y-axis denotes time in milliseconds.

x10‘ performance on vln-move Problems

x - a l t e r n a t i n g approach

+ - our approach

Number @f i%OCeS (k)

Fig 7 Growth III size of Mi-target(P)

A 3. Effect of Pruning Osdlation
Finally, we ran experiments to verify the effectiveness of

pruning oscillations. Fig. 8 shows that alternating fixpoint

100 110

Humber of nOCCS (kl

Fig. 6. Our approach vs. alternating approach computation with pruning oscillations is an improvement on
the naive alttirnating fixpoint Lomputiition. In the figure, the

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

374 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 7, NO. 3, JUNE 1995

dashed lines denote the time-lines for the computation using
pruning oscillations, while the bold lines denote the times
taken for the naive alternating fixpoint computations. How-
ever, simply performing alternating fixpoint computation with
pruning oscillations does not produce the best results.

Fig. 8 shows also that our approach of first processing P
through the MI-module simplifies the program, producing
mi-target(P) and the sets mi-tme(P) and mi-false(P). Sub-
sequently executing the GLO-program on mLtarget(P) leads
to better results than executing the GLO-program on the larger
program P.

XlO' performanca on vin-move p r o b l u r
2 . 5 , * 1

C
P
U

t
i

e
m

i
0

m
s

x - a l t e r n a t i n g approach
o - a l t e r n a t i n g approach w i t h corpaction arcs (0)

number 0:'

0 1 1 0 0 110 I
SO 6 0 1 0 I O 9 0

Number of nodel (k)

Fig. 8. Effect of compaction.

A.4. Stable Model Computation

Fig. 9 shows the total time taken to compute all the stable
models of a logic program using our approach. (Again, as be-
fore, the "win-move" example is being used here.) As can be
seen from the graph, the performance of our procedure did not
appear to explode exponentially as a function of the number of
nodes in the game graph. Beyond that, the results indicate that
the time taken to compute stable models increases as a func-
tion of n.

A.5. The Impact of Intelligent Branching

In order to determine the effect of intelligent branching, we
conducted experiments with two programs. The two programs
both had non-trivial dependency graph structures. In both
cases, we increased the number of constants while keeping the
number of rules constant.

Program 1. This program consisted of the rules shown below.

zl(x) t v l m , wl(x). z a x) +- v l (x) , w2(x).

z : w +- v2" w 1" z4(A7 + v2(x), w92(x).

v l (x) t s(X). v2(x) t t(X).

W l (X) t p (X) . w 2 (m +- 4"

t (x) + -lS(x). s(x) t l t (x) .

p (x) + -60 y(X) +- -p(x).

The above set of rules was augmented by adding facts of the
form y(-) where y is a unary predicate symbol. The predicate y
was used solely to introduce constant symbols in the language.
This program has 4" stable models where n is the number of
constants in our language. Table I shows the results of using
the naive branch and bound strategy as opposed to the intelli-
gent branching strategy. It is clear that the intelligent branch-
ing significantly speeds up the computation. All times given
below are in milliseconds. The times reported below include
the times taken to construct the dependency graph associated
with a program, and to compute the sets EQ, El, ... described
in Section 1V.C.

TABLE I
NAIVE VS. INTELLIGENT BRANCH AND BOUND

and Bound
Intelligent 43 262 1,413 9,431 95,766
Branch and

Bound

t
P
U

t
i
m
a

i
0

n

lime for computing a t a b l e models

2 . 5

1. -

Ol. 5 0 6 0 7 0 80 9 0 100

Number of nodes (k)

Fig. 9. Time for stable model computation.

Program 2. This program consisted of the rules shown below.

s (x) +- p m , q m .

.GI +- dx), 0 3 .

s (x) +- P(x>, m.
p (X) c- 1 (x).

dx) 4- 1 (X). r(X) t 1 (X) .

As before, the above set of rules was augmented by adding
facts of the form U(-) where y is a unary predicate symbol. The
predicate y was used solely to introduce constant symbols in
the language. The program has no stable models at all, and
hence, both the naive branch and bound strategy, as well as the
intelligent branching strategy need to search almost the whole

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBKAHMANIAN. NAU, AND VAGO: WFS + BRANCH AND BOUND = STABLE MODELS 375

of ACT(P). Table I1 shows the results of using the naive
branch and bound strategy as opposed to the intelligent
branching strategy. It is clear that the intelligent branching
significantly speeds up the computation. All CPU times given
below are in milliseconds.

TABLE I1
NAIVE VS. INWLLIGENT BRANCH AND BOUND AS CONSTANTS INCREASE

On progranis that generated dependency graphs with little
or no structure, we found that the effect of intelligent branch-
ing was relatively minor.

B. Storage and Access of Models

One reason why deductive databases are elegant is because
they can be developed much more quickly: when creating a
relational database, the database creator(s) must insert all tu-
ples in each relation, one by one. into the database. This
method of creating a relational database is consequently error-
prone. Deductive databases, on the other hand, can be created
much more quickly than relational databases because instead
of inserting all tuples, one by one, into a relation, the presence
of J tuple in a relation may be implied by a rule in the data-
base A second advantage IS that deductive databases use up
less storage space than relational databa\es. Both these advan-
tages (rapid database creation, lower storage requirements) are
offset by the fact that at run-time, query processing takes much
longer than in the relational model

When (parts of) a database is used 10 provide support, in
real-time, to say a real-time control system, then run-time,
resolution-based theorem proving approach used by deductive
databases is infeasible in practice. Hence, our proposal is that
those parts of a database that are expected to provide such
support be compiled into a relational database format. After a
deductive database is compiled, the model(s) of interest (well-
founded/stable) are stored in relational format so that queries
against the deductive database can be answered by checking
wi~h the stored model(s). (In the nexl two subsections, we
show how to store and access the well-founded model, as well
as the set of stable models.)

hi other words, we are proposing a trade-off By compiling
those parts of a deductive database that need to provide intelli-
gent real-time support, we retain the advantage of rapid data-
base creation (as the creator of the database still proceeds in
the same way as for deductive DBs), but lose the advantage of
lower storage requirements. In return, we gain the advantage

of rapid query-processing at run-time. These trade-offs may be
summed up in Table 111.

TABLE III
PROS AND CONS OF DIFFERENT DATA MODELS

VI. DISCUSSION

Though it is now almost five years since the development of
the well-founded semantics and stable semantics, relatively
little work has been done on implementing these alternative
semantics. To our knowledge, this is the first work which
shows precisely how to compute the stable semantics by using
computation of the well-founded semantics as a first step.

Computation of well-founded semantics of logic programs
has been studied by Kemp et al. 1121, Chen and Warren 161,
Warren [22], and by Leone and Rullo [141. Kemp et al. show
how, given a query Q to a logic program P, and a sideways
information passing strategyh 5 , it is possible to create a new
program Mugic(P, S, Q). More importantly, this new program
has the same well-founded semantics as the original program
J’, and has a particular syntactic form. Kemp et al.1121 show
how the query Q may be answered w.r.t. the new program
Mugic(P, S, Q) . Warren 1221 shows how to construct a Prolog
meta-interpreter for the well. founded semantics based on
OLDT-resolution. Warren’s technique uses a table to tabulate
previously solved goals -his avoids redundant computation.
Chen and Warren [h] extend the work in 1221 and develop a
sound and complete technique for computing WFS called
XOLDTNF-resolution. Leone md Rullos’s technique is simi-
lar to the above techniques in spirit, and deals with safe com-
putations in a datalog language containing well-founded nega-
tion. They do not present an implementation, however.

Computation of the set of stable models has also been stud-
ied by Sacca and Zaniolo [18] . Their method is based on a
backtracking technique which assumes an undefined atom to
be false and then continues the computation on this assumption
until it computes a stable model or discovers a contradiction in
which case it backtracks. Thc branch and bound technique
developed here may be vieued as an improvement of the
Sacca-Zaniolo technique-especially as various pruning (i.e.,
bounding) techniques we use speed up the computation. A new
and important feature of our work is that our computations are
based on a prior computation cif the well-founded model which
the backtracking method does not do. Last, but not least, Le-
one et al. [15 1 study computation of nonmonotonic negation in
logic programming. In contrast to our work, their work makes
use of choice constructs in its computation.

The main difference between our work and that of Warren

6. See [121 for an explanation of this expression.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

376 IEEE TRANSACTlONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. I. NO. 3, JUNE 1995

and Kemp et al. is that our compilation technique is query-
independent, while in their case, the query plays a key role in
transforming the program P. Thus, our technique may be ap-
plied at compile-time, and hence is more suitable in situations
where very quick run-time responses are desired: In our
overall architecture, run-time query evaluation is done by a
standard run-time query language implementation. In contrast,
the methods of Kemp et al. are query-dependent, and hence,
the work of creating Mugic(P, S, Q) is done after the query Q
has been asked, i.e., at run-time.

Another advantage of computing the well-founded seman-
tics at compile-time and storing it in a relational format is that
more expressive queries, such as aggregate queries, need not
be specially developed for this purpose. Furthermore, standard
techniques developed by relational database researchers for
run-time query optimization may now be used. On the other
hand, aggregate query processing techniques need to be spe-
cifically developed for the magic set approach. These tech-
niques involve deduction at run-time.

A disadvantage of our approach vis-a-vis the approach of
Kemp et al. is that we do more work at compile-time, and as
we are storing the well-founded model, we have larger space
requirements. A lot of work has been done by the relational
database community on storing very large databases on auxil-
iary storage. For instance, the U.S. Census Bureau’s database
is approximately 15 Gigabytes in size. NASA’s EOS database
(Earth Observing System) is approximately bytes in size.
Hence, we believe that storage is not such a major problem. It
is possible that a suitable trade-off between the two approaches
is desirable in a full-fledged working system: use our approach
to compile those parts of the database involving predicates that
require “rapid” run-time responses, and use the Kemp et al.
approach to handle other predicates.
‘To summarize, we believe that those parts of a database in-

volving “real-time” predicates need to be processed at com-
pile-time using techniques such as ours. Those parts of a data-
base that do not involve real-time predicates do not need to be
pre-processed, and in such cases, the techniques of Kemp et al.
121 and Warren 1221 are perhaps more appropriate.

VII. CONCLUDING REMARKS

Though nonmonotonic modes of negation have been studied
extensively in deductive databases and logic programming,
relatively little work has been done on the computation and
implementation of nonmonotonic semantics. In this paper, we
take a first step towards developing a compiled approach for
computing the

well-founded model of nonmonotonic deductive data-
bases and
the set of stable models of nonmonotonic deductive
databases.

We believe that the desired run-time performance of differ-
ent parts of a deductive database system is likely to vary. A
database system that interacts with a real-time control system,
for instance, is likely to contain predicates, some of which
need to he processed in real-time, others which do not need to

be processed particularly rapidly, and still others that fall be-
tween these two extremes. Those parts of the database that
deal with “real-time” predicates need to be pre-compiled in
advance. Run-time efficiency compromises are not an option
in such cases. In such cases, the fastest known technology for
run-time query processing is the relational database scheme.
We suggest, therefore, that the part of a database dealing with
predicates whose run-time responses are of critical importance,
be completely compiled in advance. One way of doing such
compilation is described in this paper when the desired se-
mantics is the well-founded semanticshtable model semantics.

Future research will concentrate on the development of the
update module shown in Fig. 1, and the development of opti-
mal representations (in relational format) for storing the well-
founded model and/or the set of stable models. The update
module must not only re-compute the new well-founded model
(or new set of stable models) when an update occurs, but also
update the relational representation of the well-founded
model (respectively, set of stable models). We plan to study
these topics.

ACKNOWLEDGMENTS

We have benefited from conversations with Christos Falout-
S O S , Wiktor Marek, Ani1 Nerode, Raymond Ng, Timos Sellis,
and David S. Warren.

This research was supported by the U.S. Army Research
Office under Grant Number DAAL-03-92-G-0225, by Na-
tional Science Foundation grants IRI-9109755, IN-9357756,
IRI-8907890 as well as National Science Foundation Grant
NSFD CDR-88003012 to the Systems Research Center, by
ARPNRome Labs contract F30602-93-C-024 1 (ARPA Order
Nr. A716).

REFERENCES

K.R. Apt, H. Blair, and A. Walker, “Towards a theory of declarative
knowledge,” J. Minker, ed., Foundutions of’ Deductive Databases and
Logic Progrumming. pp. 89-148, Morgan Kaufmann, 1988.
C. Baral and V.S. Subrahmanian, “Stable and extension class theory for
logic programs and default logi8cs,” J. Automated Reasoning, vol. 8,

C. Baral and V.S. Subrahmanian, “Dualities between alternative seman-
tics for logic programming and nonmonotonic reasoning,” J. Automated
Reasoning, vol. IO, pp. 399-420, 1993.
C. Bell, A. Nerode, R. Ng, and V.S. Subrahmanian, “Implementing
deductive databases by linear programming,” accepted for publication
in ACM Trans. Dutubme System.
C . Bell, A. Nerode, R. Ng, and V.S. Subrahmanian, “Computation and
implementation of nonmonotonic deductive databases,” 1. ACM, vol.
41, no. 6 , pp. 1,178-1215, Nov. 1994.
W. Chen and D.S. Warren, “A practical approach to computing the
well-founded semantics,” Priic. I992 Int ’ I Cocf h g i c Progrum’ng,
Nov. 1992.
M.C. Fitting, “A Kripke-Kleene semantics for logic programming,” J.
Logic Progrumming, vol. 4, pp. 295-312, 1985.
M. Gelfond and V. tifschitz. “The stable model semantics for logic
programming,” Proc. Fifrh Int’l Cmf. and Symp. on h g i c Program-
ming, R.A. Kowalski and K.A. Bowen, eds., pp. 1,070--1,080,1988.
G. Gottlob, S. Marcus, A. Nerode, and V.S. Subrahmanian, “Non-
ground stable and well-founded demantics,” manuscript in preparation,
1993.

pp. 345-366,1992.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

SUBRAHMANIAN, NAU. ANI) VAGO: WFS + BRANCH AND BOUND = STABLE MODELS 377

V Kagan, A. Nerode, and V.S. Subrahlnanian, “Computing definitc
logic programs by partial instantiation,” Annuls if Pure und Applied
Logic, vol. 67, pp, 161-182, 1993.
V . Kagan, A. Nerode, and V.S. Subrahmanian, “Computing minimal
models by partial instantiation,” 1993, accepted for publication in Theo-
retical Computer Science.
I) Kemp, P.J. Stuckey, and D. Srivastava, “Magic sets and bottom-up
evaluation of well-founded models,” Proc. 1992 Inr ’I Logic Program-
ming Synip.. V. Saraswat and K. Ueda, eds., pp. 337-351, MIT Press,
1991.

V.S. Subrahmanian received the PhD degree in com-
puter science from Syracuse University in 1989. Since
then, he has been assistant professor of computer science
at the University of Maryland, College Park.

Dr. Subrahrnanian received a National Science
Foundation Young Investigator award in 1993. He
has worked extensively on the theory and implemen-
tation of logic programming and deductive database
systems. In particular, he has developed theories of
probabilistic logic programming, nonmonotonic
logic programming, and frameworks for hybrid

D.E. Knuth, The Art of Computer Progrumning. Vol. 1: Furrdumental
,41gorithms. Addison Wesley, 1973.
N . Leone and p, Kullo, well-founded sen,an.
tics of DATALOG queries,,. ,r,fr,rmution
N. Leone, M. Romeo, P. Rullo, and D. Sacca, “Effective implementa-
tion of negation in database logic query languages,” LOCIDATA+: Dr

rcllsoning using distributed hereogeneous databases. Many of these theories
have been implemented in prototype experimental systems and are being used
in a variety of civilian and military applications. Dr. Subrahmanian has pub-
lished more than 30 papers and is principal investigator on research grants
f r m NSF, ARO, AFOSR, and ARPA.

computation
17, no, 1992.

I - . . - -
drccrive 1)utabuses wifh Complex Objects, LNCS vol. 701, pp. 1.59-175.
Springer, 1993.
J.W. Lloyd, L‘r,undution.v ofLogic Progrumming, Springer, 1987
W. Marek and M. Truszczynski, “Stable semantics for logic programs
and default tlreories,” Proc. 1089 North Am. Con/: Logic Progrumming ,
E. L,usk and R. Overbeek, eds , pp. 243-256. MIT Press, 1989.
D. Sacca and C. Zaniolo. “Stable models and nondeterminism In logic
programs with negation.” I’rcic. I990 ACM S ~ m p . Principles of Dutu.
hiisv Systems.
V.S. Subrahmanian, D.S. Nau. and C. Vago. “WFS + branch and bound
= stable models.” Tech. Report CS-TR-2935, July 1992, Univ. c i f

klaryland. Tech. report version of this paper
A. van Gelder. “The altemating fixpoint of logic prograins with nega-
tion,” Proc. Eighth ACM Symp. Prini.r/hs cif Dutuhuse Systeslemr.
pp. 1-10, 1989.
A. van Gelder, K . Ross, and J . Schlipf, “Ilnfounded sets arid well-
founded semantics for general logic progratns,” Pmc. &vendi .yj3m[J.
Principles i~’Dutuhase Systems, pp. 221 -230, 1988.
D.S. Warren, “Computing the well-founded wmantics of logic pro-
grams,” SUNY Stonybrook Tech. Report ‘TR ‘1 I - 12, June 1991.

Dana Nau received his PhD in computer science
in 1979 from Duke University, where he was a
U.S. National Science Foundation graduate
fellow.

Dr. Nau is a professor at the University of
Maryland in the Department of Computer Science
and the Institute for Systems Research. He re-
ceived a National Science Foundation Presidential
Young Investigator award (1984-1989) and the
ISR Outstanding Systems Engineering Faculty
award (1993-1994), and has received various
other awards. His current research intwests include

AI planning and searching techniques, and computer-integrated design and
nianufacturing. Dr. Nau has published nearly 150 technical papers.

(ilrlo Vag0 received his inaster’s degree in computer mence from the Uni-
vcrsitp of Milan He is with Olivetti in lldly

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 23, 2009 at 13:36 from IEEE Xplore. Restrictions apply.

