
To appear in AAAI-96

Commitment Strategies in Hierarchical Task Network Planning�
Reiko Tsunetoy
reiko@cs.umd.edu

Kutluhan Erol**
kutluhan@i-a-i.com

James Hendleryz
hendler@cs.umd.edu

Dana Nauyz
nau@cs.umd.eduyDept. of Computer Science

University of Maryland
College Park, MD 20742

zInstitute for Systems Research
University of Maryland

College Park, MD 20742

**Intelligent Automation, Inc.
2 Research Place

Rockville, MD 20850

Abstract

This paper compares three commitment strategies for
HTN planning: (1) a strategy that delays variable bind-
ings as much as possible; (2) a strategy in which no
non-primitive task is expanded until all variable con-
straints are committed; and (3) a strategy that chooses
between expansion and variable instantiation based on
the number of branches that will be created in the search
tree. Our results show that while there exist planning do-
mains in which the first two strategies do well, the third
does well over a broader range of planning domains.

Introduction
Two of the decisions that most AI planners must make
are what order to perform the steps in, and what val-
ues to use for any variables in the plan. The planner’s
commitment strategy—its strategy for when and how to
make these decisions—has long been known to play a
great role in the efficiency of planning.

This paper compares the relative performance of three
variable commitment strategies for Hierarchical Task
Network (HTN) planning:1 the Reluctant Variable Bind-
ing Strategy (RVBS), which delays variable bindings as
much as possible; the Eager Variable Instantiation Strat-
egy (EVIS), in which no non-primitive task is expanded
until all variable constraints are committed; and the Dy-
namic Variable Commitment Strategy (DVCS), which
chooses between expansion and variable instantiation
based on the number of branches that will be created in
the search tree.�This research was supported in part by grants from
NSF (IRI-9306580 and EEC 94-02384), ONR (N00014-J-91-
1451), AFOSR (F49620-93-1-0065), the ARPA/Rome Labo-
ratory Planning Initiative (F30602-93-C-0039), the ARPA I3
Initiative (N00014-94-10907) and ARPA contract DABT-95-
C0037. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the funders.

1We concentrate on variable assignment strategies because
previous work suggests that these have a great effect on the
performance of planning systems (see the next section).

Our results show that there are planning domains in
which EVIS does well, and planning domains where
it does poorly. The same is true for RVBS. However,
DVCS, which can choose between eager variable com-
mitment and reluctant variable commitment depending
on what looks best for the task at hand, does well over a
broader range of planning domains.

Previous Studies of Commitment Strategies

Commitment strategies have long been acknowledged
to be important in AI planning, but only recently have
researchers begun to analyze them rigorously (Barret
and Weld 1994; Minton et al. 1991; Veloso and Stone
1995; Yang and Chan 1994). The studies that we know
of all deal with STRIPS-style planning.

Kambhampati et al. (1995) have compared sev-
eral domain-independent partial-order planners includ-
ing UA (Minton et al. 1991), SNLP (Barret and Weld
1994), Tweak (Chapman 1987), and UCPOP (Penberthy
and Weld 1992), and several other “hybrid” planning al-
gorithms. In their experiments, the performance was
affected more by the differences in tractability refine-
ments than by the differences in protection strategies.

If a variable has 100 possible values, instantiating it
will create 100 branches in the search space—and a plan-
ner might need to backtrack on all 100 branches for other
unrelated reasons. To address such problems, Yang and
Chan (1994) suggested maintaining the domains of the
variables instead of binding them to constant values. In
their experiments, extending SNLP to use this technique
improved its performance in most cases.

Based on this past work we decided to concentrate
on exploring the effects of variable commitments for
HTN planning, to see if it also had a strong performance
effect, as indicated in these experiments on partial-order
planning. Preliminary work indicated it had a large
effect, and the work described in this paper is aimed at
analyzing this effect and exploring what commitment
strategies work best in which domains.

1

1. Input a planning problem
P=<d: goal, tn, I: initial state, D: domain>.
2. Initialize OPEN-LIST to contain only d.
3. If OPEN-LIST is empty, then

halt and return “NO SOLUTION.”
4. Pick a task network tn from the OPEN-LIST.
5. If tn is primitive, its constraint formula is TRUE,

and tn has no committed-but-not-realized
constraints, then return tn as the solution.

6. Pick a refinement strategy R for tn .
7. Apply R to tn and insert the resulting set of

task networks into OPEN-LIST.
8. Go to step 3.

Figure 1: High-level Refinement-Search in UMCP

HTN Planning and UMCP
The most recent and most comprehensive effort at pro-
viding a general description of HTN planning is Erol’s
UMCP algorithm (Erol 1995). Since UMCP provides
the basis for our work, it is summarized below.

One way to solve HTN planning problems is to gen-
erate all possible expansions of the input task network to
primitive task networks, then generate all possible vari-
able assignments and total orderings of those primitive
task networks, and finally output those whose constraint
formulae evaluate to true. However, it is better to try to
prune large chunks of the search space by eliminating
in advance some of the variable bindings, orderings or
methods that would lead to dead-ends. To accomplish
this UMCP uses a branch-and-bound approach.

A task network can be thought of as an implicit repre-
sentation for the set of solutionsconsistent with that task
network. UMCP works by refining a task network into
a set of task networks, whose sets of solutions together
make up the set of solutions for the original task net-
work. Those task networks whose set of solutions are
determined to be empty are filtered out. In this aspect,
UMCP nicely fits into the general refinement search
framework described in (Kambhampati et al. 1995).

Figure 1 contains a sketch of the high-level search
algorithm in UMCP. Search is implemented by keeping
an OPEN-LIST of task networks in the search space that
are to be explored. Depth-first, breadth-first, best-first
and various other search techniques can be employed
by altering how task networks are inserted and selected
from the OPEN-LIST. Step 5 checks whether tn is a so-
lution node; if all tasks in tn are primitive, the constraint
formula is the atom TRUE, and the list of constraints that
have been committed to be made true but not yet made
true is empty, then all task orderings and variable as-
signments consistent with the auxiliary data structures
associated with tn solve the original problem. Those

plans can be easily enumerated. If tn is not a solution
node, then it is refined by some refinement strategy R,
and the resulting task networks are inserted back into
the OPEN-LIST.

Three types of refinement strategies used in UMCP
are task reduction, constraint refinement, and user-
specific critics. Task reduction involves retrieving the
set of methods associated with a non-primitive task in
tn, expanding tn by applying each method to the cho-
sen task and returning the resulting set of task networks.
Constraint refinement involves selecting a group of con-
straints and making them true by adding ordering or
variable binding restrictions to the task network. User-
specific critics are domain-dependent strategies that a
user can specify to improve the planner’s performance.

Commitment Strategies in HTN Planning
In many planners, the commitment strategy is built into
the search algorithm and cannot be modified by the user.
For example, Tate’s Nonlin system (Tate 1977) planner
(and numerous planners based thereon) expanded tasks
in a breadth-first manner: variables were instantiated by
constants immediately after they were introduced to the
plan if they unified with constants, and all constraints
were applied before the next task expansion.

More recent HTN-style planners (e.g., O-Plan (Currie
and Tate 1991)) use more sophisticated commitment
strategies. The O-Plan system uses a number of criteria
to decide when an entry in its agenda (list of things to be
done) is ready to run. The criteria involve knowledge of
how the plan is evolving and how potential interactions
can be avoided.

In addition to the default automatic commitment
strategies supplied by the system, planners like UMCP,
O-Plan and SIPE-2 allow users to interact with the plan-
ning process to control commitments interactively. In
the current implementation of UMCP, the system sug-
gests the next process to the user at each decision point.
The user can confirm the process suggested by the sys-
tem, or can choose any other process applicable to the
task network that the system is currently working on.

Below, we discuss some of the considerations that go
into choosing a commitment strategy for HTN planning.� Expand first or refine constraints first? This is anal-

ogous to the question of when to make commitments
in STRIPS-style planning. A “least commitment”
strategy would postpone constraint refinements un-
til the planner gets a primitive task network. Since
some state constraints and ordering constraints might
not be fully realized while the task network has non-
primitive tasks, this approach will eliminate the re-
dundancy of working on the same constraints multi-
ple times. On the other hand, earlier constraint refine-
ment helps prune the search space. This is especially

2

important if the planner is doing depth-first search as
the search might keep failing for the same reason.� Which non-primitive tasks to expand? This corre-
sponds roughly to goal selection in STRIPS-style
planning. One can do depth-first expansion (i.e., ex-
pand the most recently generated task first), breadth-
first expansion, or any other systematic expansion
method. If two tasks in a task network are known to
be independent, it will be more efficient if the planner
solves one task first in depth-first way and then deals
with the other, so that it only has to backtrack over
expansions of one task at a time.� Instantiate variables or maintain various constraints
like CSP? Yang and Chan (1994) argued the advan-
tage of using deferred variable commitments. To de-
lay variable bindings, they presented a CSP-like vari-
able maintenance method that lets the planner post-
pone variable instantiationuntil absolutely necessary.
UMCP uses a similar technique; refining variable or
state constraints in UMCP either trims possible value
lists or records variable distinctions.
While Yang and Chan’s argument applies to UMCP,
there are certain domains which can use early variable
instantiation handily. For instance, the n-puzzle is
a highly complex domain since moving a tile to a
desired location involves moving other tiles and thus
might ruin other effects we want to preserve. It is
easy to prune the search if the planner instantiates
variables into constants because then it can detect
redundant moves.� How to handle constraints in disjunctive formulas?
Refining disjunctive constraint formulas means mak-
ing definite decisions at the point of search. Since for-
mula simplification sometimes eliminates some con-
straints in the formula, there might be no disjunctions
after some expansions and other refinements. How-
ever, if the planner has the right heuristics for the
domain, early refinements of disjunctions have the
same benefits as eager commitment.

In general, which commitment strategy is best can
depend both on the problem domain and on the par-
ticular planning problem being solved in that domain.
However, the following argument suggests that certain
kinds of commitment strategies should be likely to do
well across a wide variety of problem domains:

In the search tree for an HTN planner such as UMCP,
each node represents a partial plan, and each edge rep-
resents a refinement made by the planner. If the search
is systematic and does not prune nodes that lead to valid
plans, then there should be the same number of solution
nodes in the tree regardless of what commitment strat-
egy we use. Suppose one commitment strategy does
most of its branching near the top of the tree, and an-
other does most of its branching near the bottom of the

s1 s3s2 s1 s3s2

nhnh1 nh2 nh3

n1 n1n2
n21 n22 n23

...
...

...
...

Figure 2: Two search trees with the same height h and
the same set of solutions fs1; s2; s3g. The one with the
branch at the top of the tree has 3h+1 nodes. The one
that with the branch at the bottom has h+3 nodes.

tree. If both trees have roughly the same height, then
the second tree should usually have fewer nodes than
the first tree (e.g., see Figure 2).

The above argument is not conclusive—for depend-
ing on how good the planner is at pruning unpromising
solutions from the search space, the size and shape of its
search tree is determined more by the set of candidate
solutions (which is a superset of actual solutions) than
the set of solutions itself. However, the intuition seems
sound that a commitment strategy that tries to minimize
the branching factor will do well. We hypothesized, and
our experiments show, that we could exploit this feature
as discussed in the next section.

Experiments
Although the argument at the end of the previous sec-
tion is not conclusive, it suggests that a planner will do
better if its commitment strategy keeps the branching
factor near the top of the tree is as small as possible.
One way to do this is to choose, at each node of the
tree, the expansion or refinement option that yields the
smallest number of alternatives. To test this hypothesis,
we created an implementation of such a “dynamic com-
mitment” strategy and compared it experimentally with
implementations of a “least commitment” strategy and
an “eager commitment” strategy. More specifically, the
commitment strategies are as follows:� Eager Variable Instantiation Strategy (EVIS)

This is an HTN version of the eager variable com-
mitment strategy described earlier. Don’t expand
any non-primitive task until all variable constraints
are committed. Instantiate variables into constants
whenever necessary to resolve constraints.� Reluctant Variable Binding Strategy (RVBS)
This is basically the opposite strategy. Delay instanti-
ating variables as much as possible. Expand all tasks
before making any variable binding constraints.

3

Method for toptask()
Expansion: (ctask v1 v2)
Constraints: v1 6=v2, (obj v1), (obj v2)

Method 1 for ctask(v1 v2)
Expansion: (ptask1 v1 v2)
Constraint: (type v2 t1)

� � � Method 10 for ctask(v1 v2)
Expansion: (ptask10 v1 v2)
Constraint: (type v2 t10)

Figure 3: Methods for Domain A

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

C
P

U
 T

im
e

EVIS

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

C
P

U
 T

im
e

RVBS

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

C
P

U
 T

im
e

DVCS

Figure 4: CPU time (in seconds) in Domain A� Dynamic Variable Commitment Strategy (DVCS)
This strategy attempts to minimize the branching fac-
tor as discussed earlier. Suppose T is the task net-
work at the current node in the search space. For
each variable x in T, let v(x) be the number of pos-
sible values for v; and for each task t in T, let
m(t) be the number of methods that unify with t.
Let V = minfv(x) : x is a variable in Tg; and letM = minfm(t) : t is a task in Tg. If V < M, then
choose to instantiate the variable x for which v(x) is
smallest. If M � V, then choose to expand the task
t for which m(t) is smallest. Although this decision
criterion may seem more complicated than EVIS and
RVBS, the overhead involved in computing it is neg-
ligible.

When M = V, we favor expansions over instantia-
tions because further refinements might constrain the
possible value set but not limit the number of meth-
ods. Unless the task network is pruned, expansion
will eventually take place with same number of meth-
ods. On the other hand, it is possible to instantiate
a variable with less number of possible values if the
instantiation is delayed.

We compared the EVIS, RVBS, and DVCS commit-
ment strategies by using them in the UMCP planner on
randomly chosen problems in three different planning
domains. The three planning domains—and our exper-
imental results in those domains—are described below.

The experiments were run using Allegro Common
Lisp on a SUN Sparc station, and running UMCP with
a depth-first search strategy. For each problem and each
commitment strategy, we counted both the CPU time and
the number of nodes (i.e., the number of task networks)
generated. Since both measurements gave similar re-
sults, below we will only discuss the CPU time.

Domain A

In Domain A the goal is to find a way to accomplish
a 0-ary task (toptask). As shown in Figure 3, (toptask)
expands into a 2-ary task (ctask v1 v2), where v1 and v2
are variables; and there are ten different methods for
expanding (ctask v1 v2). The initial state is the setf(obj obj1), (obj obj2), � � �, (obj obj10), (type o t)g,

where o 2 fobj1; : : : ; obj10g and t 2 ft1; : : : ; t10g. Dif-
ferent planning problems are specified by choosing dif-
ferent values for o and t. Since the initial state has
exactly one type literal, there is only one successful way
to bind the variable v2 and expand the task (ctask v1 v2).
The planning problem is to find the way that works.

We compared EVIS, RVBS, and DVCS in Domain A
by running them on a suite of 100 randomly generated
problems. Figure 4 shows the performance of UMCP
with the three commitment strategies. There is exactly
one solution for each problem. For each problem, RVBS
and DVCS always find this solution after creating 14
task networks. Depending on the problem, EVIS creates
between 24 and 114 task networks. UMCP’s average
CPU times were 2.88 seconds using EVIS, 0.71 seconds
using RVBS, and 0.66 seconds using DVCS.

EVIS has more trouble than RVBS and DVCS be-
cause it instantiates the variable v2 before expanding
the task ctask, and this tends to bind v2 to an object that
does not meet the constraint found in the methods of
ctask. On the other hand, RVBS does not instantiate v2
until after enforcing the constraint (type v2 t) so it does
not make an instantiation of v2 which eventually fails.
DVCS chooses to expand ctask before the instantiation
of v2 since the values of V and M are the same (10), and
thus performs identically to RVBS.

4

Method for (toptask)
Expansion: (ctask1 v1 v2)
Constraints: (obj v1), (obj v2)

Method 1 for (ctask1 v1 v2)
Expansion: (ctask2 t v1 v2 v3)
Constraints: (type v1 t1), (type v2 t1),

(type v3 t1), v1 6=v2 6=v3

� � � Method 3 for (ctask1 v1 v2)
Expansion: (ctask2 t v1 v2 v3)
Constraints: (type v1 t3), (type v2 t3),

(type v3 t3), v1 6=v2 6=v3

Method 1 for (ctask2 t v1 v2 v3)
Expansion: (ctask3 t v1 v2 v3)
Constraints: none

� � � Method 4 for (ctask2 t v1 v2 v3)
Expansion: (ctask3 t v1 v2 v3)
Constraints: none

Method 1 for (ctask3 t v1 v2 v3)
Expansion: (ptask t1 v1 v2 v3)
Constraints: none

� � � Method 4 for (ctask3 t v1 v2 v3)
Expansion: (ptask t3 v1 v2 v3)
Constraints: none

Figure 5: Methods for Domain B

10 20 30 40 50

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

EVIS

10 20 30 40 50

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

RVBS

10 20 30 40 50

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

DVCS

Figure 6: CPU time (in seconds) in Domain B

Domain B
Domain B is basically an encoding of the well known
arc-consistency problem (Kumar 1992). As in Domain
A, the goal is to accomplish toptask; but the methods are
different. As shown in Figure 5, toptask expands into
ctask1, ctask1 expands into ctask2, and ctask2expands into
ctask3. The methods for ctask1 specify that v1, v2 and v3
must have different values but the same type. ctask2 and
ctask3 each have four identical methods, which increases
the branching factor when UMCP does task expansion.
The initial state is the setf(obj obj1), (obj obj2), � � �, (obj obj7),

(type obj1 t1), (type obj2 t2), � � �, (type obj7 t7)g,

where each ti is one of t1, : : :, t3. Different planning
problems in this domain are specified by choosing dif-
ferent values for each of the ti. The problem is to find
three different objects which share the same object type.

In Domain B, we created a suite of 50 problems by
randomly assigning types to each object obji in the ini-
tial state. Each problem had at least one solution. The
results are shown in Figure 6. EVIS and DVCS cre-
ated same number of task networks for each test prob-
lem, and incurred about the same amount of CPU time:
with them, UMCP averaged 1.09 seconds and 1.10 sec-
onds, respectively. RVBS never did better than EVIS or
DVCS, and usually did much worse. On the average,
UMCP’s CPU time with RVBS was 2.54 seconds.

The reason for these results is that when EVIS instan-
tiates variables v1, v2 and v3 before expanding the task
ctask2, EVIS can prune the task networks which cannot
satisfy the constraints imposed in the methods for ctask1.
On the other hand, RVBS does not instantiate variables
until they are fully expanded into primitive task net-
works. Thus RVBS generates task networks that would
not be generated by EVIS.

Domain C
As shown in Figure 7, Domain C contains tasks and
methods similar to those from both Domains A and B.
Solving the problem involves combining methods sim-
ilar to those in Domain A with methods similar to those
in Domain B—but the order in which these methods
should be used depends on whether the goal is toptaska
or toptaskb. The initial state contains the atoms

(obj obj1), (obj obj2), � � �, (obj obj10),

and also fifteen atoms of the form (type o t) where
type 2 ftype1; type2g; o 2 fobj1; : : : ; obj10g; and
t 2 ft1; : : : ; t3g. Different planning problems are spec-
ified by choosing different values for o and t, as well as
by choosing either toptaska or toptaskb as the goal.

In Domain C, we created a suite of 100 problems by
randomly selecting the goal tasks and initial states. Of
these problems, 44 problems had the goal task toptaska
and 56 problems had the goal task toptaskb. Seven of

5

Method for (toptaska)
Expansion: (ctaska1 v1 v2)
Constraints: (obj v1), (obj v2)

Method 1 for (ctaska1 v1 v2)
Expansion: (ctaska2 t1 v1 v2 v3)
Constraints: (type1 v1 t1),

(type1 v2 t1), (type1 v3 t1),
v1 6=v2 6=v3

� � � Method 3 for (ctaska1 v1 v2)
Expansion: (ctaska2 t3 v1 v2 v3)
Constraints: (type1 v1 t3),

(type1 v2 t3), (type1 v3 t3),
v1 6= v2 6=v3

Method 1 for (ctaska2 t v1 v2 v3)
Expansion: (ctaska3 t1 v1 v2 v3)
Constraints: none

� � � Method 4 for (ctaska2 t v1 v2 v3)
Expansion: (ctaska3 t3 v1 v2 v3)
Constraints: none

Method 1 for (ctaska3 t v1 v2 v3)
Expansion: (ptaska t v1 v2 v3)
Constraints: (type2 v1 t1)

� � � Method 3 for (ctaska3 t v1 v2 v3)
Expansion: (ptaska t v1 v2 v3)
Constraints: (type2 v1 t3)

Method for (toptaskb)
Expansion: (ctaskb1 v1 v2)
Constraints: (obj v1), (obj v2), v1 6=v2

Method 1 for (ctaskb1 v1 v2)
Expansion: (ctaskb2 t1 v1 v2)
Constraints: (type1 v2 t1)

� � � Method 3 for (ctaskb1 v1 v2)
Expansion: (ctaskb2 t3 v1 v2)
Constraints: (type1 v2 t3)

Method 1 for (ctaskb2 tp v1 v2)
Expansion: (ctaskb3 tp t1 v1 v2 v3)
Constraints: (obj v3), (type2 v1 t1),

(type2 v2 t1), (type2 v3 t1), v1 6= v2 6=v3

� � � Method 3 for (ctaskb2 tp v1 v2)
Expansion: (ctaskb3 tp t3 v1 v2 v3)
Constraints: (obj v3), (type2 v1 t3),

(type2 v2 t3), (type2 v3 t3), v1 6=v2 6=v3

Method 1 for (ctaskb3 tp1 tp2 v1 v2 v3)
Expansion: (ptaskb t1 v1 v2 v3)
Constraints: none

� � � Method 4 for (ctaskb3 tp1 tp2 v1 v2 v3)
Expansion: (ptaskb t3 v1 v2 v3)
Constraints: none

Figure 7: Methods for Domain C

the 100 problems had no solutions. As shown in Figure
8, DVCS had the best performance overall. UMCP’s
average CPU times were 2.15 seconds using EVIS, 1.83
seconds using RVBS, and 1.38 seconds using DVCS.

To test whether or not the differences shown in Figure
8 were statistically significant, we did a paired sample
t-test. Let �D be UMCP’s mean CPU time using DVCS
and �R be UMCP’s mean CPU time using RVBS. The
null hypothesis H0 is that�R��D = 0 (or H0: �R = �D);
the alternative hypothesis H1 is that �R � �D > 0. The
t statistic computed from the results is 5.569. This is
greater than the value 2.626 of the t-distribution with
probability 0.995 where the degrees of freedom = 100.
Thus we can reject H0 and say that the difference of the
means is significant. Similarly, we can say the difference
of the mean CPU time for DVCS and the mean CPU time
for EVIS is significant with the t statistic 8.155.

The reason why DVCS outperformed EVIS and
RVBS is that even while solving a single planning prob-
lem, which commitment strategy is best can vary from
task to task—and DVCS can select between the EVIS
and RVBS strategies on the fly.

Conclusions and Future Work
We have discussed the impact of using appropriate com-
mitment strategies in HTN planning. We believe that the
choice of commitment strategies should depend on the
problem domain and the particular problem. This paper
is a first step to see how different commitment strategies
affect the performance of HTN planning on different
domains, and to explore whether variable commitment
strategies have a significant effect on performance.

We have presented three variable commitment strate-
gies, EVIS, RVBS and DVCS and examined their perfor-
mance on three domains using the HTN planner UMCP.
The results suggest while there is a domain where EVIS
does well and a domain where RVBS does well, the dy-
namic strategy DVCS is a better choice overall. While
DVCS does not always do better than both EVIS and
RVBS, it cannot do worse than both of them.

In our experiments, when any of the commitment
strategies selected variable instantiation, the variable
which had the smallest number of possible values was
chosen to be instantiated. This technique is known to
work well in constraint satisfaction problems (Kumar
1992). However, another heuristic for choosing vari-
able instantiation, more specific to HTN planning, is
to instantiate those variables first that participate in the

6

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

EVIS

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

RVBS

20 40 60 80 100

Problem Number

0

1

2

3

4

5

6

7

8

C
P

U
 T

im
e

DVCS

Figure 8: CPU time (in seconds) in Domain C

highest number of pending, but not yet bound, con-
straints. We intend to try this heuristic in the future.

Based on the results in this paper, it would seem
that DVCS is a good variable binding strategy. We
thus intend to explore how this commitment strategy
performs in other planning problems such as simple
domains like Blocks World, the test suites for UCPOP
(Penberthy and Weld 1992), and more complex ones
such as UM Translog (Andrews et al. 1995).

In addition, the DVCS approach of trying to minimize
the branching factor can be extended for step-ordering
commitments as well. While, as we described, we sus-
pect that the variable commitment strategies will have
a greater overall effect on planning efficiency, we hope
that an approach to DVCS will also be effective for the
introduction of ordering constraints. In general, we be-
lieve that dynamic commitment strategies perform better
than static commitment strategies unless enough domain
information is provided beforehand so that the user can
foretell a static strategy would perform satisfactory, and
we wish to test this out.

Although this paper discussed only domain-
independent commitment strategies, a commitment
strategy could also be highlydomain specific. However,
writinga good domain-specific commitment strategy re-
quires much knowledge about the domain and the plan-
ning system. One of our goals is to build a methodology
which can automatically extract the domain knowledge
useful for efficient commitment strategies.

In particular, we hope to use AI learning techniques to
develop domain-specific commitment strategies. Case-
based reasoning (Veloso 1994) and explanation-based
learning (Ihrig and Kambhampati 1995) are already used
to learn search control for various planners, and we hope
to extend this work to HTN planning. We also intend
to explore the adjustment of dynamic heuristics such
as DVCS based on feedback from experience in the
domain.

References
S. Andrews, B. Kettler, K. Erol, and J. Hendler. UM
translog: A planning domain for the development and

benchmarking of planning systems. Technical report,
CS-TR-3487, University of Maryland, 1995.
A. Barret and D. Weld. Partial-order planning: Eval-
uating possible efficiency gains. Artificial Intelligence
67(1), pp. 71–112, 1994.
D. Chapman. Planning for Conjunctive Goals. Artifi-
cial Intelligence 32, pp. 333–377, 1987.
K. Currie and A. Tate. O-plan: the open planning ar-
chitecture. Artificial Intelligence 52, pp. 49–86, 1991.
K. Erol. HTN planning: Formalization, analysis, and
implementation. Ph.D. dissertation, Computer Science
Dept., University of Maryland, 1995.
E. Fink and M. Veloso. Prodigy planning algorithm.
Technical report, CMU-CS-94-123, Carnegie Mellon
University, Pittsburgh, PA, 1994.
L. Ihrig and S. Kambhampati. Integrating replay with
EBL to improve planning performance. ASE-CSE-TR
94-003, Arizona State University, 1995.
S. Kambhampati, C. Knoblock, and Q. Yang. Plan-
ning as refinement search: A unified framework for
evaluating design tradeoffs in partial-order planning.
Artificial Intelligence 76, pp. 167–238, 1995.
V. Kumar. Algorithmsfor constraint -satisfaction prob-
lems: A survey. AI Magazine, pp. 32–44, 1992.
S. Minton, J. Bresina, and M. Drummond. Commit-
ment strategy in planning: A comparative analysis. In
IJCAI-91, pp. 259–265, 1991.
J. S. Penberthy and D. Weld. UCPOP: A sound, com-
plete, partial order planner for ADL. Proceedings of
KR-92, 1992.
A. Tate. Generating project networks. In IJCAI-77, pp.
888–893.
M. Veloso and P. Stone. FLECS: Planning with a flex-
ible commitment strategy. Journal of Artificial Intelli-
gence Research 3, pp. 25–52, 1995.
M. Veloso. Flexible strategy learning: Analogical re-
play of problem solving episodes. In AAAI-94, pp.
595–600, 1994.
Q. Yang and A. Chan. Delaying variable binding com-
mitments in planning. In AIPS-94, pp. 182–187, 1994.

7

